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ABSTRACT

When epithelial cells are exposed to potentially threatening external stimuli such as 
allergens, bacteria, viruses, and helminths, they instantly produce “alarmin” cytokines, 
namely, IL-33, IL-25, and TSLP. These alarmins alert the immune system about these threats, 
thereby mobilizing host immune defense mechanisms. Specifically, the alarmins strongly 
stimulate type-2 immune cells, including eosinophils, mast cells, dendritic cells, type-2 
helper T cells, and type-2 innate lymphoid cells. Given that the alarm-raising role of IL-33, IL-
25, and TSLP was first detected in allergic and infectious diseases, most studies on alarmins 
focus on their role in these diseases. However, recent studies suggest that alarmins also have 
a broad range of effector functions in other pathological conditions, including psoriasis, 
multiple sclerosis, and cancer. Therefore, this review provides an update on the epithelium-
derived cytokines in both allergic and non-allergic diseases. We also review the progress 
of clinical trials on biological agents that target the alarmins and discuss the therapeutic 
potential of these agents in non-allergic diseases.
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INTRODUCTION

The body’s first line of defense against allergens, viruses, bacteria, and helminths consists 
of the epithelial lining of the skin, intestines, and lungs, which acts as physical barriers. 
However, recent studies have shown that epithelial cells also play a hitherto poorly 
understood but apparently vital role in immunological host defense by sensing potential 
physical/chemical or infectious threats and then initiating immune responses (1). This 
crucial early role is largely mediated by the epithelial-cell release of IL-33, IL-25, and TSLP, 
which have been designated “alarmins” (2,3). Once released in response to allergen or 
infection, these cytokines prime the immune system to produce type-2 immune responses 
characterized by upregulated eosinophils, mast cells, dendritic cells (DCs), type-2 helper 
T (TH2) cells, and type-2 innate lymphoid cells (ILC2s) (Fig. 1). It is now well known that 

Immune Netw. 2022 Feb;22(1):e11
https://doi.org/10.4110/in.2022.22.e11
pISSN 1598-2629·eISSN 2092-6685

Review Article

Received: Dec 30, 2021
Revised: Feb 15, 2022
Accepted: Feb 15, 2022
Published online: Feb 22, 2022

*Correspondence to
Hye Young Kim
Laboratory of Mucosal Immunology, 
Department of Biomedical Sciences, Seoul 
National University College of Medicine, 103 
Daehak-ro, Jongno-gu, Seoul 03080, Korea.
Email: hykim11@snu.ac.kr

†These authors contributed equally to this 
work.

Copyright © 2022. The Korean Association of 
Immunologists
This is an Open Access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/4.0/) 
which permits unrestricted non-commercial 
use, distribution, and reproduction in any 
medium, provided the original work is properly 
cited.

ORCID iDs
Jongho Ham 
https://orcid.org/0000-0001-9423-2053
Jae Woo Shin 
https://orcid.org/0000-0003-1039-2311
Byeong Cheol Ko 
https://orcid.org/0000-0001-7536-5619
Hye Young Kim 
https://orcid.org/0000-0001-5978-512X

Conflict of Interest
The authors declare no potential conflicts of 
interest.

Jongho Ham  1,2,3,†, Jae Woo Shin  1,3,4,†, Byeong Cheol Ko  1,5, 
Hye Young Kim  1,2,3,4,*

1 Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College 
of Medicine, Seoul 03080, Korea

2 Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University 
College of Medicine, Seoul 03080, Korea

3CIRNO, Sungkyunkwan University, Suwon 16419, Korea
4 Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 
03080, Korea

5Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea

Targeting the Epithelium-Derived 
Innate Cytokines: From Bench to 
Bedside

http://crossmark.crossref.org/dialog/?doi=10.4110/in.2022.22.e11&domain=pdf&date_stamp=2022-02-22
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-9423-2053
https://orcid.org/0000-0001-9423-2053
https://orcid.org/0000-0003-1039-2311
https://orcid.org/0000-0003-1039-2311
https://orcid.org/0000-0001-7536-5619
https://orcid.org/0000-0001-7536-5619
https://orcid.org/0000-0001-5978-512X
https://orcid.org/0000-0001-5978-512X
https://orcid.org/0000-0001-9423-2053
https://orcid.org/0000-0003-1039-2311
https://orcid.org/0000-0001-7536-5619
https://orcid.org/0000-0001-5978-512X


Abbreviations 
AD, atopic dermatitis; AHR, airway 
hyperresponsiveness; CNS, central nerve 
system; COPD, chronic obstructive pulmonary 
disease; CRS, chronic rhinosinusitis; CTCL, 
cutaneous T-cell lymphoma; DC, dendritic 
cell; EAE, experimental autoimmune 
encephalomyelitis; IL-17RA, IL-17 receptor 
A; IL-17RB, IL-17 receptor B; IL-25R, IL-25 
receptor; ILC, innate lymphoid cell; IMQ, 
imiquimod; lfTSLP, long-form TSLP; MMP, 
metalloproteinase; MS, multiple sclerosis; 
sfTSLP, short-form TSLP; TH2, type 2 helper T; 
TME, tumor microenvironment; TSLPR, TSLR 
receptor.

Author Contributions
Conceptualization: Kim HY; Investigation: Ham 
J, Shin JW, Ko BC; Writing - original draft: Ham 
J, Shin JW, Kim HY; Writing - review & editing: 
Ham J, Shin JW, Kim HY.

2/26https://immunenetwork.org

this pathway plays a critical role in the initiation of allergic diseases such as asthma and 
atopic dermatitis (AD) (2). However, recent studies have discovered that alarmins can also 
directly regulate many innate and adaptive immune cells and several non-immune cells 
(Fig. 1) and in fact are important in various inflammatory diseases that do not involve type-2 
responses, including psoriasis, multiple sclerosis (MS), and cancer (4-10). Therefore, here 
we will discuss these findings. We will also present the current status of the clinical trials on 
biologics that target the epithelium-derived alarmins.

MATURATION OF EPITHELIUM-DERIVED CYTOKINES

IL-33
IL-33 is a member of the IL-1 family and binds to heterodimeric receptors composed of 
IL-1 receptor accessory protein and the transmembrane isoform of ST-2 (Fig. 2). Once IL-
33 binds to its receptor ST2, the cytoplasmic domain of ST2 recruits the adaptor protein 
MyD88, which ignites NF-κB and AP-1 signaling pathways and induce the expression of pro-
inflammatory molecules (11). In homeostatic conditions, the 270-amino acid IL-33 protein 
is constitutively expressed by epithelial and endothelial cells as a full-length immature form 
that is sequestered in the nucleus (12). However, once epithelial cells are exposed to an 
allergen, bacterium, or virus, IL-33 is cleaved into mature forms by either an exogenous or 
endogenous proteolytic mechanism. The exogenous proteolysis cleaves the central domain 
of IL-33 and results in the IL-3395–270, IL-33107–270, and/or IL-33109–270 fragments. This cleavage is 
mediated by serine and cysteine proteases from either neutrophils and mast cells or allergens 
(e.g. proteases in fungi, house dust mite, pollen, bacteria, and cockroach) (13-15). By 
contrast, the endogenous proteolysis is triggered in epithelial cells when they directly detect 
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Figure 1. Cellular targets of IL-25, IL-33, and TSLP in allergic diseases. Genetic defects and environmental stimuli 
stimulate epithelial cells to secret alarmins. These cytokines exert pro-inflammatory effects by acting on a 
wide range of cell populations. Specifically, they can 1) enhance the survival, recruitment, and degranulation 
of granulocytes such as eosinophils and mast cells; 2) immediately cause ILC2s to secrete IL-5 and IL-13; 3) act 
directly on TH2 cells since they induce their terminal differentiation in peripheral inflamed tissues; 4) convert 
ST2-expressing Tregs into TH2-like Tregs that produce IL-5 and IL-13; and 5) act on somatosensory neurons and 
keratinocytes, thereby promoting itching and disrupting the skin barrier, respectively.
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an allergen: this activates the ripoptosome, an intracellular signaling platform that consists 
of pro-caspase 8, FADD, and RIP1. Once triggered, caspase 8 activates caspase 3 and 7. These 
caspases then cleave full-length IL-33 in the C-terminal domain into the IL-331–175/178 fragments 
(16). These exogenous and endogenous cleavage events all result in mature IL-33 fragments in 
the extracellular environment that bind to and activate a plethora of immune cells, including 
macrophages, eosinophils, mast cells, TH2 cells, Tregs, and ILC2s (17-20).

The exogenous cleavage event significantly increases the biological activity of IL-33: for 
example, it is 10–30-fold more potent than full-length IL-33 in terms of inducing ILC2s 
to produce type-2 cytokines (13,14,21). Travers et al. (22) suggested that this is because 
the mature IL-33 is released in a complex with histones; they observed that the histones 
synergized with IL-33 when activating the pro-inflammatory cytokine production of 
mast cells. However, the relative role and significance of cleaved IL-33 endogenously and 
exogenously remain unclear. Nonetheless, these findings suggest that therapies for diseases 
that are triggered by IL-33 should target the mature form of IL-33.

IL-25
IL-25 is also known as IL-17E and belongs to the 6-member (A–F) IL-17 family. All members 
bind to a homodimeric or heterodimeric receptor composed of 2 subunits of the 5-member 
(A–E) IL-17 receptor family (23). IL-25 binds to a heterodimeric receptor (IL-25R) composed 
of IL-17 receptor A (IL-17RA) and IL-17 receptor B (IL-17RB) (Fig. 2). Ligation of IL-25R 
recruits the adaptor proteins, such as ACT1 and TRAF6, and then activates NF-κB, MAPK/
ERK, and JNK signaling to upregulate genes involved in proliferation and differentiation 
(24). Unlike the other IL-17 family members, which promote type-3 inflammation, IL-25 
amplifies type-2 immunity in multiple tissues (23,25). Given this unique function, IL-25 has 
been designated a distinct IL nomenclature.
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Figure 2. The receptors and downstream signaling of each alarmin. IL-33 binds to a heterodimeric receptor 
composed of ST2 and IL-1RAP. Ligation of IL-33 recruits and activates the adaptor protein MyD88. MyD88 activates 
the transcription factors NF-κB and AP-1, which are then delivered to the nucleus and bind to specific DNA motifs. 
IL-25 exerts its pro-inflammatory effects by binding to a heterodimeric receptor composed of IL-17RA and IL-17RB. 
The intracellular domain of the IL-25 receptor recruits ACT1 and TRAF6 and subsequently promotes the activation 
of the NF-κB or ERK-JNK signaling axis. TSLP binds to TSLPR paired with IL-7Rα. This ligation event activates 
TSLP receptor-associated JAK1 and JAK2, which activate the transcription factor STAT5, thereby causing it to 
translocate into the nucleus. All of these alarmin signaling pathways lead to the production of type-2 cytokines 
and chemokines by the target cells. 
IL-1RAP, IL-1 receptor accessory protein.
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IL-25 can be secreted from a variety of cells, including lung epithelial cells, brain capillary 
endothelial cells, and synovial fibroblasts in rheumatoid arthritis patients. This diversity of 
sources suggests that IL-25 may participate in many diseases (26-28). When IL-25-expressing 
cells are exposed to external stimuli such as helminths or allergens, IL-25 is secreted as 
a disulfide-linked homodimer (29,30). Although very little is known about early IL-25 
processing and its effect on IL-25 bioactivity, Goswami et al. (31) have shown that IL-25 
is cleaved by matrix metalloproteinase (MMP) 7. They also showed that this extracellular 
cleavage event is important for IL-25 function: the MMP7-cleaved form of IL-25 elevated 
anti-CD3/28-induced I splenocyte expression of IL-4, IL-5, and IL-13 significantly better than 
full-length IL-25. Moreover, when MMP7 was knocked out, Aspergillus-induced asthma model 
mice developed less airway hyperresponsiveness (AHR), lower type-2 cytokine levels, and 
lower eosinophil counts in the bronchoalveolar lavage (31). Thus, IL-25 may resemble IL-33 
in the sense that post-translational maturation is needed for its bioactivity. This supports the 
notion that therapies should target mature alarmins.

TSLP
TLSP is a member of the IL-2 cytokine family and is mainly produced by epithelial and 
stromal cells. It exerts its effector functions by binding to the heterodimeric receptor 
composed of the TSLP receptor (TSLPR) and IL-7Rα (32,33) (Fig. 2). When TLSP binds to its 
receptor, JAK1 and 2 are recruited and phosphorylated, and downstream STAT5 is activated to 
initiate expression of pro-inflammatory genes (34).

TSLP has 2 isoforms with opposing immunomodulatory effects, namely, the anti-inflammatory 
short-form TSLP (sfTSLP) and the pro-inflammatory long-form TSLP (lfTSLP). sfTLSP is 
constitutively expressed in the skin, intestine, and lung under homeostatic conditions whereas 
lfTSLP is upregulated in inflammatory environments such as the asthmatic lung and the 
intestine in ulcerative colitis patients (35,36). Dong et al. (35) reported that treatment with 
synthetic sfTSLP improved house dust mite-induced asthma and airway epithelial cell damage 
in mice whereas treatment with lfTSLP impaired and worsened barrier function. However, to 
date, the sfTSLP receptor has not been fully identified and the regulatory mechanism by which 
it acts has not been reported in non-human species (37). For this reason, most studies on TSLP 
have been conducted on lfTSLP. Therefore, we will not discuss sfTSLP further in this review. All 
further references to TSLP allude to the lfTSLP isoform.

The primary sources of TSLP are the epithelial cells in the lungs, skin, and gastrointestinal 
tract, although immune cells, such as DCs, mast cells and mucosal T cells can also express 
it (35,38,39). Like the other alarmins, TSLP also appears to be activated by extracellular 
proteolytic activity. Thus, Nagarkar et al. (40) reported that proteases in nasal polyp extract 
degrade full-length TSLP and that the resulting cleaved TSLP enhances the IL-5 produced 
by IL-1β-stimulated mast cells. Furthermore, Poposki et al. (41) showed that proprotein 
convertases in nasal polyp extracts generate truncated TSLP products that potently 
upregulate the ability of DCs and ILC2s to produce CCL17 and IL-5, respectively. However, 
the exact cleavage sites of TSLP have not yet been identified. Notably, TSLP cleavage has not 
been observed in non-primates, which suggests that the murine model is inappropriate for 
examining the effects of truncated TSLP (41).
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ROLE OF EPITHELIUM-DERIVED CYTOKINES IN 
ALLERGIC DISEASES
Asthma
Asthma is an obstructive airway disease that is characterized by sporadically recurring 
symptoms, including dyspnea, coughing, and wheezing (42). It is underpinned by both 
genetic and environmental risk factors (Fig. 1), many of which associate strongly with 
epithelium-derived cytokines (26,43-47). Thus, several genome-wide association studies have 
shown that single nucleotide polymorphisms in IL33, IL1RL1 (the gene expressing the IL-33 
receptor ST2), and TSLP associate with asthma severity and blood eosinophil counts (45-47). 
While associations between IL25 polymorphisms and asthma have not been found to date, 
an analysis of bronchial biopsies from asthma patients has shown that allergen inhalation 
increases IL-25-and IL-25R-expressing cell frequencies and that these frequencies correlate 
negatively with maximum change in forced expiratory volume in 1 second (FEV1) % (48). 
Moreover, bronchial epithelial biopsies from asthma patients have higher IL-33, IL-25, and 
TSLP protein levels than healthy controls (49-51). When murine models of allergic asthma 
are treated with anti-IL-33, anti-IL-25, or anti-TSLP mAbs, they reduce AHR and the type-2 
cytokine levels and eosinophil counts in the lung (52-54).

It appears that these alarmins can act indirectly and directly on asthma-associated immune 
cells, including eosinophils, mast cells ILC2s, effector TH2 cells, and Tregs (Fig. 1). Regarding 
eosinophils, Cherry et al. (18) showed with in vitro experiments that IL-33 promotes eosinophil 
superoxide production, degranulation, and survival as potently as the key eosinophil 
regulator IL-5. This prosurvival effect of IL-33 appears to relate to its ability to induce the 
autocrine secretion of GM-CSF in eosinophils (55). Moreover, Salter et al. (56) found that 
the eosinophilogenic potential of supernatants from cultured bronchial epithelial cells (as 
measured by adding the supernatants to non-adherent mononuclear cell cultures) was much 
higher when the epithelial cells were from asthma patients rather than from healthy controls; 
in addition, this eosinophilogenic potential was extinguished by antibodies against TSLP. 
Thus, IL-33 and TSLP can directly influence eosinophil formation and activity. For mast 
cells, IL-33 induces mast-cell maturation and degranulation and enhances their adherence 
to fibronectin in vitro (57,58). TSLP induces mast-cell production of cytokines (IL-5, IL-6, and 
IL-13) and chemokines (CXCL8 and CCL1) in vitro but only when IL-1β and TNF are also present 
(43).

Not only granulocytes but also tissue-resident innate lymphocytes, particularly ILCs, can 
mediate type 2 inflammation in an immediate response to alarmins (59-61). Kim et al. 
(62) found with in vitro experiments that ILCs are directly activated by IL-33 produced by 
alveolar macrophages, DCs, and type-2 pneumocytes. Their in vivo experiments using ST2-
deficient mice then showed that activated ILCs are needed to induce the AHR and airway 
inflammation in glycolipid-induced asthma (62). Two studies have also shown that when 
ovalbumin-induced asthma model mice are treated with neutralizing IL-25 Ab during the 
antigen challenge period, it markedly abrogates the development of AHR and the IL-5 and 
IL-13 levels and ILC2 counts in the lung (52,63). In addition, TSLP receptor-deficient mice 
showed reduced BAL eosinophilia and type 2 cytokine production from ILC2 after Alternaria 
alternata challenge (64). Interestingly, Liu et al. (65) found that the ILC2s from the TSLP-rich 
bronchoalveolar lavage of asthma patients are more resistant to steroids than the circulating 
ILC2s and that this resistance can be reversed in vitro by clinically available inhibitors of MEK 
and STAT5. Kabata et al. (66) also found that TSLP, but not IL-25 or IL-33, induces the steroid 
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resistance of ILC2s in the lung of asthma model mice, and that this is mediated via STAT5 
phosphorylation and anti-apoptotic Bcl-xL expression. Thus, targeting TSLP could be an 
alternative therapeutic strategy for uncontrolled steroid-resistant asthma.

Although receiving less attention than innate lymphocytes, T lymphocytes are also affected 
by epithelium-derived alarmins at sites of inflammation. It has been shown that while mice 
that are deficient in all 3 alarmins have normal T-cell priming in the lymph node, effector 
TH2 cells cannot undergo terminal differentiation in peripheral tissues (67). In an in vitro 
T cell differentiation system, each alarmin directly enhances TH2 differentiation (68-70). 
Besides T helper cells, Tregs, which are pivotal in maintaining immune tolerance against 
innocuous external agents (71,72), are also affected by alarmins in allergic conditions: 
Chen et al. (73) showed that lung-resident Tregs express ST-2 and respond to intranasal 
IL-33 administration by upregulating GATA3, IL5, and IL13 expression; consequently, these 
cells come to resemble “TH2-like” Tregs and associate with impaired airway tolerance and 
increased airway inflammation. Thus, the epithelial-derived alarmins may play multiple roles 
in the development of asthma. Further studies on these roles are warranted.

AD
AD is an allergic type of eczema characterized by epidermal hyperplasia and crusted, 
inflamed, highly pruritic, erythematous, and oozing vesicular lesions (74). AD shares many of 
the pathological features of asthma, including TH2-dominant immune responses and elevated 
plasma IgE levels (75). Several clinical and pre-clinical studies suggest that targeting alarmins 
in AD may have therapeutic potential because they appear to promote the disruption of 
the barrier epithelium, as follows (76-81). First, several studies show that AD associates 
with overexpression of IL-33 and TSLP by local keratinocytes and IL-25 overexpression by 
dermal DCs (38,76-79). Second, studies have found that 1) IL-33, IL-25, or TSLP treatment 
directly reduces the AD keratinocyte expression of skin barrier proteins (claudin-1 and/or 
filaggrin) in vitro (82-85); 2) IL-25R-deficient mice have better barrier integrity and thinner 
dermal epithelium than wild-type mice after AD induction (86); 3) keratinocyte-specific 
overexpression of TSLP and IL-33 elicit type-2 inflammation and AD-like phenotypes in mice 
(87,88); and 4) disruption of the barrier epithelium can promote AD by inducing trans-
epithelial water loss, allergen penetration, and bacterial colonization in the skin (89). These 
findings together suggest that alarmins may act directly on keratinocytes in an autocrine 
manner and that targeting alarmins therapeutically could ameliorate AD formation and 
progression. The latter notion is supported by several genome-wide association studies that 
suggest the susceptibility loci for AD-associated with epithelial barrier integrity (90-93).

Several studies also show that ILC2s are key cellular players in AD pathogenesis. First, ILC2s 
appeared to be enriched in skin lesions from AD patients (80,81,94). Second, depletion of 
skin ILC2s reduces the skin thickness and type-2 cytokine production that is caused by topical 
application of MC903 (calcipotriol, a vitamin D analog), which induces AD-like inflammation 
(81). Thus, alarmins may contribute to AD via their well-known ability to stimulate ILCs. This 
is supported by Kim et al., (80) who reported that knocking out TSLP (but not IL-33 or IL-25) 
blocks MC903-induced AD. Interestingly, a very similar study showed that knocking out IL-25 
or IL-33 attenuates the skin inflammation and ILC2 infiltration in MC903-induced AD better 
than knocking out TSLP (81). The reason for this discrepancy between studies is unclear. 
Nonetheless, these studies suggest that targeting alarmins may improve AD.

Two studies have also suggested that blocking alarmins could improve pruritis in AD. 
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Pruritus is mediated by somatosensory neurons whose bodies are located in the dorsal 
root ganglia. Liu et al. (8) and Wilson et al. (95) showed that dorsal root ganglion neurons 
can express the alarmin receptor molecules ST-2 and TSLPR, and that IL-33 and TSLP bind 
directly to these cells. Thus, alarmins may promote pruritus by acting as signaling mediators 
between the epithelium and cutaneous sensory neurons. Given that scratching itself can 
exacerbate skin inflammation (96), these studies suggest that targeting alarmins may 
improve not only pruritis but also AD inflammation.

ROLE OF EPITHELIUM-DERIVED CYTOKINES IN 
AUTOIMMUNE DISEASES
Psoriasis
Psoriasis is a chronic autoimmune skin disease that is characterized by epidermal 
hyperplasia, dermal infiltration with immune cells, and increased dermal capillary density; 
this leads to scaly red skin plaques (97). Unlike asthma and AD, psoriasis is considered 
to be a type-17 disease, meaning that it is mediated by IL-17, IFN-γ, and IL-23 produced by 
TH17 cells and neutrophils (10,98-103). Thus, these molecular and cellular entities are the 
key therapeutic targets in psoriasis. Nonetheless, multiple clinical studies have hinted 
that alarmins may also participate in the pathophysiology of psoriasis. We will discuss the 
evidence for each alarmin in turn.

Mitsui et al. (102) showed that psoriasis patients have higher serum levels of IL-33 than 
healthy controls. Moreover, Zeng et al. (10) found with a murine model of imiquimod 
(IMQ)-induced psoriasis that keratinocytes in the inflamed skin predominantly produce 
IL-33 and also express the IL-33 receptor ST-2. This study then showed that mice with IL-
33-deficient keratinocytes are less susceptible to IMQ-induced psoriasis (10). In addition, 
Duan et al. (104) reported that treating HaCaT human epidermal cells with IL-33 increases 
their proliferation. Besides, IL-33 administration on IMQ-induced psoriasis mice inhibits 
the expression of autophagy-related proteins from skin inflamed lesions (104): the latter 
finding is relevant because downregulation of autophagy associates with the progression of 
several inflammatory and autoimmune diseases, including psoriasis and AD. Thus, similar 
to the findings in AD, these studies suggest that IL-33 from keratinocytes may induce or 
exacerbate the epithelial hyperplasia in psoriasis (and AD) in an autocrine fashion. Immune 
cells may also participate in the IL-33-mediated exacerbation of psoriasis. Hueber et al. (105) 
showed that intradermal injection of IL-33 in murine ears not only induced an inflammatory 
psoriasis-like lesion that increased ear thickness, it also elevated the local levels of the 
neutrophil chemokine CXCL1 and neutrophil counts. Local mast cell counts also rose and 
were at least partly responsible for the inflammation since mast-cell deficient mice (KitW-sh/W-sh 
mice) showed a significant delay in the evolution of the psoriatic phenotype (105).

Like the IL-33, both IL-25 and TSLP were also involved in the pathogenesis of psoriasis. 
Papp et al. (9) showed that treating psoriasis patients with an IL-17RA (1 of the 2 IL-25 
receptor subunits) blockade had strong therapeutic effects on psoriasis. Moreover, Suto et 
al. (106) showed that IL-25 stimulates DCs to produce IL-1β, and this is essential for TH17 
cell-mediated contact hypersensitivity since Il25−/− mice are protected from this inflammatory 
response. Thus, the IL-25/IL-17R axis may be an effective target for psoriasis therapeutics.

Regarding TSLP, Suwarsa et al. (103) found that psoriasis patients have higher serum levels 
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of TSLP than healthy controls while Volpe et al. (107) reported that the keratinocytes in 
untreated skin lesions from psoriasis patients strongly expressed TSLP. Notably, the latter 
study also found that TSLP works synergistically with CD40L to activate skin and blood DCs 
and that once activated in this manner, these DCs express high levels of IL-23 in vitro (107). 
This is significant because IL-23 (a heterodimeric cytokine composed of IL-12p40 and IL-
23p19) induces epidermal acanthosis in mice when injected intradermally. Moreover, blocking 
IL-23 with a mAb against IL-12p40 reduces psoriasis symptoms in patients. Since IL-23 induces 
and activates both type-17 T cells and ILC3s, these findings suggest that although TSLP is 
known to promote type-2 immune responses, it can also aid type-17 inflammation. Additional 
studies suggest that keratinocytes are not only a key source of skin TSLP (38), they also express 
TSLPR (108). This suggests that keratinocyte-produced TSLP not only has paracrine immune 
effects, it also affects keratinocyte behavior in an autocrine manner. This is supported by an 
in vitro study that showed that treatment of primary keratinocytes with recombinant TSLP 
induces their proliferation in a dose-dependent fashion (109). Thus, these studies together 
suggest that IL-33, IL-25, and TSLP also contribute to psoriasis pathogenesis and that blocking 
alarmin signaling may be a therapeutic target in psoriasis.

MS
MS is a neurodegenerative disease that is characterized by demyelination and 
neurodegeneration in the central nerve system (CNS) (110). Analyses of IL-33 reporter mice 
showed that IL-33 is constitutively expressed in the corpus callosum, hippocampus, thalamus, 
and cerebellum (111); moreover, the astrocytes in both the brain and spinal cord express high 
levels of this alarmin (112). The involvement of IL-33 in the pathogenesis of MS is supported by 
increased IL-33 and/or ST2 expression in CNS lesions of MS patients (113,114) and experimental 
autoimmune encephalomyelitis (EAE), a mouse model for human MS (7,115). IL-33 was elevated 
in plasma (116,117), cerebrospinal fluid (117), and brain tissue (113,114) from MS patients. 
Several studies suggest that blocking IL-33 signalings can protect against MS. Li et al. (7) 
reported that IL-33 blockade reduces the development of EAE and that this effect is mediated 
by inhibition of TH1- and/or TH17-related immune responses. Similarly, when myelinating rat 
neurospheres are treated in vitro with recombinant IL-33, their axon myelination is inhibited 
(113). As the defect on axon myelination is the major feature of the MS, accumulated IL-33 
may be involved in the initiation and aggravation of MS. However, other studies have found 
the opposite. Jiang et al. (115) showed that in vivo administration of IL-33 attenuates the 
development of EAE by promoting TH2 cell and M2 macrophage polarization. Moreover, genetic 
deletion of IL33 in oligodendrocyte precursor cells impairs oligodendrocyte maturation and 
differentiation (118). IL-33 receptor-deficient (St2−/−) mice also develop more severe EAE and 
exhibit enhanced inflammatory T cell accumulation in the brain and spinal cord (119). Thus, the 
therapeutic potential of targeting the IL-33/ST-2 axis in MS remains unclear.

Unlike the controversial roles of IL-33, IL-25 may play a protective role in MS since MS 
patients have very low serum IL-25 levels (120). Moreover, IL-25-deficient (Il25−/−) mice are 
highly susceptible to EAE, and this susceptibility is blocked when the IL-25 receptor IL-17A is 
neutralized (6). In addition, when T cells are activated in vitro by anti-CD3/28 in the presence 
of IL-25, they lose their ability to kill fetal neurons. This effect is mediated by IL-25-induced 
inhibition of LFA-1 on the T cells, which generates the cytotoxic immune synapse between T 
cells and their target cells (121). In addition, lentiviral-mediated administration of IL-25 into 
the CNS reduces the neuroinflammation in both EAE and the entorhinal cortex lesion model 
of neuroinflammation; this effect is due to IL-25-induced shifting of the microglia from 
the pro-inflammatory M1 to the anti-inflammatory M2 phenotype (122). Thus, IL-25 could 
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potentially be a therapeutic target for MS.

There is some limited evidence that suggests TSLP signaling pathways contribute to MS 
pathogenesis. Eckhardt et al. (123) showed that when EAE is induced in TSLP-deficient 
(Tslp−/−) mice by myelin oligodendrocyte glycoprotein injections, the disease is both delayed 
and attenuated. Moreover, these mice display impaired differentiation of T cells into myelin 
oligodendrocyte glycoprotein-specific effector and memory T cells (123). Yu et al. (124) 
showed that TSLP receptor-deficient (Tslpr−/−) mice also exhibit resistance to EAE. Moreover, 
they found that TSLPR signaling induces neuroinflammation by activating Janus kinase, 
which then hyperactivates the NLR family pyrin domain containing 3 inflammasome (124), 
which in turn drives systemic TH1 and TH17 inflammation and chemotaxis of immune cells to 
the CNS. Thus, blocking TSLP signaling may be a prospective target for MS.

These studies suggest that epithelial-derived alarmins could participate in MS. However, the 
limited research on IL-25 and TSLP and the discrepant research on IL-33 mean that further 
studies are needed to determine the therapeutic potential of these cytokines in MS.

Cancer
Cancer is characterized by the development of abnormal cells that divide uncontrollably 
and can penetrate and destroy normal body tissues. These features of cancer cells are 
intimately controlled by the tumor microenvironment (TME), which participates in all 
stages of tumorigenesis from initiation to metastasis (125). Cytokines that mediate cell-cell 
communications, including the alarmins, are central to this role of the TME.

IL-33 levels are elevated in the serum and tumor tissues of patients with a wide range of 
cancers, including glioma (126), head and neck squamous cell carcinoma (127), gastric cancer 
(128), colorectal cancer (129), hepatocellular carcinoma (130), uterine leiomyoma (131), non-
small cell lung cancer (132), and breast cancer (133). Additional studies on IL-33 have shown 
that this alarmin can both promote and suppress tumorigenesis. Both effects are mediated 
by the ability of IL-33 to shape innate and adaptive immunity, thereby converting TME to a 
pro-tumoral or anti-tumoral environment. Below, we will first discuss the studies on the pro-
tumoral activities of IL-33.

Yang et al. (133) showed that the serum IL-33 levels in breast cancer patients correlate 
positively with their serum concentrations of molecules that are well known to associate with 
tumor-related angiogenesis (vascular endothelial growth factor), matrix remodeling (MMP-
11), and growth and survival (platelet-derived growth factor-C). Similarly, Jovanovic et al. 
(134) showed that treating IL-33 on a murine breast cancer model accelerates tumor growth 
and metastasis and that this is mediated by increased intratumoral accumulation of myeloid-
derived suppressor cells and Treg cells. Moreover, Liu et al. (129) reported that colorectal 
cancer cells express higher IL-33 and ST-2 levels when they are derived from patients with 
a poor tumor, nodes, metastasis stage, which signifies the extent to which the tumor has 
spread. In addition, Fang et al. (4) showed that when IL-33 transgenic mice are inoculated 
with murine colon cancer cells, they exhibit increased tumor growth, which is induced by 
macrophage recruitment to the TME and stimulating prostaglandin E2 production from 
recruited macrophages.

Contrary to the pro-tumor effects of IL-33, this cytokine can also have a tumor-suppressive 
function. The studies on the tumor-suppressor functions of IL-33 show that this suppression 
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is due to IL-33-modulated activation of either cytotoxic immune cells, the pro-inflammatory 
TH9 cell subset, or ILC2s. With regard to the studies on IL-33-induced cytotoxicity, Gao 
et al. (135) showed that artificially upregulating IL-33 expression in cancer cells inhibits 
tumor growth by increasing CD8+ T and NK cell numbers in tumor tissues. Similarly, IL-33-
transgenic mice display significantly increased tumor infiltration of CD8+ T and NK cells, and 
recombinant IL-33 treatment increases CD8+ T- and NK-cell cytotoxicity in vitro (136). Several 
studies also show that IL-33 can increase anti-tumor immune activity indirectly by increasing 
the ability of DCs to either cross-present leukemia or melanoma Ags to CD8+ T cells (137,138) 
or express OX40L, which induces TH9 cells that promote anti-tumor immune responses (139). 
Moreover, with regard to the studies showing that IL-33 fosters the anti-tumoral functions of 
ILC2s, Moral et al. (140) found that 1) human and mouse pancreatic ductal adenocarcinomas 
bear increased intratumoral ILC2 frequencies, 2) IL-33 deletion increases the growth of the 
tumors in vivo, and 3) IL-33 acts by activating ILC2s, which recruit CD103+ DCs, which in turn 
prime tumor-specific CD8+ T cells and recruit them into the tumor. In addition, Ikutani et 
al. (141) reported that ILC2s promote tumor recruitment of eosinophils, which have anti-
tumoral activity. Notably, a recent study that used the B16.F10 melanoma model showed that 
the acidification of the TME by lactic acid produced by tumor cells facilitates cancer growth 
by impairing ILC2 survival and function. This mechanism explains why the expression 
of lactate dehydrogenase A (the enzyme that produces lactic acid) in human cutaneous 
melanoma samples correlates negatively with ILC2 marker expression (142).

In line with IL-33, IL-25 also has a Janus face in tumor immunity. Its pro-tumoral role is 
mainly mediated by inducing CD4+ T cells to differentiate into TH2 cells, which can promote 
tumor progression. Thus, Jiang et al. (143) showed first that IL-25 is produced in the TME of 
breast cancer by CD4+ T cells and F4/80+ macrophages. Subsequently, they found that IL-25 
neutralization reduces these cell frequencies, TH2 responses and M2 polarization in the TME. 
These changes enhance tumor progression (143). Nakajima et al. (144) observed a similar 
relationship between IL-25, TH2 responses, and cancer progression: they found that the 
keratinocytes in cutaneous T-cell lymphoma (CTCL) skin lesions express high levels of IL-25 
and that PBMCs in patients with an aggressive form of this cancer express IL-25 receptors and 
produce high levels of the type-2 cytokine IL-13.

In contrast, the tumor-suppressor functions of IL-25 are demonstrated by Ferretti et al., 
(145) who showed that human germinal center-derived non-Hodgkin B cell lymphomas 
express the IL-25 receptor, IL-17RB, and that treating model mice with these tumors with 
IL-25 inhibits tumor growth by suppressing pro-angiogenic molecules. Moreover, Furuta 
et al. (146) showed that IL-25 treatment of breast cancer cells can induce their apoptosis in 
vitro, and that this is mediated by IL-25 binding to IL-25 receptor. Interestingly, they found 
that the intracellular region of the IL-25 receptor bears a death domain-like segment that is 
recognized by death domain adaptor proteins, which subsequently activate apoptosis (146).

Like the other 2 alarmins, TSLP both promotes and suppresses tumors. Ragonnaud et al. 
(147) demonstrated that TSLP is secreted from breast cancer cell lines and supports pre-B 
cell proliferation in the bone marrow, ultimately leading to cancer metastasis. Xie et al. (148) 
reported that cervical cancer cells also secrete TSLP and that stimulates cancer cells’ in vitro 
growth in an autocrine manner. The same group also showed with in vitro experiments that 
cervical cancer-derived TSLP may induce the recruitment of eosinophils which produces anti-
inflammatory cytokines, further promotes cervical cancer cell proliferation, and reduces their 
apoptosis (149). Moreover, Takahashi et al. (150) reported that TSLP is expressed by CTCL 
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lesional skin TSLP enhances CTCL progression by directly stimulating cancer cell growth and 
by inducing a TH2-dominant TME that is hostile to TH1 anti-tumor immune responses. This 
was supported by a study on human pancreatic cancer cells, which found that the source of 
TSLP in the cancer lesions is cancer-associated fibroblasts; these cells were shown to activate 
TSLPR+ DCs, which then induce TH2 differentiation (151).

The studies showing that TSLP can also have anti-tumor effects include that by Demehri et 
al., (152) who observed that the keratinocyte-specific overexpression of TSLP in K14-TSLP-
transgenic mice leads to TH2 cell-mediated inflammation that blocks the spontaneous 
development of metastatic breast cancer in MMVT-pyMT mice. This suggests that the TSLP 
can prevent the early stages of tumorigenesis (152). Moreover, an analysis of NCBI GEO 
datasets by Yue et al. (153) showed that human colon adenomas express lower levels of TSLP 
than normal mucosa. This was confirmed by analysis of 40 additional colon adenomas, which 
also showed that the clinical severity of the cases correlated with lower TSLP expression. They 
then reported that TSLP treatment induces primary human colonic cancer cells to undergo 
caspase-8-initiated apoptosis in vitro and that peritumoral injection of TSLP suppresses colon 
cancer growth in vivo (153).

Given these mixed pro- and anti-tumoral roles of all 3 epithelial cell-derived cytokines, it 
remains unclear whether targeting these molecules could have therapeutic value. Nonetheless, 
the research in this area has greatly extended our view of alarmins: they are no longer seen as 
mere inducers of an immune response, rather, it is clear that they can modulate cancer cell 
growth both directly via receptor ligation and indirectly by shaping the immune status in the 
TME. Therefore, further research that untangles these roles is warranted.

DEVELOPMENT OF BIOLOGICS AND ON-GOING CLINICAL 
TRIALS TARGETING EPITHELIUM-DERIVED CYTOKINES
Although the roles of epithelium-derived cytokines in some diseases remain controversial, 
many mouse studies and clinical findings in allergic diseases have confirmed their therapeutic 
possibilities. In particular, these studies have shown that the alarmins can induce more 
extensive and potent allergic responses than downstream mediators such as IgE or type-2 
cytokines. This suggests that targeting the alarmins may result in better immunomodulatory 
effects than the existing therapeutics. This has led to multiple clinical trials on alarmins. Most 
have been or are being conducted on allergic diseases due to the well-established roles of 
IL-33, IL-25, and TSLP in these diseases. The trial drugs are Astegolimab (154-159), Etokimab 
(160-163), GSK3772847 (164,165), Itepekimab (166-173), and MEDI3506 (174-177), which target 
the IL-33/ST-2 pathway (Table 1), and Tezepelumab (178-194) and CSJ117 (195-198), which target 
the TSLP pathway (Table 2). Although blocking the IL-25 pathway is also a possible target, 
there are no clinical trials on agents against IL-25 at present. While biologics that target IL-33 
and TSLP have not yet received FDA approval, some have promising results, as detailed below, 
and are now in phase-3 clinical trials.

IL-33/ST-2 signaling pathway blockade
Astegolimab (MSTT1041A/RG 6149) is a human IgG2 mAb that blocks IL-33 signaling 
by targeting its receptor ST-2. Of the 6 trials on Astegolimab, 2 are in phase-1 studies for 
healthy subjects, patients with mild asthmatics (154), or chronic rhinosinusitis (CRS) with 
nasal polyps (155). The remainders are phase-2 studies on patients with AD (157), chronic 
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obstructive pulmonary disease (COPD) (158,159), or asthma (156). The latter study has shown 
that Astegolimab significantly reduces the asthma exacerbation rates in a broad range of 
adult patients with severe asthma, including those with low eosinophil counts and those with 
inadequately controlled severe asthma (156,199).
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Table 1. Clinical trials that target IL-33/ST-2
Study title Reference Identifier Stage* Drug Disease Status
A first-in-human, double blind, single dose study in healthy 
subjects and subjects with mild atopic asthma

(154) NCT01928368 I Astegolimab Asthma Completed

A study to evaluate the safety, tolerability, pharmacokinetics, 
and pharmacodynamics of AMG 282 in healthy subjects and 
subjects with chronic rhinosinusitis with nasal polyps

(155) NCT02170337 I Astegolimab CRS with NP Completed

A study to assess the efficacy and safety of MSTT1041A in 
participants with uncontrolled severe asthma

(156) NCT02918019 II Astegolimab Asthma Completed

A study to assess the efficacy and safety of MSTT1041A in 
participants with moderate to severe atopic dermatitis

(157) NCT03747575 II Astegolimab AD Completed

Anti-ST2 (MSTT1041A) in COPD (COPD-ST2OP) (158) NCT03615040 II Astegolimab COPD Completed
A study to evaluate the efficacy and safety of astegolimab in 
participants with chronic obstructive pulmonary disease

(159) NCT05037929 II Astegolimab COPD Recruiting

A study investigating the efficacy, safety, and PK profile of 
ANB020 administered to adult subjects with moderate-to-
severe AD (ATLAS)

(160) NCT03533751 II Etokimab AD Recruiting

Proof of concept study to investigate ANB020 activity in adult 
patients with severe eosinophilic asthma

(161) NCT03469934 II Etokimab Asthma Completed

Etokimab in adult patients with chronic rhinosinusitis with nasal 
polyps (CRSwNP)

(162) NCT03614923 II Etokimab CRS with NP Completed

Placebo-controlled study to investigate ANB020 activity in adult 
patients with peanut allergy

(163) NCT02920021 II Etokimab Peanut allergy Completed

A study to evaluate the safety and tolerability, pharmacokinetics 
(PK) and pharmacodynamics (PD) of Melrilimab (GSK3772847) 
in healthy participants

(164) NCT04366349 I GSK3772847 Healthy/asthma Completed

Efficacy and safety study of GSK3772847 in subjects with 
moderately severe asthma

(165) NCT03207243 II GSK3772847 Asthma Completed

Study of REGN3500 and dupilumab in patients with asthma (166) NCT03112577 I Itepekimab Asthma Completed
Study of safety, tolerability, and pharmacokinetics of multiple 
ascending doses of REGN3500 in adults with moderate asthma

(167) NCT02999711 I Itepekimab Asthma Completed

Evaluation of SAR440340 and as combination therapy with 
dupilumab in moderate-to-severe asthma participants

(168) NCT03387852 II Itepekimab Asthma Completed

Efficacy, safety, and pharmacokinetic profiles of REGN3500 
administered to adult patients with moderate-to-severe atopic 
dermatitis

(169) NCT03738423 II Itepekimab AD Completed

Efficacy and safety of REGN3500 monotherapy and combination 
of REGN3500 plus dupilumab in adult patients with moderate-
to-severe atopic dermatitis

(170) NCT03736967 II Itepekimab AD Terminated (Lack 
of efficacy)

Proof-of-concept study to assess the efficacy, safety and 
tolerability of SAR440340 (anti-IL-33 mAb) in patients with 
moderate-to-severe chronic obstructive pulmonary disease 
(COPD)

(171) NCT03546907 II Itepekimab COPD Completed

Study to assess the efficacy, safety, and tolerability of 
SAR440340/REGN3500/Itepekimab in chronic obstructive 
pulmonary disease (COPD) (AERIFY-1,2)

(172,173) NCT04701983 III Itepekimab COPD Recruiting
NCT04751487

Safety and tolerability of MEDI3506 in healthy participants, in 
participants with COPD and healthy Japanese participants

(174) NCT03096795 I MEDI3506 Healthy/COPD Completed

Study to assess the efficacy and safety of MEDI3506 in adults 
with uncontrolled moderate-to-severe asthma (FRONTIER-3)

(175) NCT04570657 II MEDI3506 Asthma Recruiting

Efficacy and safety of MEDI3506 in adult subjects with atopic 
dermatitis

(176) NCT04212169 II MEDI3506 AD Recruiting

A phase II, randomized, double-blind, placebo-controlled study 
to assess MEDI3506 in participants with COPD and chronic 
bronchitis (FRONTIER-4)

(177) NCT04631016 II MEDI3506 COPD/chronic 
bronchitis

Recruiting

NP, nasal polyp.
*Stage I, II, and III represent phase 1, phase 2, and phase 3 respectively.

http://clinicaltrials.gov/ct2/show/NCT01928368
http://clinicaltrials.gov/ct2/show/NCT02170337
http://clinicaltrials.gov/ct2/show/NCT02918019
http://clinicaltrials.gov/ct2/show/NCT03747575
http://clinicaltrials.gov/ct2/show/NCT03615040
http://clinicaltrials.gov/ct2/show/NCT05037929
http://clinicaltrials.gov/ct2/show/NCT03533751
http://clinicaltrials.gov/ct2/show/NCT03469934
http://clinicaltrials.gov/ct2/show/NCT03614923
http://clinicaltrials.gov/ct2/show/NCT02920021
http://clinicaltrials.gov/ct2/show/NCT04366349
http://clinicaltrials.gov/ct2/show/NCT03207243
http://clinicaltrials.gov/ct2/show/NCT03112577
http://clinicaltrials.gov/ct2/show/NCT02999711
http://clinicaltrials.gov/ct2/show/NCT03387852
http://clinicaltrials.gov/ct2/show/NCT03738423
http://clinicaltrials.gov/ct2/show/NCT03736967
http://clinicaltrials.gov/ct2/show/NCT03546907
http://clinicaltrials.gov/ct2/show/NCT04701983
http://clinicaltrials.gov/ct2/show/NCT04751487
http://clinicaltrials.gov/ct2/show/NCT03096795
http://clinicaltrials.gov/ct2/show/NCT04570657
http://clinicaltrials.gov/ct2/show/NCT04212169
http://clinicaltrials.gov/ct2/show/NCT04631016
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Etokimab (ANB020) is a human IgG1 mAb that neutralizes IL-33. It is manufactured by 
AnaptysBio and has been subjected to 4 completed phase-2 trials on AD (160), asthma (161), 
CRS with nasal polyps (162), and peanut allergy (163). The results are still pending. An 
interim analysis of the phase-2 study on asthma showed that Etokimab improved the FEV1 of 
adults with severe eosinophilic asthma compared to placebo-treated patients (161).

GSK3772847, like Astegolimab, also blocks the IL-33 receptor. It is currently being tested for 
safety in a phase-1 trial in healthy participants and a phase-2 trial in patients with asthma 
(164,165). Itepekimab (SAR440340/REGN3500) is a human IgG4 mAb against IL-33. It is 
the subject of 2 phase-1 trials in asthma patients (166,167), 4 phase-2 trials in asthma (168), 
AD (169,170), and COPD patients (171), and 2 phase-3 trials in COPD patients (172,173). The 
results of the phase-2 trial in COPD patients have been reported: although Itepekimab failed 
to meet the primary endpoint in the overall population, it did reduce the exacerbation rate 
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Table 2. Clinical trials that target TSLP
Study title Reference Identifier Stage* Drug Disease Status
A study to evaluate the pharmacokinetics of MEDI9929 (AMG 157) in 
adolescents with mild to moderate asthma

(178) NCT02512900 I Tezepelumab Asthma Completed

Study to evaluate the pharmacokinetics of tezepelumab in children with 
asthma (TRAILHEAD)

(179) NCT04673630 I Tezepelumab Asthma Recruiting

Double-blind, multiple dose study in subjects with mild atopic asthma (180) NCT01405963 I Tezepelumab Asthma Completed
Safety study of AMG 157 in healthy subjects and subjects with atopic 
dermatitis

(181) NCT00757042 I Tezepelumab Healthy/AD Completed

Study to evaluate the efficacy and safety of MEDI9929 (AMG 157) in 
adult subjects with inadequately controlled, severe asthma

(182) NCT02054130 II Tezepelumab Asthma Completed

Effects of anti-TSLP in patients with asthma (UPSTREAM) (183) NCT02698501 II Tezepelumab Asthma Completed
Study to evaluate tezepelumab on airway inflammation in adults with 
uncontrolled asthma (CASCADE) (CASCADE)

(184) NCT03688074 II Tezepelumab Asthma Completed

Phase 2a study to evaluate the efficacy and safety of MEDI9929 in adults 
with atopic dermatitis (ALLEVIAD)

(185) NCT02525094 II Tezepelumab AD Completed

Anti-TSLP (AMG 157) plus antigen-specific immunotherapy for induction 
of tolerance in individuals with cat allergy

(186) NCT02237196 I/II Tezepelumab Cat allergy/cat 
hypersensitivity

Completed

Study to evaluate tezepelumab in adults with chronic spontaneous 
urticaria (INCEPTION)

(187) NCT04833855 II Tezepelumab Chronic spontaneous 
urticaria

Recruiting

Tezepelumab COPD exacerbation study (COURSE) (188) NCT04039113 II Tezepelumab COPD Recruiting
Study to evaluate tezepelumab in adults & adolescents with severe 
uncontrolled asthma (NAVIGATOR)

(189) NCT03347279 III Tezepelumab Asthma Completed

Study to evaluate the efficacy and safety of tezepelumab in reducing oral 
corticosteroid use in adults with oral corticosteroid dependent asthma 
(SOURCE)

(190) NCT03406078 III Tezepelumab Asthma Completed

Long-term safety of tezepelumab in japanese subjects with inadequately 
controlled severe asthma (NOZOMI)

(191) NCT04048343 III Tezepelumab Asthma Completed

Extension study to evaluate the safety and tolerability of tezepelumab in 
adults and adolescents with severe, uncontrolled asthma (DESTINATION)

(192) NCT03706079 III Tezepelumab Asthma On going 
(active)

Study to evaluate tezepelumab in adults with severe uncontrolled 
asthma (DIRECTION)

(193) NCT03927157 III Tezepelumab Asthma Recruiting

Efficacy and safety of tezepelumab in participants with severe chronic 
rhinosinusitis with nasal polyposis (WAYPOINT)

(194) NCT04851964 III Tezepelumab CRS with NP Recruiting

A bronchoprovocation study to assess the safety, tolerability, 
pharmacokinetics and pharmacodynamics of CSJ117 in adult subjects 
with mild atopic asthma

(195) NCT03138811 I CSJ117 Asthma Completed

Study of efficacy and safety of CSJ117 in patients with severe 
uncontrolled asthma

(196) NCT04410523 II CSJ117 Asthma Recruiting

Study of safety of CSJ117 in participants with moderate to severe 
uncontrolled asthma

(197) NCT04946318 II CSJ117 Asthma Recruiting

Study of effect of CSJ117 on symptoms, pharmacodynamics and safety 
in patients with COPD

(198) NCT04882124 II CSJ117 COPD Recruiting

NP, nasal polyp.
*Stage I, II, and III represent phase 1, phase 2, and phase 3 respectively.

http://clinicaltrials.gov/ct2/show/NCT02512900
http://clinicaltrials.gov/ct2/show/NCT04673630
http://clinicaltrials.gov/ct2/show/NCT01405963
http://clinicaltrials.gov/ct2/show/NCT00757042
http://clinicaltrials.gov/ct2/show/NCT02054130
http://clinicaltrials.gov/ct2/show/NCT02698501
http://clinicaltrials.gov/ct2/show/NCT03688074
http://clinicaltrials.gov/ct2/show/NCT02525094
http://clinicaltrials.gov/ct2/show/NCT02237196
http://clinicaltrials.gov/ct2/show/NCT04833855
http://clinicaltrials.gov/ct2/show/NCT04039113
http://clinicaltrials.gov/ct2/show/NCT03347279
http://clinicaltrials.gov/ct2/show/NCT03406078
http://clinicaltrials.gov/ct2/show/NCT04048343
http://clinicaltrials.gov/ct2/show/NCT03706079
http://clinicaltrials.gov/ct2/show/NCT03927157
http://clinicaltrials.gov/ct2/show/NCT04851964
http://clinicaltrials.gov/ct2/show/NCT03138811
http://clinicaltrials.gov/ct2/show/NCT04410523
http://clinicaltrials.gov/ct2/show/NCT04946318
http://clinicaltrials.gov/ct2/show/NCT04882124
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in former smokers with COPD. These patients also demonstrated improved lung function 
(171,200). MEDI3506 is a newly developed IL-33-targeting mAb. It is currently being studied 
in 1 phase-1 trial in healthy subjects and patients with COPD (174) and 3 phase-2 trials in 
asthma (175), AD (176), and COPD patients (177).

TSLP signaling pathway blockade
Tezepelumab (MEDI9929/AMG 157) is a human IgG2 mAb that binds TSLP, thereby blocking 
the TSLP/TSLPR signaling pathway. It is the subject of 17 trials: 5 phase-1 trials in asthma (178-
180), AD patients (181), or cat allergy (186); 7 phase-2 trials in patients with asthma (182-184), 
AD (185), cat hypersensitivity (186), chronic spontaneous urticaria (187), or COPD (188); and 
6 phase-3 trials in asthma patients (189-193) or patients with CRS and nasal polyps (194). The 
phase-2 PATHWAY study showed that Tezepelumab markedly reduced the blood eosinophil 
counts and serum IL-5 and IL-13 levels in patients with severe and uncontrolled asthma. This 
suggests that it decreased asthma severity (182,201). In addition, the phase-3 NAVIGATOR 
trial suggested that Tezeplumab effectively reduced asthma exacerbations and improved lung 
function in adult patients with severe asthma (189,202). Moreover, the phase-2 ALLEVIAD 
trial in adults with AD showed that while Tezepelumab did not achieve significant levels in 
the primary endpoint, the Tezepelumab-treated patients were significantly more likely to 
achieve >50% improvement in the eczema site severity index (185,203).

CSJ117 is a potent neutralizing Ab fragment that targets human TSLP. It was developed as an 
inhaled dry powder formulation for targeted delivery to the lungs. It is the subject of 1 phase-1 
trial in asthma patients (195) and 3 phase-2 trials in asthma (196,197) or COPD patients (198). 
An abstract recently reported that CSJ117 attenuated allergen-induced bronchoconstriction 
and sputum eosinophil counts in patients with mild atopic asthma (204).

CONCLUSIONS

This review shows that the epithelium-derived cytokines IL-33, IL-25, and TSLP play roles in 
a spectrum of diseases that range broadly from allergic disorders to tumors and autoimmune 
diseases. The roles of these alarmins not only include their well-known ability to initiate 
type-2 responses, but they also include participation in type-1 and type-17 immune responses. 
They have a direct impact against ILCs as well as many immune cells (DC, T cells, Treg cells, 
brain and liver macrophages, pre-B cells, eosinophils, mast cells) and non-immune cells 
(keratinocytes, oligodendrocytes, and tumors). These diverse targets and functions suggest 
that controlling alarmin signaling may be a novel therapeutic target. Indeed, numerous 
clinical trials have been or are being conducted on these alarmins. All focus on IL-33 or TSLP, 
most are on allergic diseases, and most are still ongoing, but the existing data are promising 
and suggest that biologics that target the alarmins can safely and effectively treat allergy. 
Moreover, although the research on the roles of alarmins in non-allergic diseases such as 
cancer and autoimmune diseases is still in its infancy, the preliminary pre-clinical and 
clinical data suggest that anti-alarmin biologics could be useful in these diseases as well.
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