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Abstract
The impact of respiratory virus infections on the health of 
children and adults can be very significant. Yet, in contrast to 
most other childhood infections as well as other viral and 
bacterial diseases, prophylactic vaccines or effective antiviral 
treatments against viral respiratory infections are either still 
not available, or provide only limited protection. Given the 
widespread prevalence, a general lack of natural sterilizing 
immunity, and/or high morbidity and lethality rates of dis-
eases caused by influenza, respiratory syncytial virus, corona-
viruses, and rhinoviruses, this difficult situation is a genuine 
societal challenge. A thorough understanding of the virus-
host interactions during these respiratory infections will 
most probably be pivotal to ultimately meet these challeng-
es. This review attempts to provide a comparative overview 
of the knowledge about an important part of the interaction 
between respiratory viruses and their host: the arms race be-
tween host innate immunity and viral innate immune eva-

sion. Many, if not all, viruses, including the respiratory viruses 
listed above, suppress innate immune responses to gain a 
window of opportunity for efficient virus replication and set-
ting-up of the infection. The consequences for the host’s im-
mune response are that it is often incomplete, delayed or 
diminished, or displays overly strong induction (after the de-
lay) that may cause tissue damage. The affected innate im-
mune response also impacts subsequent adaptive respons-
es, and therefore viral innate immune evasion often under-
mines fully protective immunity. In this review, innate 
immune responses relevant for respiratory viruses with an 
RNA genome will briefly be summarized, and viral innate im-
mune evasion based on shielding viral RNA species away 
from cellular innate immune sensors will be discussed from 
different angles. Subsequently, viral enzymatic activities that 
suppress innate immune responses will be discussed, includ-
ing activities causing host shut-off and manipulation of stress 
granule formation. Furthermore, viral protease-mediated im-
mune evasion and viral manipulation of the ubiquitin system 
will be addressed. Finally, perspectives for use of the re-
viewed knowledge for the development of novel antiviral 
strategies will be sketched. © 2019 The Author(s)

Published by S. Karger AG, Basel

This article is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (CC BY-
NC-ND) (http://www.karger.com/Services/OpenAccessLicense). 
Usage and distribution for commercial purposes as well as any dis-
tribution of modified material requires written permission.



Innate Immune Evasion by Respiratory 
Viruses

5J Innate Immun 2020;12:4–20
DOI: 10.1159/000503030

Introduction

The epithelium of the lungs is the largest surface in the 
human body that is in contact with our environment. 
Huge amounts of air and aerosols pass these cells each 
day, whereby the lung tissue, as well as the rest of the re-
spiratory tract is probably almost constantly exposed to 
viruses and bacteria present in the inhaled air. An elabo-
rate machinery is therefore present at this large surface to 
defend this tissue against invading pathogens, including 
mechanical barriers such as a mucus layer. The first line 
of defense at the entire length of the tract from the naso-
pharynx to the alveolar membrane is formed by the in-
nate immune system [1, 2]. In this review, the focus will 
be on the selection of common viruses that invade the 
lungs: coronaviruses (CoVs), rhinoviruses, respiratory 
syncytial virus (RSV), and influenza, which all have an 
RNA genome. This latter feature is of importance to the 
set of cellular innate immune sensors that recognize these 
viruses when they enter the cells of the respiratory tract, 
and the subsequent downstream signaling cascades that 
are triggered as a result. A myriad of different cell types 
such as alveolar macrophages, airway epithelial cells, in-
nate lymphoid cells, and dendritic cells (DCs) have a ma-
jor role in this first defense, while in these and other cells 
of the respiratory tract the sensing, and several subse-
quent specific molecular intra- and intercellular signaling 
cascades ensure the establishment of the so- called anti-
viral state in the lungs. This state can inhibit the develop-
ment of a productive infection with each of these invad-
ing viruses, thereby preventing or at least mitigating ill-
ness, before adaptive immunity kicks in to completely 
clear these viruses from the lungs.

Importantly, as a countermeasure against these elabo-
rate defense mechanisms, invading respiratory viruses 
evolve activities that either circumvent or suppress the 
innate immune responses to create a window of opportu-
nity for efficient virus replication, thereby often causing 
disease. Ultimately, the balance between the efficacy of 
the combined innate and adaptive responses on the host’s 
side, and the virulence and its capacity to evade the host’s 
immune responses on the virus’ side, together dictate the 
disease outcome.

This review will focus on the evasion of the innate im-
mune system by the array of respiratory viruses as intro-
duced above, to highlight this important aspect of the vi-
rus-host interaction that may provide us with possible 
opportunities for exploration of novel antiviral strategies 
against these important viruses. Particular viral activities 
will be highlighted and different viruses compared, but 

the information discussed will not be complete. I there-
fore apologize to any authors who miss discussion of their 
interesting work in this review. To facilitate comparison 
between the respiratory viruses described here, known 
and arguably important innate immune evasion strate-
gies are listed, and for each strategy it is discussed how 
each virus group exploits its own mechanism. Innate im-
mune evasion obviously links to the innate immune re-
sponses that are known to be elicited by respiratory and 
other (RNA) viruses, and while this will be elaborated to 
a limited extent below, they have also been reviewed com-
prehensively in recent reviews by others [2–17].

Importance and Composition of Innate Immune 
Responses against Respiratory Virus Infections

Arguably, the innate immune system is more impor-
tant in early life, when the adaptive functions are still un-
derdeveloped [14]. Yet, the young infant is probably ex-
posed to as many incoming pathogens as older children 
and adults are, so the innate immune system plays a very 
important role in the protection from respiratory infec-
tion in young children. The fact that respiratory infec-
tions are one of the leading causes of mortality in children 
under 5 years of age [18, 19] suggests that the interactions 
of the (innate) immune responses in the infant respira-
tory tract with incoming pathogens is indeed a delicate 
one, and the balance between severe illness and overcom-
ing an infection may be relatively easily tipping towards 
the dangerous side. That the innate immune response 
plays an important role in defense against respiratory in-
fections in early life may be further illustrated by the fact 
that severe RSV infections in children are linked with 
polymorphisms in genes encoding innate immune fac-
tors (reviewed in [14, 20]). Also later in life, the innate 
immune system plays an important role in the response 
against respiratory viruses (reviewed in [1]), and in the 
lungs these first responses against incoming viruses are 
governed primarily by alveolar and interstitial macro-
phages, DCs, airway epithelial cells, innate lymphocytes, 
and neutrophils. 

The innate immune response signaling cascade starts 
with the recognition of pathogen-associated molecular 
patterns by pattern recognition receptors (PRRs). For 
RNA viruses in the lungs, the Toll-like receptors (TLRs) 
3, 7 and 8, which are expressed on several of the men-
tioned cell types, are important PRRs. Also, intracellular 
cytosolic PRRs such as MDA5 and RIG-I, which are pres-
ent in virtually any cell type including those of the lung, 
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have been shown to be relevant for respiratory infections, 
as will be elaborated below. Each of these mentioned re-
ceptors, or sensors, recognize forms of RNA (e.g., 5′ tri-
phosphate RNA, double-stranded RNA [dsRNA]) that 
are produced by (respiratory) RNA viruses during their 
infection process, and which are distinguishable from the 
RNA species that are normally present in the cells (such 
as capped mRNA in the cytosol). In this way, the innate 
immune system senses foreign material that is possibly 
pathogenic, and this triggers downstream signaling to ul-
timately induce transcription factors in the nucleus which 
in turn stimulate expression of types I and III interferons 
(IFNs) and other proinflammatory cytokines. A second 
round of autocrine and paracrine signaling subsequently 
ensures that infected, and the surrounding uninfected 
cells, express a myriad of interferon stimulated genes 
(ISGs) that establish a so-called antiviral state. This state 
quite efficiently inhibits further spread of the infection, 
and simultaneously triggers further adaptive responses 
that in most cases eventually will clear the virus from the 
infected individual. During all these signal transduction 
pathways, regulation of activation and inhibition of signal 
transduction in the cascades is governed in a strict man-
ner by phosphorylation events as well as ubiquitination 
of different linkage types (K48, K63, K27, etc.) on numer-
ous factors in the pathways (reviewed in [21]). These 
events critically regulate the downstream signaling to en-
sure a sufficiently strong, but not overly explosive trigger-
ing of innate immune responses, and a timely downregu-
lation of these responses to protect the individual from 
damaging immunopathology.

Recently, it has become clear that particular type III 
IFNs (IL-28/29), or IFN lambdas, which were discovered 
in 2003 [22, 23], play a prominent role in defense of epi-
thelial surfaces such as that in the lung (reviewed in [3, 5, 
24]). They bind to a distinct heterodimeric receptor con-
sisting of IFNLR1 and IL10RB (as opposed to type I IFN 
that binds to IFNAR1/2), but seem to trigger downstream 
signaling that is very similar to the type I IFN-induced 
pathways, and are also induced by the same PRRs as those 
triggering type I IFNs. However, whereas type I IFNs are 
made by many different cell types, IFN lambdas are pri-
marily expressed by epithelial cells and DCs. Recent lit-
erature suggests that despite the clear similarities between 
the types I and III IFN signaling pathways, the type III 
IFN machinery seems especially equipped to protect epi-
thelial surfaces from pathogenic attacks, and forms the 
primary local defense upon invasion of low doses of vi-
ruses and bacteria. When this first activation of the type 
III IFN machinery is insufficient due to higher doses of 

pathogens coming in, the more systemic type I IFN ma-
chinery forms the second line of defense over broader ar-
eas of the tissue (reviewed in [24]). Additionally, it seems 
that type III IFN does not trigger inflammation as much 
as type I IFN, and this probably indicates an important 
unique aspect of the type III IFN induction, which may 
have a role in the protection of, for example, the lung 
epithelial tissue from immunopathology [25].

Recently, it has become clear that the strict distinction 
between innate and adaptive responses that has been the 
general view for a long time is probably not accurate. In 
the respiratory tract, several of the newly identified cell 
types and mechanisms that integrate aspects from both 
branches of human immunity are now thought to be very 
important for the defense against respiratory infections. 
Natural killer T cells, mucosal-associated invariant T 
cells, and neutrophils, for example, each form a bridge 
between the innate and adaptive machineries and play 
very important roles during the clearance of respiratory 
viruses (reviewed in [1, 6, 10]). Aspects of immunological 
memory, which were thought to be only present in the 
adaptive immune system, have now clearly been shown 
to play a role in the innate immune response as well, also 
that induced by viruses, and was named “trained innate 
immunity” [9]. The general idea about the mechanism 
governing this is that epigenetic changes on innate im-
mune factor genes in specialized immune cells such as 
macrophages are made after the activation of the innate 
immune response. This then positively influences the re-
sponse upon a subsequent pathogen encounter, just as in 
the adaptive immune system [26]. Recently, it also be-
came clear that after respiratory (bacterial) infections this 
mechanism indeed has a role, and strikingly, signaling 
from adaptive (CD8+ T cell responses) “back” to innate 
immune systems (alveolar macrophages) via IFN-gamma 
plays a role in generating epigenetically triggered innate 
immune memory to protect from re-infection [27, 28].

Besides these different responses, most of which are 
IFN-mediated, small non-coding (micro, circular, ...) 
RNAs, RNAi, and IFN-independent antiviral responses 
can be regarded as part of the innate immune response 
package as well [29–31]. An emerging hot topic is also the 
interplay of innate immune response with cellular me-
tabolism, so-called immunometabolism, which likely is 
quite relevant for respiratory viral infections [4, 32, 33]. 
The general idea is that immune cells such as macro-
phages and DCs adapt the choice for the use of their met-
abolic systems to an immune-activated situation that re-
quires increased amounts of energy. This resembles “the 
Warburg effect”, as described in tumor cells, and after 
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pathogen sensing innate immune response thus triggers 
changes in the cell’s metabolism from oxidative phos-
phorylation to glycolysis, thereby optimizing the cell’s 
metabolism for the new situation [34]. Since the new in-
sights mentioned above have generally not yet, or only to 
a limited extent, been investigated in the context of viral 
evasion, this will not be further elaborated in the subse-
quent sections for the selected respiratory viruses.

Innate Immune Evasion by Respiratory Viruses 

Shielding Away the Dangerous Goods in the 
Replication Organelle
Viruses with an RNA genome, such as the respiratory 

viruses highlighted in this review, produce several RNA 
species during viral replication, which are normally ab-
sent in uninfected cells. For example, dsRNA and RNA 
with a 5′-triphosphate are commonly produced by RNA 
viruses during replication, but since the host cells do not 
normally copy RNA from RNA templates, these interme-
diate RNA species are recognized by the innate immune 
sensors discussed above as foreign, resulting in antiviral 
effector activation. To be able to set up a productive infec-
tion in the cell, these viruses therefore need to circumvent 
and/or suppress these intracellular innate antiviral re-
sponses. An obvious primary strategy would be to shield 
away the replication intermediates with their dangerous, 
recognizable features, from the innate immune sensors 
roaming the cytosol. Indeed, the viruses that have a +RNA 
genome, which replicate exclusively in the cytosol such as 
the CoVs and rhinoviruses that invade the lungs, gener-
ally modify intracellular membranes elaborately to form 
headquarters of viral RNA replication, also called “repli-
cation organelles” (ROs; CoVs), “replication factories,” 
“double membrane vesicles” (DMVs; CoVs, enterovirus-
es), “invaginations,” or other (reviewed in [35–37]). Also, 
the negative-stranded RSV genome and its replication 
enzymes are found associated with cytosolic occluded 
structures, in that case named inclusion bodies [38, 39]. 
Expression of a selection of specific hydrophobic viral 
proteins can usually mimic the formation of these struc-
tures, for example, nsp3 and nsp4 of CoVs [40], the N and 
P proteins of RSV [41], and 2B,2C and 3A proteins of en-
terovirus (polio; [42]). All these structures, while divers 
in morphology and contents, seem to concentrate the vi-
ral replication machinery, intermediates and products in-
side membrane-bound vesicles or invaginations, seem-
ingly unreachable for the innate immune sensors of the 
cytosol. It is interesting to note that very little is known 

about the details of interaction of viral replication organ-
elles with the innate immune system. While the protec-
tive function of such organelles in the context of innate 
immune sensing is assumed by many researchers, hardly 
any reports present investigation, let alone proof, of this 
concept. A report by Al-Mulla and co-workers showed 
that in CoV mutants that produced only half the number 
of ROs during infection or in which the structures were 
smaller, replication as well as fitness of these viruses was 
in fact unaffected or even higher than for wt viruses. This 
was also true in cultures of primary host cells, which pre-
sumably have a fully functional intracellular innate im-
mune system [43]. Their results indicated that there is no 
strict correlation between the number of replication or-
ganelles and the replication rate of these viruses. It is not 
clear, however, whether (part of) the viral replication 
takes place outside the replication organelles in these mu-
tant virus infections, and whether replication organelles 
do, or do not, protect viral replication from innate im-
mune attack therefore remains elusive after all. Impor-
tantly, virtually all research investigating the role and 
structure of viral ROs was performed in cell cultures, and 
little is known about their presence or numbers during 
infections in animal models or real hosts. Investigation of 
the latter will, therefore, be pivotal for the true under-
standing of viral ROs and their role in protection from 
innate immune responses.

Attack of the Replication Organelles by the Innate 
Immune System
Besides the question whether the replication organ-

elles protect from innate immune sensors that recognize 
viral RNA, it is also largely unclear whether the innate 
immune system possesses sensors or effectors that target 
viral replication organelles themselves. After all, all +RNA 
viruses produce membranous replication organelles, and 
since they are probably indeed supporting viral replica-
tion, recognizing and attacking them would provide an 
efficient way for the innate immune system to inhibit vi-
ral infection. Our recent research revealed that the type I 
IFN signaling cascade, which is utterly relevant for de-
fense against +RNA viruses, indeed includes effectors 
that influence the integrity of ROs induced by equine ar-
teritis virus, a +RNA arterivirus and a distant relative of 
the CoVs [44]. However, it is not yet clear which type I 
IFN-inducible factors are responsible. Some recent re-
ports (reviewed in [45–47]) suggest that intracellular 
membrane modifications such as viral ROs can be recog-
nized and targeted by guanylate-binding proteins (GBPs), 
a family of dynamin-related large GTPases, of which 
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MxA is a member. MxA is a well-known human type I 
and III interferon-inducible factor that inhibits influenza 
virus infections [48]. Although the exact mechanism of 
inhibition is still not clear for several of the viruses inhib-
ited by Mx proteins, Mx GTPase family members bind to 
intracellular membranes, and in cytosolic +RNA virus in-
fections Mx proteins could target the ROs [48]. Since in-
fluenza replicates in the nucleus (see also below), the idea 
is that MxA attacks influenza while its products are in the 
cytosol. Several reports indicate that GBPs other than the 
Mx proteins act against human +RNA viruses such as 
hepatitis C virus, classical swine fever virus, and dengue 
virus, which are all members of the flavivirus family, pos-
sibly by attacking their ROs. In pigs, GBPs inhibit porcine 
reproductive and respiratory syndrome virus (an arteri-
virus, distantly related to the CoVs). In mice, encephalo-
myocarditis virus and murine norovirus, which are both 
+RNA viruses, are suppressed by interferon (-gamma)-
induced GBPs [45]. For murine norovirus, it has now be-
come clear that GBPs are indeed targeted to viral ROs and 
that this depends on part of the autophagy machinery, 
namely the LC3 conjugation system [49]. Lipidated LC3 
associates with viral ROs, and while this does not depend 
on IFN-gamma induction it is clearly stimulated by it. 
The authors of this paper also mention in their discussion 
that similar mechanisms can be shown for encephalo-
myocarditis virus, suggesting that at least several +RNA 
virus induced ROs can be targeted by the innate immune 
system via GBPs [49]. Ultimately, the idea is that once 
GBPs associate with the viral RO membranes, they cause 
disruption and/or modification of these structures, re-
sulting in less efficient viral replication [49, 50]. Mecha-
nistically, this effect on viral replication could link to the 
viral RNA species and intermediates becoming exposed 
upon disruption of RO membranes by GBPs to the cyto-
solic innate immune RNA sensors such as RIG-I and 
MDA5, which subsequently triggers antiviral innate and 
adaptive immune responses to suppress further replica-
tion. Further research is needed to confirm such a hy-
pothesis.

Interestingly, while CoVs, rhinoviruses, and RSV rep-
licate in the cytosol of respiratory epithelial cells and 
shield their replicating RNAs as discussed above, influ-
enza virus apparently takes another route, and as the only 
known exception to the rule this RNA virus replicates in 
the nucleus. RNA sensors like the RIG-I-like sensors or 
TLRs were thought to be absent there, and therefore rep-
lication inside the nucleus may have been an alternative 
solution to avoid innate immune recognition of viral 
RNA intermediates during replication. However, recent 

data indicated that RIG-I can be active in the nucleus 
against influenza RNA [51]. The viral genome, packaged 
in nucleocapsid proteins and bearing a panhandle- and 
5′-triphosphate structure is recognized by RIG-I, pre-
sumably in the cytosol while on its way to the nucleus, or 
when being incorporated into new virus particles [52–
54]. The recognition by RIG-I is the major trigger to the 
production of type I IFN during influenza infection, while 
also TLR3 plays a role [55]. Additionally, the cell has 
evolved multiple ways to attack influenza replication, for 
example, by GBPs that are localized in the nucleus and the 
cytosol [56].

In summary, the formation of membranous headquar-
ters may be a major strategy for respiratory viruses to 
avoid innate immune recognition of viral nucleic acid 
products in the cytosol. Whether the cell can in turn rec-
ognize and attack these structures is still relatively un-
known, along with viral countermeasures against these 
attacks. This kind of interactions illustrates the arms race 
between the cellular immune responses and viral evasion, 
which due to continuous evolution often has multiple 
 levels.

Further Tricks for Circumventing Viral RNA 
Recognition 
Protection of the 5′ Terminus of Viral RNAs
Apparently, the shielding of viral replication products 

by ROs is not a watertight system, and to further avoid 
recognition of their foreign RNA species, respiratory vi-
ruses have evolved several means of directly modifying 
these RNAs to avoid recognition by the innate immune 
RNA sensors. Adding a cap-structure or a mimic of this 
structure to the 5′-end is an effective way, since in this way 
the cell’s own mRNAs are protected from recognition by 
the innate immune sensors. The respiratory viruses dis-
cussed here use quite diverse methods to achieve this kind 
of protection from recognition, concomitantly making 
sure their mRNAs can be properly recognized by the 
translation machinery of the cell, which they “chose” to 
utilize. 

The rhinoviruses are members of the picornavirus 
family, and these use a specialized, virally encoded cap-
mimicking peptide, called VPg, and attach this to the viral 
RNA 5′ end to protect it from recognition by the innate 
RNA sensors [57, 58]. These viruses indeed do not need 
a cap structure for translation of their RNAs, since they 
use cap-independent internal ribosomal entry site-medi-
ated translation [59, 60]. Influenza viruses steal mRNA 
cap-structures from host mRNAs in the nucleus during 
transcription in a process called “cap-snatching,” in 
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which the viral nucleoprotein plays a major role [61]. RSV 
and CoVs provide their mRNAs with cap-structures 
themselves, using enzymatic functions in their poly-
merase complexes. Interestingly, RSV RNAs have cap-
structures that contain a 7-methyl guanosine; however, 
these caps are devoid of 2’-O-methylation [62]. Both 
methylations are part of the canonical cap-structures on 
cellular mRNAs, but why this is necessary was actually 
unknown. A more recent report in which CoVs and their 
cap-structures were studied indicated that the latter vi-
ruses make sure to add 2’-O methylation to their cap-
structures using a dedicated viral enzyme called nsp16. 
This turned out to be important to avoid recognition by 
the MDA5 sensor and subsequent triggering of innate 
immune responses [63, 64]. RSV apparently does not 
need this 2’-O-methylation on its caps, and this may be 
explained by the observation that this virus is able to se-
quester MDA5 (and innate immune adapter MAVS) into 
its inclusion bodies (the RSV replication headquarters as 
discussed above) using association with its N protein, to 
avoid MDA5-dependent recognition of viral RNA species 
and subsequent innate immune response [38].

Viral Endoribonuclease Activity
Yet another activity provides additional means of 

avoiding recognition, and that is viral endoribonuclease 
activity. CoVs encode endonuclease activity in one of 
their non-structural proteins, and recent reports indicat-
ed that this is instrumental to avoid recognition by the 
MDA5, protein kinase R (PKR), and OAS/RNAse L ma-
chineries [65, 66]. The latter 2 systems recognize and de-
stroy foreign RNA in the cytosol independently of the 
RIG-I-like sensors to remove microbial products. Though 
it may be counter-intuitive for an RNA virus to express 
an RNAse, the virus apparently destroys its own RNA at 
certain locations or in certain stages of the infection to 
avoid the triggering of the RNA sensing and virus-de-
stroying machineries.

Influenza also encodes one or more endoribonucleas-
es, the primary one in the PA protein, which is part of the 
viral polymerase complex together with the PB-1 and 
PB-2 subunits. The PA endonuclease is responsible for 
cleaving the host mRNAs for cap-snatching during tran-
scription of the influenza RNA [67, 68], another mecha-
nism of innate immune evasion that was discussed above. 
Additionally, many influenza strains express shorter 
forms of this protein encoded by the same gene, overlap-
ping with PA at the N-terminal region, but with an alter-
native or truncated C-terminal region, added through a 
ribosomal frame shift or by natural truncation, respec-

tively [69]. These alternative products of the PA gene 
from segment 3 of the influenza genome are called PA-X 
or PAXdeltaC20, which were discovered recently to also 
have an endonuclease activity. These were shown to have 
a role in innate immune evasion, although the truncated 
PAXdeltaC20 seems to have very low endonuclease activ-
ity [70]. The immune modulation by these alternative PA 
proteins is thought to be achieved by stimulating host 
shut-off, another innate immune evasion strategy further 
discussed below, whereby host cell mRNAs are destroyed 
to suppress the expression of host proteins, including 
those involved in the activation of the innate antiviral 
state. Interestingly though, PA-X was shown to cleave 
dsRNA quite efficiently [70], which may not be very rel-
evant for host shut-off, as the cell does not really produce 
dsRNA. Whether PA-X also degrades viral dsRNA spe-
cies to prevent recognition by cytosolic RNA sensors is 
not entirely clear, but mutant viruses in which this PA-X 
protein was expressed in significantly lower amounts elic-
ited higher levels of innate immune response; for exam-
ple, IFN-beta production was much higher in these infec-
tions [71]. This indeed suggests that PA-X, besides having 
a role in the degradation of cellular mRNAs, may also 
degrade viral RNA to prevent recognition by innate im-
mune sensors and activation of innate immune respons-
es, similar to what was shown for the CoVs. To my knowl-
edge, an endoribonuclease has not been identified in the 
RSV genome, so this virus may use alternative innate im-
mune evasion strategies, as discussed elsewhere in this 
review. The same counts for the rhinoviruses.

Besides the replication organelles, the viral 5′ end RNA 
capping/protection mechanisms, and the viral endonu-
cleases, other ways of shielding RNA from innate im-
mune sensors or protecting it from degradation are ex-
ploited by respiratory viruses. Influenza non-structural 
protein NS1, for which many different innate immune 
evasion strategies have been described, binds and seques-
ters viral RNA to protect it from being sensed by RIG-I, 
and this also protects from the activation of PKR and 
OAS/RNAse L-mediated viral RNA degradation [72–74].

Recent data hint at the importance of protecting the 3′ 
ends of viral RNAs as well, besides the 5′ ends, as it was 
shown that Tut4 and Tut7, 2 cellular terminal uridylyl-
transferases, can add one or 2 uridines to the 3′ ends of 
polyadenylated influenza mRNAs, as well as RNAs of sev-
eral other viruses, to target these RNAs for degradation 
by cellular machineries [75–77]. Additionally, a recent re-
port indicated that cytosolic coronaviral mRNAs are tar-
geted by the cellular nonsense-mediated decay pathway, 
a pathway that detects aberrant translation termination 
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features such as premature termination codons in mRNA, 
resulting in the degradation of these mRNAs [78]. In the 
case of CoV, the viral N protein plays a role in counteract-
ing this latter effect [79], presumably by packaging the 
viral RNAs, thereby protecting them from degradation. 
All these data suggest that viruses likely evolved escape 
mechanisms to avoid all these different cellular mecha-
nisms for RNA degradation to be able to set-up a produc-
tive infection in this hostile environment, however, the 
details of several of these mechanisms for the respiratory 
viruses discussed here are still unknown.

Active Suppression of Innate Immune Signaling 
Routes by Respiratory Viruses
Host Shut-Off
General host shut-off, that is viruses halting cellular 

protein expression, is an effective way to actively suppress 
all cellular innate immune responses against the virus, 
and simultaneously provide the virus with the full capac-
ity of the cellular translation machinery for their own use. 
Besides using viral endoribonucleases PA-X and deriva-
tives to attack cellular mRNAs, as has been briefly dis-
cussed for influenza viruses above, the viral polymerase 
complex and the viral “immune evasion” NS1 each also 
contribute importantly to host shut-off during influenza 
infection. Since the polymerase complex takes care of 
cap-snatching, it will leave considerable amounts of cel-
lular mRNAs without a cap, and this in fact triggers the 
degradation of these molecules by cellular machineries 
such as Xrn2 exonuclease, diminishing the general cellu-
lar mRNAs available for translation. Additionally, the in-
teractions of viral polymerase complex with the cellular 
translation machinery cause degradation of Pol II, there-
by inhibiting cellular mRNA production and translation 
[80]. In 1998, Nemerof et al. discovered the role of influ-
enza encoded NS1 in host shut-off [81]. NS1 interacts 
with an essential component of the 3′ end processing ma-
chinery of cellular pre-mRNAs, CPSF30, whereby 3′-end 
cleavage and polyadenylation of cellular mRNAs is inhib-
ited, thereby contributing to host shut-off. In the past de-
cades, details of the molecular mechanism in which NS1 
influences host shut-off have been investigated, and it is 
also clear that these mechanisms can be strain-specific 
[72, 80].

Like influenza viruses, CoVs such as SARS-CoV and 
MERS-CoV also use a combination of ways to achieve host 
shut-off both at the transcriptional and the translational 
levels. Nsp1, the most 5′-terminal subunit of the replicate 
polyprotein of these viruses, was shown to cause host shut-
off by binding to cellular factors of the translation machin-

ery thereby preventing translation of host mRNAs. SARS-
CoV nsp1 binds the 40S subunit of ribosomes to halt trans-
lation [82–85], however, for the MERS-CoV encoded nsp1 
the mechanism of halting translation of cellular mRNA 
seems a bit different [86]. One of the differences is that 
MERS-CoV encoded nsp1 distinguishes between cellular 
mRNAs produced in the nucleus, and viral mRNAs in the 
cytosol, and the translation of the latter is not inhibited by 
MERS-CoV nsp1. In this way, specificity towards disrupt-
ing cellular mRNA translation is achieved [86]. This is dif-
ferent from SARS-CoV nsp1, which inhibits all mRNA 
translations. Additionally, the nsp1 protein of both viruses 
causes host mRNA degradation, however, not through in-
trinsic endoribonuclease activity of nsp1 itself but by acti-
vating the cellular mRNA degradation machinery and its 
exonuclease Xrn1 [82, 83, 86, 87]. 

Rhinoviruses, like poliovirus and other enteroviruses, 
cleave translation initiation factor elF4G to shut down 
cap-dependent translation of cellular mRNAs. This does 
not interfere with the translation of viral mRNAs since 
these viruses depend on internal ribosomal entry site-me-
diated translation (see above). The 2A protease of these 
viruses is responsible for this, by directly cleaving this fac-
tor [88, 89]. Recent work indicated that interaction of rhi-
novirus A encoded 2A protease with elF4E, another sub-
unit of the cellular translation initiation complex, is re-
quired for the cleavage of elF4G during infection [90].

Finally, for RSV little is known about possible host 
shut-off mechanisms. A report by Bruce et al. [91] sug-
gested that RSV specifically targets mRNA encoding sur-
factant protein A, an innate immune factor with an im-
portant role in the epithelial tissue of the lung, which di-
rectly binds to virus particles to cause their destruction by 
host defense mechanisms. During RSV infection, surfac-
tant protein A mRNA translation efficiency seems inhib-
ited, however, the mechanism for this effect has not been 
elucidated to date. An indirect way for viruses to manipu-
late host mRNA expression besides the classical host 
shut-off mechanisms discussed for the other respiratory 
viruses above, may be the induction of stress granules. In 
these structures, cellular mRNAs are accumulated upon 
induction of cellular stress responses that lead to inhibi-
tion of cellular translation. RSV, for example, seems to 
induce stress granules and this benefits its replication, as 
will be discussed in the next section.

Manipulation of Stress Granule Formation 
Stress granules are structures in which, upon stress re-

sponses such as resulting from virus infections, the cell 
concentrates mRNAs that are produced but can no longer 
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be translated. The triggering of PKR, a viral RNA sensor, 
for example, causes phosphorylation of the eiF2alpha 
translation factor, which halts cellular translation thereby 
also affecting viral translation. The accumulation of un-
translated mRNAs and stalled translation and pre-initia-
tion complexes trigger the formation of stress granules. 
Recent insights suggest that stress granules may form a 
platform for innate immune responses, since the accu-
mulation of (viral) RNA species there provides a pool of 
substrates for cellular sensors such as RIG-I and MDA5 
[92–94]. Indeed, these sensors have been shown to be re-
cruited to stress granules, supporting this view [94–96]. 
In the last decade, it has become clear that many viruses 
manipulate stress granule formation to benefit their rep-
lication, for example, RSV, as was also mentioned above. 
In the later stages of RSV infection in epithelial cells, 
stress granules are formed, and if expression of G3BP, a 
factor that is essential for stress granule formation, is 
knocked-down, replication of RSV is inhibited, suggest-
ing a beneficial role for stress granules [97]. A subsequent 
report showed that PKR activation is required for the in-
duction of stress granules by RSV, however, this is dis-
pensable for viral replication [98]. Several other reports 
also show how RSV counteracts the formation of stress 
granules [99], suggesting a negative effect of stress gran-
ule formation on RSV infection. Up till today, it therefore 
remains unclear what the role of stress granules during 
RSV infection is exactly.

CoVs also manipulate stress granule formation. In col-
laboration with the group of Frank van Kuppeveld, our 
lab showed that MERS-CoV encoded 4a protein (trans-
lated from ORF4 in the virus) impedes dsRNA-mediated 
PKR activation, thereby preventing stress granule forma-
tion [100]. Protein 4a binds viral dsRNA, which is essen-
tial for its antagonistic function in PKR activation and 
stress granule formation, suggesting that 4a prevents rec-
ognition of viral RNA by PKR. Recombinant MERS-CoV 
in which ORF 4 (encoding 4a and 4b proteins) was re-
moved, however, still suppressed stress granule forma-
tion in Vero cells, suggesting that 4a’s activity is not the 
only way in which the virus inhibits stress granule forma-
tion [100]. Indeed, CoV nsp1 with its host-shut-off ac-
tivities (see above) is a likely candidate viral protein that 
could play a role. A later report by Nakagawa et al. [101] 
however showed that the ORF4 MERS-CoV mutant virus 
did induce stress granules in another cell line (Hela/
CD26), and also a virus mutant in which 4a alone was re-
moved was not able to suppress SG formation in these 
cells. This suggests that the activity of 4a, and possibly 
other stress granule-inhibiting MERS-CoV proteins, may 

differ per cell line, or that cell lines differ in the activity of 
their antiviral pathways. 

Influenza virus infection is also negatively influenced 
by the triggers that induce stress granule formation [102, 
103]. Indeed, this virus also inhibits the formation of 
stress granules, and influenza virus encoded NS1 seems 
to play a major role in this [104]. This is not surprising 
given the role of NS1 in host-shut-off as well as in protect-
ing the viral RNA from recognition by RNA sensors in 
the cell (see above), thereby preventing the activation of 
PKR and concomitant eiF2alpha phosphorylation and 
stress granule formation. Interestingly, this innate im-
mune evasion activity of NS1 is counteracted by cellular 
protein NF90, which partly prevents the suppression of 
PKR triggered stress granule formation by NS1 by bind-
ing both PKR and NS1 [105]. Besides NS1, the influenza 
nucleoprotein NP and polymerase subunit PA-X help to 
prevent stress granule formation, due to their RNA pro-
tection and host-shut off functions, respectively [103].

For rhinoviruses, nothing is known about their capac-
ity to manipulate stress granule formation, however, for 
other picornaviruses the 2A and L proteases have recent-
ly been shown to interfere by cleaving stress granule fac-
tors such as G3BP1 and G3BP2 [106–109]. A recent re-
port showed that binding of eiF4GI translation factor to 
stress granule-inducing protein G3BP1 is essential for 
 antiviral stress granule formation, and this interaction is 
disrupted by the 2A or L proteases of picornaviruses 
[110]. Given these data, it may be likely that rhinoviruses 
also affect stress granule formation using their proteases, 
which is further supported by data described in the next 
paragraph, but this needs to be investigated.

Respiratory Virus Proteases Cleaving Cellular  
(Innate Immune) Factors
Most, if not all, positive strand RNA viruses encode 

proteases, which they generally use to cleave their viral 
polyproteins into functional subunits during the viral life 
cycle. It has lately become apparent that these proteases 
often have side-functions that support immune evasion 
by these viruses.

Among the viruses discussed here, rhinoviruses and 
CoVs carry a positive strand RNA genome, and each of 
the members of these virus families encode at least 2 pro-
teases.

Rhinoviruses use their 2A papain-like protease (PLpro) 
to effectively disable cap-dependent translation by cleav-
ing eiF4G to induce host-shut off. This may well also pre-
vent stress granule formation, however as mentioned, this 
has not been investigated for rhinoviruses yet. Addition-
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ally, rhinovirus 2A protease cleaves nuclear pore proteins 
Nup62 and Nup98, while 3C protease seems to cleave 
Nup153 [111, 112]. These activities are thought to influ-
ence host immune response signaling for which cytosol-
nucleus communication and trafficking is essential. It re-
cently became clear that rhinovirus 2A protease activity 
also plays a role in targeting rhinovirus 3C protein to the 
nucleus [113, 114], however, it is not clear what 3C pro-
tease is doing there exactly [114, 115].

As discussed in the beginning of this review, the type I 
IFN antiviral pathway is very relevant for RNA virus in-
fections, and an essential adaptor that enables down-
stream signaling in this pathway is IPS-1 (also called 
MAVS). This factor is cleaved by both 2A and 3C prote-
ases of rhinovirus to halt type I IFN signal transduction 
[116]. Rhinovirus 3C protease can inhibit apoptotic cell 
death and activation of antiviral protein complexes by 
cleaving cellular apoptosis factor RIPK1 [117, 118].

CoV proteases also cleave cellular substrates to benefit 
the infection. The functions of  PLpro of CoVs in manip-
ulating the ubiquitin regulation of the innate immune 
system will be discussed later. The main, or 3C-like, pro-
tease of CoVs may have side-functions in cleaving innate 
immune factors as it was shown for 2 porcine CoVs that 
their main proteases cleave NEMO [119, 120], however, 
nothing is known yet in this respect for the human respi-
ratory CoVs.

Manipulation of Ubiquitin and ISG15 Regulated 
Innate Immune Responses
The ubiquitin system is essential for the correct func-

tioning of virtually all important cellular processes. The 
central molecule is ubiquitin, a small 76 amino acid pro-
tein that can be conjugated with its C-terminus to lysine 
residues in substrate proteins. Three classes of enzymes 
are needed for the conjugation: activating E1 enzyme, 
conjugating E2 enzyme, and an E3 ligase. Additional 
ubiquitins can be added to the first via one of 7 lysines in 
ubiquitin itself, yielding poly-ubiquitin chains. The signal 
that the ubiquitin chain gives depends on the linkage 
type(s) of the chain. K48 and K63-linked ubiquitin chains 
are best studied and are generally the cause of degradation 
or activation of the substrate, respectively. In antiviral in-
nate immune signaling, ubiquitin is an important regu-
lating factor, and ISG15, an interferon-induced ubiqui-
tin-like molecule, is also an important factor in antiviral 
innate immunity. It is therefore not a surprise that a lot 
of viruses have evolved ways to manipulate the ubiquitin 
system and ubiquitin-like molecules such as ISG15, which 
they do in very diverse ways [121]. 

After the discovery of a structural resemblance be-
tween SARS-CoV expressed PLpro and the cellular deu-
biquitinase HAUSP/USP7 [122], it soon became clear 
that CoV PLpros had intrinsic deubiquitinating activity 
and could potentially deconjugate cellular (or viral) sub-
strates to disrupt ubiquitin-mediated signaling, as well as 
deconjugate ISG15 off its substrates [123]. It is still not 
clear which cellular and viral factors are deconjugated by 
PLpro during infection, but mutant MERS-CoV in which 
the deubiquitinating/de-ISG15ylating function of PLpro 
was removed clearly showed increased type I IFN innate 
immune responses (Knaap et al., unpublished results), in-
dicating that PLpro’s DUB activity has an important role 
in the suppression of innate immunity during infection. 
For PLpro from human common cold virus HCoV-NL63 
it was shown, although only by over-expression experi-
ments, that it can deubiquitinate Mdm2, the E3 ligase that 
mediates p53 ubiquitination and subsequent degrada-
tion, thereby possibly inhibiting apoptosis and innate im-
mune signaling [124]. Similarly, SARS-CoV PLpro can 
deubiquitinate E3 ligase RCHY1 to stimulate ubiquitina-
tion of p53 by this ligase, and thus also potentially inhib-
it apoptosis [125].

For influenza, several different interactions with the 
ubiquitin system have been identified that critically influ-
ence the outcome of the infection [126]. Generally, the 
activation of the RIG-I – MAVS – irf3 signaling axis in 
type I IFN signaling, which is important for all viruses 
discussed in this review, is governed by ubiquitin linked 
through its lysine at position 63 (forming K63-linked 
chains). About a decade ago, influenza virus NS1 was 
shown to bind E3 ligase TRIM25, thereby interfering with 
K63-linked ubiquitination of RIG-I, and therefore 
uniquely inhibiting innate immune signaling in the type-
I IFN pathway [127]. There has been a recent debate as to 
whether these chains are actually conjugated to RIG-I or 
other factors within the cascade or whether they are free 
ubiquitin chains that provide a scaffold for activating the 
aggregation of RIG-I and MAVS, which in turn enables 
downstream signaling [128]. Influenza B virus-encoded 
NS1 additionally inhibits ISG15 antiviral activity by bind-
ing the N-terminus of human ISG15 (and not mouse 
ISG15) [129]. Furthermore, and similar to what some of 
the CoV PLpro’s may do (see above in this section), In-
fluenza NS1 was recently shown to destabilize Mdm2 E3 
ligase which somehow benefits the IAV infection. Ac-
cording to the authors, this is because Mdm2 seems to 
have a p53-independent antiviral function which is then 
alleviated [130]. This is, however, in contrast to what was 
mentioned for NL63 CoV, where PLpro seems to stabilize 
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Mdm2 to also benefit infection [124]. Further research is 
needed to conclude whether these opposite effects indeed 
benefit the respective infections, or whether either of the 
results is incorrect. Finally, influenza NS1 was shown to 
mediate the upregulation of A20, a deubiquitinase with a 
role in the downregulation of RIG-I activation, to sup-
press the activation of RIG-I [131].

RSV also manipulates ubiquitin-mediated signaling, 
mainly directed by its non-structural proteins NS1 and 
NS2. Quite recently it was shown that RSV NS1 targets 
TRIM25 to suppress RIG-I ubiquitination, very similar to 
influenza’s NS1’s strategy [132]. This probably corrobo-
rates the importance of TRIM25-mediated ubiquitina-
tion in the innate immune signaling cascade. Earlier re-
ports suggested that NS2 of RSV can direct proteasomal 
degradation of signal transducer and activator of tran-
scription 2 (STAT2) in lung epithelial cells [133, 134]. 
STAT2 and STAT1 are transcription factors in the second 
round of innate immune signaling after binding of IFN to 
its receptor on the original, or surrounding cells. How-
ever, the mechanistic details of NS2’s action has not be-
come completely clear yet, although it has been claimed 
that NS2 somehow stimulates (K48-linked) ubiquitina-
tion of proteins, which can be alleviated again by a com-

bination of mutations in NS2. These mutations when in-
troduced into the virus prevent STAT2 from being de-
graded during infection, providing possibilities for novel 
vaccines [135].

Although it was reported that RSV infection in cell cul-
ture and in patients causes induction of ISG15 and that 
ISG15 conjugation to proteins has an antiviral effect 
[136], it is not clear whether RSV inhibits or evades ISG15 
antiviral effects or not.

For rhinoviruses, it is unclear how it interacts with the 
cell’s ubiquitin system. While picornavirus family mem-
ber foot-and-mouth disease virus leader protease was 
shown to have deubiquitinating activity [137], neither 2A 
nor 3C protease from rhinovirus has been implicated in 
ubiquitin-regulated processes to date, and no other re-
ports hinting at manipulation of the ubiquitin system by 
rhinoviruses have been published to my knowledge.

Conclusions and Discussion

The data summarized and discussed above illustrate 
that innate immune evasion is a major function of respi-
ratory and other RNA viruses (Fig.  1), which probably 
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takes a significant volume of the genetic capacity of these 
viruses. This also implies that, given the restricted genet-
ic space available to these viruses, the evasive functions 
must be pivotal for viruses to survive, otherwise they 
would likely not have evolved. Since each virus employs 
multiple different activities to suppress immune respons-
es, and often evolved multifunctional proteins to do so, it 
remains difficult to acquire a complete picture of the im-
mune evasive arsenal of a virus and how this is balanced 
with symptoms and disease outcome in different cell 
types or situations. Nevertheless, in-depth knowledge of 
this virus-host interaction creates important avenues for 
novel antiviral strategies, some of which have already 
been mentioned in the text above, and some more exam-
ples will be discussed in the next section.

Besides the major strategies for innate immune sup-
pression by respiratory viruses discussed, several other 
mechanisms of innate immune evasion have been de-
scribed for the 4 respiratory viruses discussed here, and/
or members of their families, of which many may be 
unique to only one or 2 of the respiratory viruses dis-
cussed here. One example is the virus-encoded macrodo-
main. These domains have been identified in CoVs (and 
several other non-respiratory +RNA viruses) and have 
been shown to counteract IFN signaling with a yet un-
known mechanism [138]. They are absent in influenza 
virus, rhinoviruses, and RSV, and therefore has not been 
discussed in this review. Many of these additional evasive 
activities have been comprehensively reviewed recently 
by others [13, 17, 72, 74, 99, 108, 123, 139–177]. Undoubt-
edly, yet other evasive activities are additionally still to be 
identified. The newly discovered aspects of human innate 
immunity, such as trained innate immunity and the inte-
grated innate/adaptive cell types, as well as the links be-
tween innate immune responses and cellular metabolic 
changes, as discussed in the first part of this review, due 
to their recent discovery have not yet been studied exten-
sively in the context of possible viral evasion strategies. 
This direction of course forms an obvious avenue for new 
research that should be undertaken, since it is likely that 
viruses also target these newly discovered mechanisms.

An important question is how exactly the viral innate 
immune evasive functions of respiratory viruses influence 
disease outcome and ultimate immune responses. It is no-
ticeable that many of the viruses discussed here do not 
elicit a long-lasting immune protection after infection, 
and indeed rhino, corona, and RSV can re-infect individ-
uals sometime after earlier infection, again causing symp-
toms (reviewed in [178, 179]), which is in sharp contrast 
to several other childhood-associated viral infections, 

where lifelong protection is achieved after generally expe-
riencing only one episode of disease. It may well be that, 
besides their strong genetic variation, the innate immune 
evasive activities of the mentioned respiratory viruses play 
a role in this lack of eliciting protective immunity [180], 
and to possibly improve our options for effective antiviral 
strategies, it seems pivotal to further investigate this. For 
influenza the situation is slightly different, since this virus 
elicits protective immunity [172]; however, its genetic 
drift and shift causes new strains that are not, or ineffi-
ciently, recognized by existing influenza immunity which 
generally means that individuals will experience multiple 
influenza infections in the course of their lives. Besides 
contributing to the problem of limited immunological 
protection, viral innate immune evasion may also contrib-
ute to often reported immune over-reactions associated 
with respiratory infections, including cytokine storms, 
damaging inflammation, and other severe complications 
[181–184]. Some studies on SARS-CoV and MERS-CoV 
infections in patients suggest that the delayed innate im-
mune response that is the result of temporary suppression 
by innate immune evasion, contributes to an exacerbated 
response [144]. How this works exactly is unclear to date.

Respiratory pathogens are associated with asthma. 
The exacerbation of asthma symptoms upon infection 
with rhinoviruses have been associated with defective 
types I and III IFN responses [185, 186]. In lung tissue, 
antiviral defenses may be further compromised by other 
mechanisms that impair these defenses such as Th2 cyto-
kines IL-4 and IL-13 [187], and possibly high affinity IgE 
receptor expression and crosslinking [188]. However, 
suppressed antiviral innate immune response during vi-
rus-induced asthma exacerbations is likely also influ-
enced by the innate immune evasive functions of respira-
tory viruses, as these activities contribute to more severe 
pathogenicity and slower virus clearance, likely stimulat-
ing asthmatic manifestations [182, 189]. Understanding 
(innate) immune evasion by respiratory viruses could, 
therefore, shed light on the possibilities for the preven-
tion and cure of asthmatic complications associated with 
respiratory infections.

Closing Remarks: Use of Knowledge on Viral Innate 
Immune Evasion Strategies for Development of Novel 
Vaccines and Antivirals
For particularly RSV and influenza, efforts to develop 

effective and long-lasting vaccines and antivirals have 
been relatively unsuccessful for decades [179, 190]. Many, 
if not all, of the problems that have caused the barriers 
that prevented this goal from being achieved probably 
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link to the viruses’ capability to manipulate the host’s im-
mune responses, thereby breaking through pre-existing 
natural or vaccine inflicted immunity. Detailed knowl-
edge on the mechanisms whereby these viruses deal with 
and modify the immune responses they encounter is 
therefore pivotal to genuinely advance this field. Some 
studies have focused on mapping the interactions of re-
spiratory viruses, and their immune evasion proteins, 
with their host cells to find promising cell-based drug tar-
gets [191, 192], and this could be an effective way to de-
veloping novel vaccines and antiviral drugs.

Effective rhinovirus and CoV antivirals and vaccines 
have also been lacking, and for these viruses causing com-
mon colds, an additional hurdle is the cost-effectiveness 
of these medicines. The general symptoms of these virus 
infections are mild, and before the public is willing to buy 
specific and effective medicines against these infections, 
these should be relatively cheap. Given that these viruses 
are generally difficult to control due to factors of viral im-
mune modulation, the more knowledge we gain on the 
link between virus infection and (innate) immune re-
sponses in the host, the higher the chance that we may be 
able to develop successful and cost-effective remedies. Al-
though the impact of a common cold may not be high, the 
fact that these infections are extremely widespread in the 
human population makes controlling these viruses a de-
sirable goal. The cost-effectiveness balance is also a factor 
for the CoVs causing severe infections, that is, SARS-CoV 
and MERS-CoV, since infections with these viruses are 
either not being reported any more (SARS-CoV), or are 
quite localized and relatively scarce (MERS-CoV). Still, 
since 35% of MERS-CoV-infected patients succumb to 
the infection, and the lingering threat of larger outbreaks 
is felt as long as the virus replicates in humans, WHO has 
been recommending the development of specific vaccines 
for both viruses. Recently, a number of efforts for MERS-
CoV vaccines have reached the stage of clinical trials, and 
having these vaccines “on the shelf” will at least ease so-
cietal concerns of dangerous outbreaks with this lethal 
virus [193].

A more or less obvious way of exploiting a virus’ innate 
immune evasive functions for the development of new 
vaccines is to remove one or more of these from the virus 
using reverse genetic technology. In this way, the virus 
may become attenuated and at the same time it may trig-
ger better innate immune responses due to the lack of one 
or more of its evasive functions. This could yield effective 
modified live virus vaccines that are attenuated by design, 
and for influenza there has been many attempts at con-
structing vaccine viruses lacking (parts of) NS1 or con-
taining mutated NS1. None of these have, however, 
reached the market yet [73, 150, 194]. In our own group, 
we have been exploring the removal of viral deubiquitina-
tion activity from the viral PLpro of MERS-CoV and are 
in the process of analyzing the effect on disease outcome 
and immune responses in a mouse model ([195] and un-
published results). The knowledge we gained about the 
innate immune evasive activity of viral deubiquitinases 
like MERS-CoV PLpro also prompted an innovative an-
tiviral option encompassing the screening for high affin-
ity ubiquitin sequence variants that actually block the en-
tire activity of the viral protease and therefore form prom-
ising antiviral molecules [196].
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