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Abstract
Germline BRCA1 or BRCA2 mutations (mtBRCA1 and mtBRCA2) increase risk for high-grade serous ovarian cancer
(HGSOC), the most commonly diagnosed epithelial ovarian cancer histotype. Other identified risk factors for this
cancer, which originates primarily in the distal fallopian tube epithelium (FTE), implicate ovulation, during which the
FTE cells become transiently exposed to follicular fluid (FF). To test whether mtBRCA1 or mtBRCA2 nonmalignant
FTE cells respond differently to periovulatory FF exposure than control patient FTE cells, gene expression profiles
from primary FTE cultures derived from BRCA1 or BRCA2 mutation carriers or control patients were compared at
baseline, 24 hours after FF exposure, and 24 hours after FF replacement with culture medium. Hierarchical clustering
revealed both FF exposure and BRCA mutation status affect gene expression, with BRCA1 mutation having the
greatest impact. Gene set enrichment analysis revealed increased NFκB and EGFR signaling at baseline in mtBRCA1
samples, with increased interferon target gene expression, including members of the ISGylation pathway, observed
after recovery from FF exposure. Gene set enrichment analysis did not identify altered pathway signaling in
mtBRCA2 samples. An inverse relationship between EGFR signaling and ISGylation with BRCA1 protein levels was
verified in an immortalized FTE cell line, OE-E6/E7, stably transfected with BRCA1 cDNA. Suppression of ISG15 and
ISGylated protein levels by increased BRCA1 expression was found to be mediated by decreased NFκB signaling.
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These studies indicate that increased NFκB signaling associated with decreased BRCA1 expression results in
increased ISG15 and protein ISGylation following FF exposure, which may be involved in predisposition to HGSOC.
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Table 1. Age and BRCA1 and BRCA2 Mutations for Patients Contributing Surgical Samples for
FTE Derivation a

Patient ID Age (Years) Indication for Surgery Mutation Status

BRCA1
1 50 RRSO c.5266dupC
2 38 RRSO 5083del19
3 49 RRSO c.4484GNT
4 38 RRSO 3875delGTCT
5 38 RRSO c.1994delA
6 41 RRSO c.4484GNT
7 39 RRSO 5382insC
8 41 RRSO 185delAG

BRCA2
9 37 RRSO 3331GNT
10 44 RRSO 6884CNG
11 33 RRSO 5972CNT
12 48 RRSO c.9435_9436delGT
13 51 RRSO c.517-2ANG
14 54 RRSO 3036delACAA
15 41 RRSO c.5909CNA
16 42 RRSO 9894delT

Control
17 56 Uterine fibroids N/D
18 52 Uterine fibroids N/D
19 54 Endometrial hyperplasia N/D
20 50 Dermatoid cyst N/D
21 33 Uterine fibroids N/D
22 52 Uterine fibroids N/D
23 48 Uterine fibroids N/D
24 47 Uterine fibroids N/D

RRSO, risk-reducing salpingo-oophorectomy; N/D, not determined.
a The average age (±SEM) for BRCA1 mutation carriers, BRCA2 mutation carriers, and control patients

was 41.7 (±1.7), 43.7 (±2.5), and 49.0 (±2.5) years, respectively [F(2, 21)=2.698, P=.091].
Introduction
Ovarian cancers of epithelial derivation are composed of multiple
histotypes that differ in commonly mutated genes, clinical course, and
presumed cell of origin. Among these histotypes, high-grade serous
ovarian cancer (HGSOC), which originates primarily in the fimbrial
fallopian tube epithelium (FTE), accounts for the majority of deaths
[1]. The most significant risk factor for HGSOC is a family history of
breast or ovarian cancer, with heritable mutations in breast cancer 1,
early onset (BRCA1) or breast cancer 2, early onset (BRCA2) genes
conferring most of this familial risk. Germline BRCA1 mutation
(mtBRCA1) carriers have a lifetime HGSOC risk of up to 60%
compared to 1.4% to 1.7% for the general female population,
whereas germline BRCA2 mutation (mtBRCA2) carriers have a
lifetime risk of up to 23% [2–4]. mtBRCA1 carriers also tend to be
diagnosed at an earlier age than either mtBRCA2 carriers or sporadic
cases [5], suggesting acceleration of the carcinogenic process by
BRCA1 insufficiency.

Additional risk factors for HGSOC are consistent with a
promoting role for an increased number of lifetime ovulatory events.
The use of oral contraceptives, increased parity, lactation, early
menopause, and potentially late menarche reduce risk in the general
population [6,7] and in mtBRCA1 and mtBRCA2 carriers [8,9].
Ovulation is a recurring event involving a cascade of inflammatory
signaling pathways triggered by the LH surge that culminates in the
release of the cumulus-oocyte complex and follicular fluid (FF) into
the fimbria of the fallopian tube. As a result of the dynamic
intrafollicular signaling leading up to ovulation, this periovulatory FF
contains cytokines, chemokines, free radicals, and steroid hormones
[10]. Repetitive exposure of the FTE to these FF factors could
promote carcinogenesis, perhaps through increased DNA adduct
formation and gene mutation to drive development of HGSOC
precursors in the distal FTE [11].

We previously reported that gene expression profiles from
nonmalignant FTE from mtBRCA1 carriers obtained during the
postovulatory luteal phase more closely resembled HGSOC than FTE
either from control patients or from mtBRCA1 carriers obtained
during the follicular phase [12]. Further characterization of the
molecular differences indicated an increased expression of proinflam-
matory genes in luteal phase FTE from mtBRCA1 carriers [13]. This
surprising finding suggested that FTE from mtBRCA1 carriers might
respond differently to ovulation or to the luteal phase milieu.

The primary objective of the current study was to determine
whether the response to FF exposure of nonmalignant FTE cells
derived from mtBRCA1 or mtBRCA2 carriers differs from that of cells
derived from control patients. Our findings demonstrate increased
inflammatory and epidermal growth factor receptor (EGFR) pathway
signaling in FTE from BRCA1 mutation carriers. We also provide
evidence of increased ISGylation, a posttranslational protein
modification, in BRCA1-deficient cells following exposure to
periovulatory FF, raising the possibility that this pathway may
contribute to predisposition to HGSOC.

Materials and Methods

Patient Samples
Fallopian tube surgical specimens were obtained from 24 women

with either known BRCA1 mutations (n=8) or known BRCA2
mutations (n=8), or with no personal or known family history of
breast or ovarian cancer (n=8). All mtBRCA1 and mtBRCA2 carriers
underwent risk-reducing salpingo-oophorectomy, whereas control
patients underwent surgery for benign conditions (Table 1). The
study was approved by Mount Sinai Hospital and Women’s College
Hospital Research Ethics Boards, and all patients provided informed
consent prior to tissue donation.

Primary FTE Culture
Tissue fragments were washed, minced, and incubated for 48 hours

in MEM (Invitrogen, Burlington, Canada) containing 1.4 mg/ml
Pronase and 0.1 mg/ml DNase I (Roche Diagnostics, Laval, Canada)
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at 4°C. Enzymes were inactivated by addition of fetal bovine serum
(FBS) to 10% (v/v). Dissociated cells were collected; resuspended in
DMEM supplementedwith 10%FBS, 100U/ml penicillin, 100μg/ml
streptomycin, and 0.625μg amphotericin (Invitrogen); and transferred
to a positively charged culture plate for 3 to 4 hours. Nonadherent cells
were collected and seeded onto collagen type IV–coated Transwell
inserts at N75% confluency, as previously described [14]. All cultures
were maintained with culture medium in both chambers. Medium was
replaced every 48 hours until cultures were confluent. Cultures
consisted of 49.6%±2.9% (mean±SEM) secretory epithelial cells,
38.0%±2.0% ciliated epithelial cells, and 11.7%±1.6% stromal cells, as
determined by immunostaining for Pax8 (ProteinTech, Rosemont, IL),
FoxJ1 (Abcam, Cambridge, MA), and vimentin (Dako, Mississauga,
Canada), respectively (n=4).

OE-E6/E7 Cell Culture
OE-E6/E7 cells [15], obtained from Dr. William S. B. Yeung,

University of Hong Kong (China), were maintained in DMEM
supplemented with 10% FBS, 100 U/ml penicillin, and 100 mg/ml
streptomycin. Short tandem repeat analysis performed for 10 markers
verified a human female derivation, and all experiments were
conducted within 10 passages from the starting stock culture. A
PCR detection kit (Applied Biological Materials Inc., Richmond, BC)
was used to test for mycoplasma.
OE-BRCA1 cells were generated by stable transfection with a

wild-type BRCA1 expression construct generated by ligating BRCA1
cDNA from pcBRCA1-385 (Addgene, Cambridge, MA) into
pcDNA3.1H+ (Invitrogen). OE-Mock cells were transfected in
parallel with empty pcDNA3.1H+. Stable transfectants were selected
using 80 μg/ml Hygromycin B (Invitrogen).
2-Amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-(4-pi-

peridinyl)-3-pyridinecarbonitrile (ACHP) (Tocris, Minneapolis,
MN) was dissolved in DMSO. Cells were treated with 1 to 25 μM
in culture medium for 48 hours. Recombinant human IFN-β (R&D,
Minneapolis, MN) was reconstituted in water. Cells were treated with
1000 U/ml culture medium.

Ovarian Cancer Cell Lines
SKOV3, ES-2, and HEY ovarian cancer cell lines were grown in

RPMI-1640 culture medium supplemented with 5% FBS, 100 U/
ml penicillin, and 100 mg/ml streptomycin. UWB1.289 and
UWB1.289 +BRCA1 ovarian cancer cells were grown in a 1:1 ratio
of RPMI-1640 with mammary epithelial growth medium (ATCC,
Manassas, VA). Medium for UWB1.289 +BRCA1 was further
supplemented with G418. All cell lines were verified by STR
analysis and tested for mycoplasma as described.
Periovulatory FF Treatment
FF was obtained from the leading follicle from 14 consenting

patients undergoing oocyte retrieval as part of their in vitro
fertilization treatment at Mount Sinai Hospital Fertility Center.
The FF samples were subjected to cytokine profiling, which was
previously reported [16], and was pooled and stored at −80°C.
Once FTE cultures reached confluency (2-3 weeks), culture
medium in the upper Transwell chamber was replaced with 100
μl filter-sterilized FF for 24 hours followed by replacement with
fresh culture medium. Paired baseline cultures were treated in
parallel, except culture medium was used instead of FF. The
lower chamber contained culture medium alone for all cultures.
See Figure 1 for treatment schematic. Exposure of FTE cells to
undiluted FF increases rather than decreases cell number [17]
(Supplementary Figure S1), indicating that this treatment was
not toxic to cells.

Gene Expression Profiling and Analysis
RNA was extracted from primary FTE cultures using TRIzol

(Invitrogen), further purified using an RNeasy MiniElute cleanup kit
(Qiagen, Toronto, Canada), and quantified by NanoDrop spectro-
photometry. All samples had a minimum RNA integrity value of 8.0
(Agilent bioanalyzer system). Whole genome transcriptome profiling
was performed at the Princess Margaret Genomics Centre. RNA (200
ng) was labeled using Illumina TotalPrep-96 RNA amplification kit
(Thermo Fisher Scientific, Burlington, Canada), and 750 ng of
resulting cDNA was hybridized onto Illumina Human HT-12 v4.0
Beadchip Arrays. The beadchips were washed and stained per
Illumina protocol and scanned on an iScan (Illumina) scanner. Gene
expression profiling data are available at NCBI Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo, accession num-
ber GSE98699).

Microarray data were converted to log2 and quantile
median-normalized using Genespring v12.1 software. Samples
were run in two balanced batches due to the interval in collecting
patient derived material; therefore, a further batch effect normal-
ization was performed using CombatR [18]. Unsupervised
hierarchical clustering using average linkage rules and
Pearson-centered metrics was performed to assess the overall degree
of gene expression similarity among samples. All probes were filtered
prior to analysis to remove probes showing no signal across all three
sample groups (80% of samples in either group having expression in
the 20th to 100th percentile of measured signal values). A one-way
ANOVA with a TUKEY HSD using Benjamini-Hochberg false
discovery rate (FDR) for each comparison was used to identify
probes whose mean expression was different between genotypes at
each time point.

Gene Ontology (GO) analysis was performed on genes signifi-
cantly different with a 1.5-fold change cutoff between mtBRCA1 or
mtBRCA2 and control samples at the three time points using an FDR
b0.3. GSEA was performed between patient groups at the three time
points using GSEA software version 2.2.2 and predefined gene sets
from the Molecular Signatures Database (MSigDB v5.0). Analysis
between patient groups at the three time points involved 1000
permutations using the signal2noise metric. Gene sets with an FDR
b0.25 were identified and interactions between gene sets were
visualized with Cytoscape software [19].

Quantitative Real-Time RT-PCR (RT-qPCR)
RNA was extracted from OE-E6/E7 cells with an RNeasy Plus

Universal Mini Kit (Qiagen), and transcript levels for IL8, TNF,
HRAS, ISG15, HERC5, USP18 in OE-Mock and OE-BRCA1
cells were measured by RT-qPCR using primers shown in
Supplementary Table S1. RNA was reverse transcribed using
Superscript III and random hexamers (Invitrogen). qPCR was
performed using an ABI PRISM 7900HT sequence detection
system (Invitrogen) with SYBR Green PCR Master Mix (Invitro-
gen) and analyzed using the ΔCCT method. Target gene CT were
normalized to the geometric mean of three housekeeping genes,
GAPDH, YWHAZ, and B2M, using standard curves. Data are
expressed as mean±SEM.
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Western Blot Analysis
Cellular proteins were extracted using RIPA lysis buffer (50 mM

HEPES, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, 1% sodium
deoxycholate) containing protease and phosphatase inhibitors (Roche
Diagnostics) and quantified using BCA Protein Assay Kit (Thermo
Fisher Scientific). Protein extracts were resolved by SDS-PAGE,
transferred to PVDF membranes, and immunoblotted with
anti-BRCA1 (1:500; sc-6954, Santa Cruz Biotechnology, Dallas,
TX), anti-ISG15 (1:2000, a gift from Dr. Arthur Haas, Louisiana
State University) [20], anti-EGFR (1:1000, #2232), anti-pERK1/2
(1:2000, #9101), anti-ERK1/2 (1:2000, #4696), anti-USP18
(1:1000, #4813) (Cell Signaling Technology, Danvers, MA),
anti-tubulin (1:3000, #T6199, Sigma), or anti-HSP90 (1:5000,
#610418, BD Transduction Laboratories, Mississauga, Canada)
antibodies. Immunoblots were then incubated with horseradish
peroxidase–conjugated goat anti-rabbit (1:1000, sc-2004, Santa Cruz
Biotechnology) or horse anti-mouse antibodies (1:1000, #7076, Cell
Signaling Technology). Immunoreactive bands were visualized by
enhanced chemiluminescence (Santa Cruz Biotechnology) and
quantified using ImageJ software.

Statistical Analysis
RT-qPCR and Western blot data were analyzed by one-sample t

test, one-way ANOVA followed by a Student-Neuman-Keuls (SNK)
post hoc test, or two-way ANOVA (Prism 5). Comparisons were
considered statistically significant at Pb.05.
replaced with culture medium after 24 hours (B). Cells were
harvested 24 hours after FF addition (F24) or 24 hours after replacing
FFwith culturemedium (FC). Parallel cultures fromeach patientwere
treated similarly except that culture medium was used instead of FF
(C24 and C48).
Results

mtBRCA Status and FF Exposure Alter Gene Expression Profiles
Primary FTE cell cultures derived from mtBRCA1 or mtBRCA2

carriers or control patients were grown on collagen IV–coated tissue
culture Transwells to simulate in vivo FTE structure [14].
Periovulatory human FF was added to the upper chamber for 24
hours to simulate transient apical FTE ovulatory exposure in vivo.
Genome-wide gene expression profiles were obtained 24 hours after
FF addition (t=F24, acute response) and 24 hours after its
replacement with culture medium (t=FC, recovery). Paired baseline
(t=C24 and C48) cultures were treated in parallel, except that culture
medium was used instead of FF (Figure 1). Since analysis indicated no
differences in gene expression between baseline cultures collected at
24 and 48 hours, only baseline data obtained at 24 hours (C24) were
included in further analysis.

Unsupervised hierarchical clustering of all 72 culture samples (24
patients × 3 time points) based upon overall gene expression resulted
in all three time point samples (C24, F24, FC) from each patient
clustering most closely together for 20 of the 24 patients (Figure 2A).
While this pattern largely reflects patient variation, an impact of
mtBRCA status was indicated. The 72 samples partitioned into 3
main clusters, with mtBRCA1 samples dominating one cluster
(Group 1A; 67% of mtBRCA1, 33% of mtBRCA2, and 4% control).
A second and smaller cluster (Group 1B) contained no mtBRCA1,
25% of mtBRCA2, and 12.5% of control patient samples, whereas
the third and largest cluster was dominated by control patient samples
(Group 2; 83% of control, 33% of mtBRCA1, and 42% of
mtBRCA2). Samples did not partition based upon FF exposure,
indicating that mtBRCA status had a greater impact on overall gene
expression than FF.
One-way analysis of variance identified 4218 probesets with
differential expression between all 9 groups (3 genotypes × 3
timepoints). Clustering of samples based upon these genes revealed
three principal groupings, with mtBRCA1 samples largely partition-
ing separately (Group 1) from control patient samples (Group 2B),
and mtBRCA2 samples distributed evenly within the groupings
(Figure 2B). While this pattern further indicates that mutation status
has the greatest impact on gene expression, an impact of FF exposure
was also evident, as 83% of F24 samples partitioned away from their
matched baseline sample. Moreover, a subgroup of F24 samples from
all three patient categories clustered together in Group 2A (3 control,
4 mtBRCA1, 5 mtBRCA2).

Differentially Expressed Genes Based Upon mtBRCA Status
Are Affected by FF Exposure

The overlap in genes differentially expressed based on mtBRCA
status at baseline (C24) and after FF exposure (F24 and FC) is shown
in Figure 3. A greater number of probesets were differentially
expressed between mtBRCA1 versus control patient samples at all
time points, as compared to mtBRCA2 versus controls. At baseline,
831 probesets were differentially expressed in mtBRCA1 samples, and
460 probesets were differentially expressed in mtBRCA2 samples, as
compared to control patient samples. With acute FF exposure (F24),
the number of differentially expressed probesets decreased (615 for
mtBRCA1 and 111 for mtBRCA2), and this number increased upon
recovery from FF exposure (FC) to 1198 for mtBRCA1 and 337 for
mtBRCA2. Approximately half of the genes differentially expressed in
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mtBRCA2 samples versus control patient samples were also
differentially expressed in mtBRCA1 samples versus control patient
samples (Figure 3).
At FC, there were 44% more probesets differentially expressed

between mtBRCA1 and control patients than at baseline (1198 vs
831) (Figure 3), whereas the number of differentially expressed genes
in mtBRCA2 samples was decreased by 27% (337 vs 460). Moreover,
no more than 50% of gene probesets identified as differentially
expressed at FC overlapped with either C24 or F24 for mtBRCA1 or
mtBRCA2 samples (Supplementary Figure S2). This suggests a
delayed differential response to FF exposure based on mtBRCA status.
mtBRCA1 Status Impacts Immune and EGFR Signaling
Pathway-Associated Genes

To derive a functional profile of differentially expressed genes at each
time point, GO analyses were performed on genes significantly different
with a 1.5-fold change cutoff between mtBRCA1 or mtBRCA2 and
control samples. At baseline, genes increased and decreased in mtBRCA1
samples associated with 17 and 20 GO terms, respectively (Supplemen-
tary Table S2). No GO terms associated with genes increased at F24 in
mtBRCA1, whereas 7 GO terms associated with decreased genes. At FC,
7 GO terms associated with genes increased in mtBRCA1, and 21 GO
terms associated with decreased genes.
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GO terms identified at all three time points were primarily
associated with inflammation and immune system: altogether, 61.4%
(27 of 44) of the significant GO terms for mtBRCA1 samples were
related to the immune system. This suggests that most gene
expression changes due to mtBRCA1 status alone and to FF exposure
involve alterations in immune response or cytokine signaling.
Additionally, GO terms relating to proliferation, apoptosis, and
cell-cell junction were associated with genes increased in mtBRCA1 at
baseline. New GO terms emerging at FC included response to virus,
innate immune response, and activation of immune response
(Supplementary Table S2). In contrast, no GO terms associated
with mtBRCA2 differentially expressed genes either at baseline or FC.
At F24, five GO terms were associated with decreased genes in
mtBRCA2 samples that were related to immune system response and
function (Supplementary Table S3).

As opposed to GO analysis, GSEA is a multivariate tool that takes
into account all changes in gene expression to identify multiple
pathway members that collectively could amount to a larger impact
on particular cell functions. GSEA was performed between all
mtBRCA status groups at baseline, F24, and FC. Only comparisons
between mtBRCA1 versus control patients provided genesets with an
FDR b0.25. A total of 246 genesets were upregulated in mtBRCA1
versus control at baseline, while no genesets attained significance as
downregulated. Many of these upregulated genesets are involved in
inflammation, DNA damage, and growth pathways (Supplementary
Table S4). Visualization of enriched geneset networks using
Cytoscape revealed two large clusters: NFκB-related and
EGFR-related pathways (Figure 4A). At F24, the only geneset with
an FDR b0.25 for mtBRCA1 versus control was “Reactome pyruvate
metabolism,” which was decreased in mtBRCA1 samples.

Αt FC, 182 genesets were associated with upregulated genes in
mtBRCA1 relative to control patient samples (Supplementary Table
S5). Visualization revealed a large cluster of linked genesets involved
with interferon signaling (Figure 4B). Genes forming the leading-edge
subset within genesets represent those that contribute most to the
enrichment score and have the largest fold-change in expression. The
leading-edge gene subset of the top 20 genesets between mtBRCA1
and control at FC, based upon the normalized enrichment score, is
shown in Table 2. Among these, ISG15 and some of its key
interacting partners involved in ISGylation (HERC5, HERC6 and
USP18) were upregulated in mtBRCA1 versus control samples. In
fact, ISG15 expression was 4.5-fold higher in mtBRCA1 versus
control samples and appears in 14 of the top 20 genesets at FC.
Moreover, ISG15 was upregulated 3.4-fold at baseline in mtBRCA1
versus control samples.

Altering BRCA1 Levels Replicates Key Differences in Gene
Expression

OE-E6/E7 immortalized human FTE cells were used to address
whether changes in gene expression reflect BRCA1 levels as opposed
to differential programming of the primary FTE cells in vivo. OE-E6/
E7 cells express low levels of BRCA1 relative to HEY, ES2, and
SKOV3 ovarian cancer cell lines (Figure 5A). Therefore, OE-E6/E7
cells were stably transfected with wild-type BRCA1 (OE-BRCA1) or
transfected with empty expression vector (OE-Mock), resulting in
cells expressing high and low BRCA1 levels, respectively (Figure 5A).
TNFα, IL8, ISG15, and HRAS were found to have increased
expression in mtBRCA1 samples at baseline and were selected for
investigation. Consistent with our primary FTE gene expression
profiles, TNFα, IL8, and ISG15 transcript levels were suppressed by
increased BRCA1 levels in OE-E6/E7 cells (Figure 5, B-D), whereas
increased BRCA1 did not alter HRAS transcript levels (Figure 5E).

GSEA also indicated that FF treatment of primary FTE cultures
transiently suppressed interferon-induced gene expression that was
otherwise elevated in mtBRCA1 samples at other time points. These
genes included multiple regulators of the ISG15 protein modification
pathway, including HERC5 and USP18. To determine whether these
differences could be due to differential BRCA1 levels, OE-Mock and
OE-BRCA1 cells were treated with FF in a manner identical to the
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Table 2. Significantly Upregulated Genes from the Leading Edge Subset of the Top 20 Gene Sets
from the GSEA Comparing mtBRCA1 and Control after Recovery from Follicular Fluid Exposure
(FC)

Gene Symbol Fold Change # of Gene
Sets Within
Top 20

Gene Symbol Fold Change # of Gene Sets
Within Top 20

IFIT1 6.38 13 FAM46A 1.86 1
OAS2 4.95 10 USP18 1.84 4
ISG15 4.50 14 PLAUR 1.80 1
IFIT3 3.69 12 SP110 1.78 5
MX1 3.62 13 IFIH1 1.78 6
CXCL10 3.41 5 DDX58 1.77 7
IFI44L 3.30 7 ITGB8 1.75 1
IRF7 3.10 12 DDX60 1.69 7
MX2 2.98 7 PAFAH1B3 1.63 1
RSAD2 2.97 5 EIF2AK2 1.62 5
OAS3 2.95 8 PARP12 1.61 5
OAS1 2.91 10 TSPAN1 1.60 1
IFI44 2.90 8 TAP1 1.58 2
HERC6 2.83 6 LAMP3 1.54 3
EPSTI1 2.78 3 ARTN 1.48 1
HS3ST1 2.72 1 PARP14 1.46 2
HERC5 2.35 6 ATP6V1F 1.45 1
OASL 2.29 10 YWHAB 1.45 3
HLA-C 2.29 1 PARP10 1.44 1
SAMD9L 2.27 3 CMPK2 1.43 3
IFIT2 2.26 5 IRF3 1.37 3
IFI35 2.21 11 ZBP1 1.33 4
XAF1 2.15 8 IFIT5 1.30 4
PRIC285 2.10 2 RIPK3 1.30 1
PARP9 2.07 3 DHX58 1.29 3
STAT1 2.06 9 NAGK 1.28 1
DDX60L 1.98 1 RTEL1 1.26 1
SAMD9 1.96 5 HRAS 1.11 1
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primary FTE cultures. At baseline and FC, levels of ISG15, HERC5,
and USP18 transcripts were significantly greater in OE-Mock
compared to OE-BRCA1 cells (Figure 5, F-H), indicating that high
levels of BRCA1 suppress their expression. Treatment of OE-Mock
cells with FF (F24) suppressed levels of all three transcripts to those
measured in OE-BRCA1 cells at baseline.

The impact of BRCA1 expression on USP18 and conjugated and
free ISG15 protein levels in OE-E6/E7 cells was investigated. Since
expression of these genes is activated by type I interferon, protein
levels were examined 24 hours after IFNβ or vehicle treatment. In
vehicle-treated cells, increased BRCA1 decreased both free ISG15
(Figure 6, A and B) and USP18 (Figure 6, D and E), which is
consistent with our findings on transcript levels. As expected, similar
levels of both proteins in OE-Mock and OE-BRCA1 cells were
measured after IFNβ treatment (Figure 6, B and F). Conjugated
ISG15 levels were also increased in OE-Mock relative to OE-BRCA1
cells, and this difference persisted with IFNβ treatment (Figure 6C).

Although EGFR mRNA was not increased in mtBRCA1 primary
FTE cultures, GSEA indicated upregulation of EGFR signaling
associated with lower levels of functional BRCA1. Consistent with
this inverse relationship, increased BRCA1 expression in OE-E6/E7
cells decreased EGFR protein levels (Figure 6G and H).

Increased NFκB Signaling in Cells with Low BRCA1 Levels
Increases ISG15, EGFR, and pERK1/2

To investigate whether elevations in ISG15 and EGFR due to
decreased BRCA1 levels are mediated through NFκB signaling,
OE-Mock and OE-BRCA1 cells were treated with increasing doses of
the IKKα/β inhibitor ACHP. Consistent with our findings above,
free and conjugated ISG15 (Figure 7,A-C) and EGFR (Figure 7,D and
E) levels were increased in OE-Mock cells relative to OE-BRCA1
cells. pERK1/2 levels, a downstream EGFR mediator, were also
increased in OE-Mock cells (Figure 7, F-H). ACHP treatment
decreased both free and conjugated ISG15 inOE-Mock cells to levels
comparable to those in vehicle-treated OE-BRCA1 cells, whereas
ACHP treatment did not alter ISG15 levels in OE-BRCA1 cells.
Similarly, high (10 and 25 μM) ACHP decreased EGFR protein
levels in OE-Mock but not OE-BRCA1 cells. In contrast, pERK1/2
levels were reduced at high doses of ACHP similarly in both
OE-Mock and OE-BRCA1 cells. This suggests that elevated ISG15,
EGFR, and ERK1/2 activation levels observed in low
BRCA1-expressing cells are due to increased NFκB signaling.

Discussion
This study demonstrates that FTE cells from mtBRCA1 carriers have
a gene expression profile that is distinct from that of FTE from
control patients. Even in the absence of FF exposure, mtBRCA1
samples displayed molecular profiles indicative of increased inflam-
matory and EGFR signaling. Moreover, following recovery from FF
exposure, an increased expression of type I interferon-responsive
genes, including multiple members of the ISGylation protein
modification pathway, was apparent in mtBRCA1 samples.

Numerous genes were also differentially expressed in mtBRCA2
samples compared to control patient samples. However, GSEA failed
to identify statistically significant genesets. It is interesting to note
that the top ranking genesets in mtBRCA2 versus control samples
were similar to those significantly elevated in mtBRCA1 versus
control samples, particularly after recovery from FF exposure. These
were characterized by elevated interferon target genes (Supplementary
Tables S6 and S7). Previous studies have shown increased interferon
target gene expression in BRCA2-null colorectal carcinoma cells [21]
and that BRCA2 binds the transcriptional repressor EMSY to
suppress interferon gene expression [22]. Further studies are required
to investigate the impact of BRCA2 mutations on interferon target
gene expression and inflammatory signaling.

Chronic inflammatory signaling, which is mediated by NFκB, is
associated with precipitating events in carcinogenesis and is
activated in nearly all cancers [23]. Key NFκB target genes,
including TNFα, IL8, and ISG15, were increased in mtBRCA1
FTE compared to that derived from control patients. Expression of
BRCA1 in OE-E6/E7 cells decreased the levels of these transcripts,
indicating that this is a direct result of decreased functional BRCA1.
TNFα and IL8 promote leukocyte recruitment, and TNFα is a
potent activator of further NFκB signaling. Thus, increased
expression of these cytokines would likely increase local inflamma-
tory signaling in vivo. An increase in IL8 expression following FF
exposure in non–BRCA1-deficient bovine and human oviductal
cells was shown by us and others [16,17]. Notably, BRCA1-mutated
luteal phase FTE grouping with HGSOC in our previous study
showed increased IL8 expression, in addition to other monocyte/
neutrophil chemokines [12].

We previously demonstrated that decreasing BRCA1 expression in
ES2 ovarian and A549 lung cancer cells enhanced NFκB signaling
[13], but the precise mechanism involved is not clear. Sau et al. [24]
similarly found increased NFκB signaling in BRCA1-deficient
mammary gland progenitor cells, which they attributed to the
DNA damage response. However, BRCA1 binds RelA/p65 and p50
and may act as a co-activator to promote canonical NFκB signaling
[25]; thus, further studies are required to define the precise
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Figure 5. Increased BRCA1 expression inhibits expression of NFκB
target genes and alters the impact of FF exposure on expression of
ISG15 and its interacting partners. (A) Left: Representative Western
blot showing BRCA1 protein levels in OE-E6/E7 cells compared to
ovarian cancer cell lines. UWB1.289 and UWB1.289+BRCA1 cells
were used as a negative and positive control respectively. Right:
Representative Western blot and comparison of BRCA1 levels in
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loading control. Bars represent themean±SEMof three independent
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.0075, one-sample t test. (B-E) Comparison of TNFα (B), IL8 (C), ISG15
(D), and HRAS (E) transcript levels in OE-Mock and OE-BRCA1 cells as
determined by RT-qPCR. Bars represent the mean ± SEM of three
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Figure 6. Increased BRCA1 expression inhibits ISGylation and
decreases ISG15, USP18, and EGFR protein levels. (A) Represen-
tative Western blot showing free and conjugated ISG15 levels in
OE-Mock and OE-BRCA1 cells in the presence and absence of
24-hour treatment with 1000 U/ml IFNβ. Levels of HSP90 are
shown as a loading control. LE=long exposure; SE=short
exposure. (B and C) Comparison of free ISG15 (B) and ISG15
conjugates (C) in OE-Mock and OE-BRCA1 cells in the presence or
absence of IFNβ treatment. Bars represent the mean ± SEM of six
independent experiments relative to levels measured in vehicle--
treated OE-Mock cells. *Pb.05; **Pb.01; ***Pb.001, t test. (D)
Representative Western blot showing USP18 levels in OE-Mock
and OE-BRCA1 cells in the presence and absence of 24-hour
treatment with 1000 U/ml IFNβ. (E and F) Comparison of USP18
levels on OE-Mock and OE-BRCA1 cells in the absence (E) or
presence (F) of IFNβ treatment. Bars represent the mean ± SEM of
three independent experiments relative to levels measured in
OE-Mock cells. Levels of USP18 following IFNβ treatment were
determined on short exposure blots. *Pb.001, one-sample t test.
(G) Representative Western blot showing levels of EGFR in
OE-Mock and OE-BRCA1 cells. (H) Comparison of EGFR levels
normalized to HSP90. Bars represent the mean ± SEM of four
independent experiments relative to levels measured in OE-Mock
cells. *Pb.02, one-sample t test.
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mechanisms by which BRCA1 deficiency leads to increased NFκB
signaling.
An inverse relationship between BRCA1 and EGFR has been

identified in both breast and ovarian cancer [26,27]. This is consistent
with our finding of increased EGFR target gene expression in
mtBRCA1 samples and a decrease in EGFR levels in OE-E6/E7 cells
expressing increased wild-type BRCA1 levels. Inhibition of IKKα/β
by ACHP reduced EGFR protein expression in both OE-Mock and
OE-BRCA1 cells, indicating that EGFR signaling is downstream of
NFκB. Since EGFR also activates NFκB signaling [28], this could
lead to a positive feed-forward cycle between EGFR and NFκB in
BRCA1-deficient cells.
Cross-talk between NFκB and EGFR signaling has been previously

demonstrated by others. NFκB regulated KIAA1199/CEMIP was
shown to increase EGFR signaling by reducing EGFR
lysosome-dependent degradation in cervical and breast cancer cells
[29]. Also, knockdown of IKKα and IKKβ suppressed EGFR
signaling in head and neck cancer cells [30]. EGFR has also been
shown to activate NFκB signaling either directly or indirectly through
JAK/STAT signaling, leading to a positive feed-forward cycle between
EGFR and NFκB [28,31–33]. Elevation of EGFR signaling pathways
is involved in cell survival and growth. While activating mutations in
downstream EGFR targets such as RAS and ERK are typically
associated with low-grade serous ovarian carcinoma, EGFR amplifi-
cation and overexpression in HGSOC have been reported [34].
Previous studies have indicated increased expression of type I

interferon target genes in BRCA1- and BRCA2-deficient cells relative
to controls in multiple cell types, including breast and HGSOC cells
[21,35]; however, this increase did not fully emerge in our
nonmalignant primary FTE cell cultures until after FF exposure.
Increased ISG15 transcripts were identified in mtBRCA1 compared
to control samples at both baseline and after recovery from FF
exposure. ISG15 expression is increased in many epithelial cancers
[36–38] and contributes to RAS-induced oncogenic transformation
of breast epithelial cells [39].
ISG15 functions in protein modification and as a mature free

protein. While free ISG15 is found intracellularly, it is also secreted
and acts upon lymphocytes to induce release of IFNγ and possibly
other cytokines [40]. Secreted ISG15 was shown to suppress tumor
growth, increase natural killer cell tumor infiltration, and enhance cell
surface MHC class I expression in breast tumors [41]. Thus, free
Figure 7. Increased NFκB activity in BRCA1-deficient cells leads to inc
Representative Western blot showing levels of free and conjugated IS
signaling by increasing doses of ACHP for 48 hours. Levels of HSP
exposure. (B and C) Comparison of free (B) and conjugated ISG15 (C) l
independent experiments relative to levels measured in vehicle-treate
BRCA1 expression (Pb.0001), ACHP treatment (Pb.0001), and inte
treatment was analyzed separately for OE-Mock and for OE-BRCA1 c
different letters within each cell subline are statistically different from
EGFR in OE-Mock and OE-BRCA1 cells following ACHP treatmen
independent experiments. Levels are relative to vehicle-treated OE-M
expression (Pb.002) and ACHP treatment (Pb.0001), but not interac
OE-Mock and for OEBRCA1 cells by one-way ANOVA followed by SN
pERK1/2 in OE-Mock and OE-BRCA1 cells following ACHP treatment.
to total ERK1 or total ERK2 levels in four independent experiments. Le
indicated a significant effect of BRCA1 expression (Pb.0001) and ACH
The effect of ACHP treatment was analyzed separately for OE-Mock
hoc test. (I) Schematic model for the impact of BRCA1 expression on
targets multiple proteins including the EGFR and several members o
ISG15 may have a different impact on cancer progression than
increased ISGylation. BRCA1 expression in OE-E6/E7 cells
decreased both free ISG15 and ISGylated protein levels. This
suggests that BRCA1 deficiency directly results in increased ISG15
expression and demonstrates a functional impact of the altered
transcript levels. Several ISG15 E3 ligases have been identified that
determine substrate specificity for ISGylation. Among these,
HERC5, which was upregulated in OE-Mock versus OE-BRCA1
cells and in mtBRCA1 versus control samples after FF recovery, is the
most common and has a wide range of target proteins [42].

ISGylation has been implicated in cancer development and
progression. Desai et al. [43] demonstrated that ISGylation disrupts
F-actin architecture and formation of focal adhesions, and promotes
migration in breast cancer cells. Induction of ISGylation in mice
exacerbates intestinal inflammation, increases ROS, and promotes
generation of colitis-associated colon cancer [44]. ISG15 protein
expression is increased in relapsed HGSOCs compared to primary
tumors [45]. As well, 20% of ovarian cancer cases express an
“interferon-related” gene signature that includes ISG15 [46]. Over
150 ISGylated proteins have been identified [47]; however, the
impact of ISGylation on function has only been investigated for a
limited number of targets.

ISG15 expression is upregulated by TNFα [48] and has dual
effects on NFκB signaling [49,50]. We demonstrated that
blocking NFκB activation decreased ISG15 expression and
overall ISGylation in OE-Mock cells to levels measured in
OE-BRCA1 cells, indicating that BRCA1 deficiency increases
ISG15 levels through increased NFκB signaling. ERK1 has been
identified as an ISGylation target [51], and we found increased
ERK1/2 activation associated with decreased BRCA1 expression.
Further studies are required to determine if ISGylation is
involved in the impact of BRCA1 deficiency on ERK1/2
activation as inhibitors to this protein modification pathway
are currently unavailable.

ISGylation is reversible through the deconjugating activity of
USP18 [52,53]. USP18 transcripts were not increased in mtBRCA1
samples at baseline and emerged as significantly elevated only after FF
exposure, when HERC5 transcripts were also elevated. Increased
BRCA1 levels in OE-E6/E7 cells decreased ISG15, HERC5, and
USP18 transcripts; however, unlike the primary cultures, this impact
on HERC5 and USP18 was detected at baseline. FF exposure
reased ISG15 and may contribute to increased EGFR signaling. (A)
G15 in OE-Mock and OE-BRCA1 cells following inhibition of NFκB
90 are shown as a loading control. LE=long exposure; SE=short
evels normalized to HSP90. Bars represent the mean ± SEM of four
d OE-Mock cells. Two-way ANOVA indicated a significant effect of
raction (Pb.0001, free; Pb.002, conjugated). The effect of ACHP
ells by one-way ANOVA followed by SNK post hoc test. Bars with
one another. (D) Representative Western blot showing levels of

t. (E) Comparison of EGFR levels normalized to HSP90 in four
ock cells. Two-way ANOVA indicated a significant effect of BRCA1
tion. The effect of ACHP treatment was analyzed separately for
K post hoc test. (F) Representative Western blot showing levels of
(G and H) Comparison of pERK1 (G) and pERK2 (H) levels normalized
vels are relative to vehicle-treated OE-Mock cells. Two-way ANOVA
P treatment (Pb.002, pERK1; Pb.0002, pERK2), but no interaction.
and for OE-BRCA1 cells by one-way ANOVA followed by SNK post
suppression of inflammatory signaling and ISGylation. ISGylation

f the downstream MAPK signaling cascade.
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transiently suppressed transcript levels of all three genes in OE-Mock
cells to levels similar to those measured in OE-BRCA1 cells, which
were unaffected by FF. The variation in overall gene expression
between patients could have prevented the interferon gene expression
signal reaching statistical significance at baseline in the primary cultures.
Alternatively, expression of ISG15 interacting partners may vary at
baseline but has a concerted response to FF exposure and recovery. It is
interesting to note that increased USP18 expression did not prevent the
increase in ISGylated protein levels. However, USP18 has independent
direct effects on tumor growth and survival and enhances EGFR
signaling by decreasing miR-7 expression, which targets EGFR [54].
Thus, USP18 may contribute to increased EGFR signaling.

While we had expected the combination of FF and BRCA1
mutation would globally increase proinflammatory signaling, FF
exposure appeared to transiently suppress several inflammatory genes
in mtBRCA1 cells to the level of controls. Steroid hormones, which
are found at high levels in FF, have been shown to decrease NFκB
signaling [55–57]. As well, androgens decrease expression of ISG15
and its interacting partners [38]. Exposure to these hormones in FF
may transiently reduce the baseline elevation in inflammatory
signaling in mtBRCA1 cells to the levels of controls by eliminating
their relative increase in NFκB activity.

As summarized in Figure 7I, the present study highlights an
increase in ISG15 and ISGylation resulting from BRCA1 deficiency
and FF exposure. This increase appears to be mediated through
increased NFκB signaling due to low levels of functional BRCA1.
ISGylation targets multiple proteins, including proteins involved in
EGFR and MAPK-ERK1/2 signaling, and has been linked to cancer
initiation through increased inflammatory signaling [44]. Although
not tested, increased ISGylation of EGFR-MAPK-ERK1/2 cascade
members might contribute to increased pERK1/2 levels associated
with decreased BRCA1. It remains to be determined if blocking
ISGylation in BRCA1-deficient FTE results in decreased proinflam-
matory and EGFR signaling and whether this might mitigate the risk
for malignant transformation.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.neo.2018.05.005.
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