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The diet-induced atherosclerotic rabbit is an ideal model for atherosclerosis study, but temporal changes in atherosclerotic
development in hypercholesterolemic rabbits are poorly understood. Japanese white rabbits were fed a high-cholesterol diet to
induce sustained hypercholesterolemia, and each group of 10-12 animals was then sacrificed at 6, 12, 16, or 28 weeks. The rabbit
aortas were harvested, and the sizes of the gross and intima atherosclerotic lesions were quantified. The cellular component of
macrophages (Mgs) and smooth muscle cells (SMCs) in aortic intimal lesions was also quantified by immunohistochemical
staining, and the correlation between plasma cholesterol levels and the progress of atherosclerotic lesions was studied.
The ultrastructure of the atherosclerotic lesions was observed by transmission electron microscopy (TEM). Widely variable
atherosclerotic plaques were found from 6 weeks to 28 weeks, and the lesional progress was closely correlated with cholesterol
exposure. Interestingly, a relatively reduced accumulation of Mg, an increased numbers of SMCs, and a damaged endothelial layer
were presented in advanced lesions. Moreover, SMCs were closely correlated with cholesterol exposure and lesional progress for the
whole period. Cholesterol exposure directly determines atherosclerotic progress in a rabbit model, and the changes in the cellular

component of advanced lesions may affect plaque stability in an atherosclerotic rabbit model.

1. Introduction

Atherosclerosis is characterized by chronic inflammation in
arteries that involves the accumulation of oxidized lipopro-
teins, an increased number of inflammatory cells and hyper-
trophic degeneration of the arterial intima, and it is closely
associated with hypercholesterolemia [1-3]. Atherosclerosis
complications often occur suddenly, and they can seriously
jeopardize patients’ lives [3]. Pathologically, plaque rupture is
primarily responsible for the occurrence of dramatic clinical
events, such as unstable angina, acute myocardial infarction,
and stroke [2, 4]. Although the mechanism of plaque rupture
is unclear, numerous studies have suggested that altered
plaque contents result in destabilization, and these studies
indicate that macrophages (Mgs) and smooth muscle cells

(SMCs) in the lesion play pivotal roles in plaque rupture [5—
9].

The laboratory rabbit is a good model in which to study
atherosclerosis because its lipoprotein profile is more similar
to humans than that of mouse or rat [10]. However, the tem-
poral process of Mgs and SMCs accumulation in atheroscle-
rotic lesions in rabbit is unclear, and the relationship between
cholesterol exposure and the changes of cellular component
is not completely determined. Moreover, the pathological
mechanism underlying Mg death and defective resolution
of inflammation remains uncertainly. To address these ques-
tions, we performed this study to investigate the temporal
changes in development of atherosclerosis at four time points
(6, 12, 16, and 28 weeks) in rabbits, as well as the potential
relationship between the changes of cellular component and
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FIGURE 1: A schematic of experimental design.

cholesterol exposure. We observed the SMCs proliferation, a
reduction in Mgs accumulation and damaged endothelium
copresenting in advanced lesions. Furthermore, we proposed
a possible explanation for why the changes of cellular
component occurred in the advanced lesions of hypercho-
lesterolemic rabbits.

2. Materials and Methods

2.1. Experimental Design. Male Japanese white rabbits (1.5
2.0kg; 16-18 weeks old) were provided by the Laboratory
Animal Center of Xi’an Jiaotong University and were ran-
domly divided into two groups. The control group (n =
10) was fed a standard chow diet. The other rabbits (n =
44) were fed a high-cholesterol diet that contained 0.3—
0.5% cholesterol and 3% corn oil; this group was designated
as the high-cholesterol diet (HCD) group. Animals were
individually maintained in a temperature-controlled (20—
24°C) facility with a 12 h light/dark cycle, given free access
to food and water. As Figure 1 shown, at 6 (n = 10), 12
(n = 11), 16 (n = 12), and 28 (n = 11) weeks, rabbits
from the HCD group were randomly sacrificed by admin-
istering an overdose of thiamylal sodium, and a pathological
analysis of aortic atherosclerosis was performed. All of the
experimental protocols were approved by the Xi’an Jiaotong
University Laboratory Animal Administration Committee
and performed according to the Xi’an Jiaotong University
Guidelines for Animal Experimentation.

2.2. Analysis of the Plasma Lipoprotein Profile. Each week,
after a period of overnight fasting, blood samples were
collected via the auricular artery. The blood samples were
stored on ice and centrifuged (3000 rpm, 15 min, 4°C) to
obtain plasma. The plasma total cholesterol (TC) and triglyc-
eride levels and high-density lipoprotein-cholesterol (HDL-
C) levels were measured using commercial assay kits (Don-
gou Bioengineering, Beijing, China). To evaluate cholesterol
exposure, the area under the curve (AUC) was calculated

according to the trapezium rule before the animal was sac-
rificed [11].

2.3. Measure of Plasma C-Reactive Protein. The plasma C-
reactive protein (CRP) was measured using high-sensitivity
rabbit CRP ELISA kits (Immunology Consultants Labora-
tory, USA) as previously described [12].

2.4. Quantification of Gross Lesions. At the end of each time
point, the rabbits were sacrificed, and their aortic trees
were carefully isolated and opened. After the samples were
fixed in formalin, they were stained with Sudan IV and
analyzed as previously described [13]. The area that was
stained positively with Sudan IV was quantified using the
Image Pro-PlusV2.0 image analysis software program (Media
Cybernetics Inc., America).

2.5. Histological and Immunohistochemical Staining. For the
histological analysis, the aortic arch of the cholesterol-fed
rabbits was used and cut into 10 sections as previously
described [14]. All of the sections were embedded in paraffin
and cut into 5-ym-thick serial sections. The gross atheroscle-
rotic lesions were evaluated as previously described [14].
For the microscopic quantification of the lesion areas, all
of the aortic sections were stained with hematoxylin and
eosin (H&E) and elastica van Gieson (EVG). Serial paraffin
sections of the thoracic aorta were immunohistochemically
stained with antibodies against Mg (RAM11, Dako Inc.)
and smooth muscle a-actin (alpha-actin, Thermo Fisher
Scientific Inc.). The primary antibodies were diluted in PBS
as follows: RAM11 (1:100) and alpha-actin (1:200). For the
preparations, the sections were washed 3 times with PBS for
10 minutes per wash. Endogenous peroxidases were blocked
by incubation for 10 minutes in 0.3% hydrogen peroxide.
The sections were washed 3 times with PBS for 10 minutes
each. To reduce the background staining, the sections were
then incubated in 10% normal goat serum for 60 minutes.
The sections were incubated in the primary antibody at
4°C overnight, and they were then washed 3 times for 10
minutes with PBS. The secondary antibody (antimurine IgG,
Beijing Zhong Shan Biotechnology CO., China) was applied
to the sections for 60 minutes. The sections were washed 3
times with PBS for 10 minutes each and were detected with
an AEC kit (AEC kit, Beijing Zhong Shan Biotechnology
CO., China). All of the sections (EVG and immunostained)
that were used for microscopic quantification were captured
under an Olympus BX51 light microscope that was equipped
with a DP70 digital camera (Olympus, Tokyo, Japan) and
were measured using the image pro-plusV2.0 image analysis
software program (Media Cybernetics Inc., America).

2.6. Transmission Electron Microscopic (TEM) Analysis. The
atherosclerotic lesions in the aortic arch (n = 3; each group)
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TABLE 1: Body weight, plasma lipid profiles, and inflammatory marker.
0 weeks 6 weeks 12 weeks 16 weeks 28 weeks
. HCD 2.51 = 0.06 2.78 = 0.06 2.95 +0.07 3.09 = 0.06 2.86 + 0.08**
Body weight (kg) .
Chow diet 2.63 + 0.05 2.98 + 0.06 3.05 + 0.05 3.15 +0.05 3.54 + 0.06
HCD 50.44 +=3.93 1032.56 + 53.2** 810.74 + 64.22** 1008.92 + 118.39**  1143.82 + 129.62**
Total cholesterol (mg/dL) )
Chow diet  48.29 + 3.37 65.89 + 3.32 65.89 + 3.32 45.63 + 6.87 77.32 + 8.37
. . HCD 5352 +11.13 83.11 = 7.46 72.15 +9.62 76.51 + 16.82 70.76 = 10.11
Triglyceride (mg/dL) )
Chow diet 80.40 + 18.25 99.26 + 23.30 92.73 + 24.68 98.73 + 29.87 86.51 + 10.64
* ok *ok *ok *ok
HDL-C (mg/dL) HCD 20.00 + 4.08 7.17 + 1.39 4.89 + 1.09 2.65 +0.42 5.31 +1.22
Chow diet  21.91 = 1.91 17.40 + 2.10 17.98 + 1.75 17.81 = 2.09 16.97 = 1.54
pCRP (mg/dL) HCD 16.76 + 3.53 38.47 +£10.95 81.51 £27.90 155.41 + 20.55** 226.10 + 28.55**
§ Chow diet  16.66 + 3.20 21.06 +4.72 24.66 + 11.66 26.27 = 5.90 13.59 + 1.90

HCD, the group for high-cholesterol diet, 0 weeks (n = 10), 6 weeks (n = 10), 12 weeks (n = 11), 16 weeks (n = 12), 28 weeks (n = 11); Chow diet, the
control group for normal diet, n = 10; HDL-C, high-density lipoprotein-cholesterol; pCRP, plasma C-reactive protein levels. Values are expressed as mean +

SEM, *P < 0.05 and **P < 0.01 to control group.

were further analyzed using TEM. The tissues were cut
into 5m pieces and fixed with a phosphate buffer that
contained 2.5% glutaraldehyde and 4% paraformaldehyde
at 4°C overnight. After the phosphate buffer was washed,
the tissues were fixed secondarily in osmium tetroxide for 2
hours. The tissues were dehydrated in serial alcohol solutions
and then polymerized at 60°C for 48 hours. Ultrathin
sections (50nm) were cut (LKB ultratome, Sweden) and
stained with uranyl acetate, which was followed by lead
citrate. They were observed under a transmission electron
microscope (H-600, Hitachi, Japan) [15].

2.7. Statistical Analysis. All of the data were expressed as
the means = SEM. The two groups were compared using
Student’s t-test. Multiple groups were compared using a 1-
way ANOVA, which was followed by a Bonferrioni test.
The Pearson correlation coefficient was used to the check
correlation between different atherosclerotic parameters. A
probability value of less than 0.05 was considered to be
significant.

3. Results

3.1. Plasma Lipid Profile and CRP Levels. The high-
cholesterol diet intake of the HCD group resulted in severe
hypercholesterolemia in these rabbits; their plasma choles-
terol levels reached 800 mg/dL at 6 weeks and remained
between 800 and 1200 mg/dL during the entire experimental
period (Table1). As shown in Table 1, the HDL-C levels
decreased in the cholesterol-fed rabbits following a choles-
terol feeding. However, the plasma triglyceride levels did not
change in the cholesterol-fed rabbits compared to the normal
rabbits (Table 1).

To assess the inflammatory levels in the HCD group, we
performed ELISA experiment to monitor the plasma high-
sensitivity CRP levels. After a cholesterol feeding, the plasma
CRP levels increased linearly from 6 weeks to 28 weeks. At
the end of the experiment, the plasma CRP levels in the
cholesterol-fed rabbits were significantly higher than those
of the control rabbits (Table 1).

3.2. Effects of Cholesterol Exposure on Gross Atherosclerosis.
We calculated the AUC, which revealed 2.5-fold (P < 0.001)
and 6-fold (P < 0.0001) increases in cholesterol exposure at
16 and 28 weeks, respectively, when compared to 6 weeks
(Figure 2(a)). The AUC at 12 weeks also indicated a 1.5-
fold increase, but the data were not statistically significant.
The sudanophilic en face staining area in the aortic trees of
the HCD-fed rabbits gradually increased with prolonged ¢
holesterol exposure at 12 and 16 weeks. At 28 weeks,
the lesion area in the aortic arch was 2.5-fold greater
(P < 0.0001) than that at 6 weeks (Figures 2(b) and 2(c)).
To evaluate the effects of cholesterol exposure on aortic
atherosclerosis, we compared cholesterol exposure (AUC of
plasma total cholesterol) to the size of gross atherosclerotic
lesions. We found that cholesterol exposure was strongly
correlated with the progress of gross lesion in the aortic
arch (P < 0.001; Figure 2(c)). Moreover, the gross lesions
of the thoracic and abdominal aorta were correlated with
cholesterol exposure (P < 0.001 and P < 0.05, resp.; data
not shown).

3.3. Effects of Cholesterol Exposure on Microscopic Atheroscle-
rosis. We further calculated the microscopic lesional area
of the sections of aortic arch. As expected, the HCD-fed
rabbits displayed an increase in this variable that was directly
proportional to increased cholesterol exposure (Figure 3(a)).
The microscopic lesion sizes were 3.8- (P < 0.05) and 5.9-
fold (P < 0.0001) greater at 16 and 28 weeks, respectively,
compared to the size at 6 weeks (Figure 3(b)). The lesion
size increased at 12 weeks versus 6 weeks (2.0-fold), but
this increase was not statistically significant. Microscopic
lesions, which are characteristics of gross lesions, were also
strongly correlated with cholesterol exposure (P < 0.001)
(Figure 3(b)).

3.4. Aortic Atherosclerosis Analysis. We stained the serial
sections with monoclonal antibodies (mAb) against Mgs
and found that the lesions at 6 weeks were Mgs-rich and
correspond to fatty streaks in humans (Figure 4(a)). The
Mg number increased 2.3-fold (P < 0.05) when cholesterol



Journal of Biomedicine and Biotechnology

x10% o )
30
@) o
% * ok [¢)
= 20| —
g
£ ok %
o —O0—
< 10F &0
Tg
& | <& : ,
0 - ) ) ) S
6 12 16 28 Chow diet 6weeks 12weeks 16weeks
(Weeks) HCD
(a) (b)
3
o x10
100 - r 1 30 - r=0797 o)
* R
—_ o —~
g 8or o ® 2
g ) § 20 +
‘B 60 | (e} °©
= ® ° 3 o0
g @ —op— $
2 40 o <
;D 80 § § 10 - O C@
S 20F o o £ oy
< o o = (9]
O 0 1 L 1 1 J
6 12 16 28 20 40 60 80 100

(Weeks)

Gross lesion of aortic arch (%)

FIGURE 2: cholesterol exposure and gross atherosclerotic lesions. Cholesterol exposure was evaluated by the area under the curve (AUC) at
different experimental time points (a). Representative images of aortic atherosclerosis as stained by Sudan IV (b). Gross lesion areas (left)
that were calculated in the aortas of chow- and HCD-fed rabbits at 6, 12, 16 and 28 weeks and the correlations (right) between cholesterol
exposure and gross lesion area (c). The data are expressed as the means + SEM. n = 6-8 for each group. *P < 0.05 and **P < 0.01.

exposure increased at 16 weeks. Surprisingly, at 28 weeks, the
Mg number decreased 4.6-fold (P < 0.001) when compared
to the number at 6 weeks, and the majority of the Mgs were
localized at the lesion surface (Figures 3(a) and 3(b)). At 12
weeks, the Mg level also increased (1.9 fold) when compared
to that at 6 weeks, but this increase was not statistically
significant. Conversely, the SMC mAb staining revealed that
the number of SMCs increased significantly at 12 (P < 0.05),
16 (P < 0.01) and 28 weeks (P < 0.01) when compared to
that at 6 weeks (Figure 4(b)). As shown in the representative
images (Figure 4(a)), SMCs were present in the intimal and
near the surface of the lesions at all of the time points.
We next compared the numbers of Mgs and SMCs in the
aortic arch with the AUCs and intima lesions. The results of
this comparison indicated that the numbers of SMCs were
strongly correlated with cholesterol exposure (P < 0.0001),
aortic arch microscopic lesions (P < 0.0001) (Figure 4(c)),
and the gross lesion area (data not shown). Interestingly,
we identified a significant correlation between the Mgs and
atherosclerotic aortic lesions (both area and thickness) at 16
weeks; however, when the analysis included the entire 28
weeks, the Mgs did not correlate with the aforementioned
parameters (Figure 4(c)).

As shown in Figure 5, TEM revealed an obvious loss
in the integrity of the endothelial layer at 16 weeks, and

the increased lipid accumulation led to the compression and
deformation of the nuclei of the remaining Mgs at 28 weeks
(Figure 5(a)).

4. Discussion

Although hypercholesterolemia is strongly believed to con-
tribute to atherosclerosis development in humans and in ani-
mal models, the temporal relationships between cholesterol
exposure, atherosclerotic progression, and the changes in
lesional cellular composition are not fully understood [3, 16,
17]. When they were fed a high-cholesterol diet, our rabbits
developed severe hypercholesterolemia that resulted in aortic
atherosclerotic development. The size of the observed gross
lesions gradually decreased from the arch to the abdom-
inal aorta, and the aorta demonstrated a susceptibility to
diet-induced atherosclerosis that was distinct from that
of humans [18]. However, when hypercholesterolemia was
induced and sustained for a longer time period, the degree
of exposure to cholesterol determined the atherosclerotic
lesion area and thickness and led to high inflammatory
levels. It is well known that CRP is an excellent marker of
inflammation in atherosclerosis [19]. In the current study, a
time-dependent increase in plasma CRP suggested that the
liver had switched to a predominantly inflammatory state
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FIGURE 3: Microscopically atherosclerotic lesions. Representative images of aortic atherosclerosis as stained with H&E and EVG (a). The
intima lesional areas (upper) in the sections were measured using the EVG sections and the correlations (beneath) between cholesterol
exposure and intima lesions area (b). The data are expressed as the means = SEM. n = 6-8 for each group. *P < 0.05 and **P < 0.01.

responding to IL-6 or high plasma cholesterol as previously
described [19, 20].

Under both long-term cholesterol exposure and proin-
flammatory conditions, the Mgs in the HCD rabbits accu-
mulated in the early- and middle-stage of atherosclerotic
lesions as previously reported [3, 21, 22]. Because the features
of early and middle stage of atherosclerotic lesions (6-16
weeks) in rabbits were similar with type I-III of lesion of
human, Mg accumulation in this period might indicate
that enhanced monocytes entry and efficient efferocytosis
[3, 21, 23]. However, through 28 weeks of cholesterol
fed, the advanced atherosclerotic lesions in rabbits may
also share some characteristics of type IV-V of lesions in
human, the present study provided the novel evidence that
the numbers of Mgs were relatively decreased in advanced
lesions (they were actually only present on the surface
of advanced lesions), and this decrease was independently
correlated with cholesterol exposure, gross lesion, and hyper-
plastic intima of aortic arch [24]. The mechanism of the

numbers of Mgs reduction in advanced lesions in rabbits is
unclear, but we know that excess accumulation of lipopro-
teins in advanced lesions causes Mgs death. Mgs death
presenting in advanced atherosclerotic lesions of human is
deemed as a result of “free cholesterol” and “endoplasmic
reticulum stress”, which is usually associated to the secondary
necrosis and aggravating inflammation [25]. Conversely, the
number of SMCs increased steadily from 6 weeks to 28 weeks,
and this increase was strongly correlated with cholesterol
exposure, gross lesion development, and microscopic lesion
size. In the early lesions, the SMCs infiltrated to the intima
from media, but the SMCs were located mainly on the surface
when lesions developed to an advanced stage. Their findings
suggest that SMCs proliferation may play a protective role
in rabbit’s advanced lesions. Precious studies also suggested
that the SMCs upregulation caused the matrix proliferation,
a relatively thick fibrous cap in the lesions, and SMCs
apoptosis that directly resulted in the plaque destabilization
[1, 5,22, 26-28]. Moreover, the phenomena of the reduction
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FIGURE 4: Immunohistochemical investigations of the lesions. Representative images are shown for macrophages (M¢) and SMC a-actin
(a). M¢- and SMC-positive areas were determined using an image analysis system (b). The Mgs and SMCs were compared with cholesterol
exposure (AUC) and intima lesion area, respectively (c). The data are expressed as the means + SEM. n = 6-8 for each group. *P < 0.05 and

**P < 0.001.

FIGURE 5: Transmission electron microscopic analysis and the
evaluation of lesional inflammation. Damaged endothelial layer
(left) and remaining endothelial cells (arrows) at 16 weeks and lipids
overladen macrophages (right; L = lipid drop, N = nucleus) at 28
weeks.

of Mgs and the proliferation of SMCs in advanced lesions
are still unclear and should be studied further to explore the
potential mechanism.

In conclusion, these results indicated that long-term
cholesterol exposure via high-cholesterol diet intake could
induce atherosclerosis development and the reduction in
Mgs and increase in SMCs in advanced lesions may affect

plaque stability in rabbits, which will help us to understand
human atherosclerosis.
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