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Abstract

Sweetpotato (Ipomoea batatas [L.] Lam) is a widely cultivated food crop with generally good

adaptability. However, drought stress can cause a significant decline in yield. To reveal the

response mechanism of sweetpotato to drought stress, an integrated physiological, proteo-

mic and metabolomic investigation was conducted in leaves of two sweetpotato varieties

with differing responses to drought stress, drought-resistant Wanzishu56 (WZ56) and a

more sensitive variety, Ningzishu2(NZ2). Physiological analysis showed that the variety

with better drought tolerance had superior performance in water retention capacity and pho-

tosynthetic efficiency under drought stress. A total of 1140 proteins were identified within the

two varieties. Among them, 192 differentially expressed proteins were detected under

drought conditions, including 97 that were up-regulated. Functional analysis showed that

these up-regulated proteins were primarily involved in photosynthesis, reactive oxygen spe-

cies metabolism, organonitrogen compound metabolism, and precursor metabolite catabo-

lism and energy generation. All differentially expressed proteins in WZ56 that were involved

in photosynthetic and glutathione metabolic processes were up-regulated. Enzyme activity

assays were carried out to validate the proteomics data. Moreover, 75 metabolites were

found to have a higher expression level in WZ56 than NZ2 under drought stress. The higher

concentration of carbohydrates, amino acids, flavonoids and organic acids found in drought-

stressed leaves of WZ56 suggested that these metabolites may improve the drought resis-

tance of sweetpotato. This study uncovered specific-proteins and metabolites associated

with drought resistance, providing new insights into the molecular mechanisms of drought

tolerance in sweetpotato.

Introduction

Drought stress is one of the major abiotic stress that limits plant growth and productivity

worldwide. The effects of drought stress on plants are primarily characterized by water loss,

reduced leaf water potential, turgor loss, stomata closure, and decreased cell elongation and

growth [1]. Unpredictable drought conditions cause severe crop yield losses, threatening
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global food security [2]. In order to meet the needs of an increasing population, it is essential

to effectively develop strategies for dryland farming in arid regions. In addition to usage of

water conservancy facilities, development and implementation of drought-resistant crops is

the most effective and practical method of fully utilizing water-scarce soil [3]. Thus, a compre-

hensive analysis of plant drought resistance mechanism would aid in this goal by contributing

to rapid cultivation of drought-resistant crops.

With the development of advanced sequencing technology and bioinformatics tools, tran-

scriptomic analyses have been used to parse drought stress responses in many crops, such as,

sugarcane [4], potato [5], maize [6], and rice [7]. Results of such studies have indicated that dif-

ferentially expressed genes were functionally associated with the drought-stress response [5]

and mainly involved in energy metabolism, transport, antioxidants, photosynthesis, and stress

signaling pathways [8]. In drought-tolerant genotype, a greater number of differentially

expressed genes were associated with cell growth, hormone biosynthesis, cellular transport,

amino acid metabolism, transcription factors, and carbohydrate metabolism [7].

However, many studies have indicated that post-transcriptional regulation may limit the

correlation between expression levels of transcripts and their corresponding proteins [9–11].

Metabolomics and proteomics could therefore complement transcriptome data to provide

more direct insight into metabolic processes.

Proteomics approaches to study drought resistance have been reported in cotton [12], com-

mon bean [13], citrus [14], wheat [15], soybean [16], and tobacco [17]. Proteins up-regulated in

the stress-tolerant genotype under drought stress were found to be related to defense and oxida-

tive stress responses [18]. Melanoma-associated antigen p97, type1 chlorophyll a/b b-binding

protein b, glutathione S-transferase 1, and the ribulose bisphosphate carboxylase large chain

were specifically expressed in drought-tolerant barley; these proteins may play an important role

in barley under drought stress [19]. Metabolomics approaches have also been applied to study

stress responses in Arabidopsis [20], rice [21] and wheat [22]. In these species, comparative meta-

bolomics and proteomics have effectively facilitated the study of drought resistance mechanism.

As a staple food crop, sweetpotato (Ipomoea batatas [L.] Lam) is widely cultivated in Asia and

Africa, typically under drought conditions. However, drought stress is one of the major challenges

for sweetpotato production. In order to improve the drought resistance of sweetpotato, transgenic

plants have been generated that overexpress endogenous or exogenous genes [23–26]. In addition

to genetic engineering, some sweetpotato cultivars have shown naturally superior drought toler-

ance based on storage root yield; in a study of 84 sweetpotato cultivars evaluated by relative yield

and drought stress index difference, four lines (19455537, W119, Tanzania, Chingova)were identi-

fied as drought-resistant [27]. Transcriptomics and proteomics analyses of storage root formation

and storage stress responses have been reported in sweetpotato [28–31]. However, there is cur-

rently little information about the metabolic response to drought in sweetpotato with respect to

proteomics and metabolomics. Therefore, we conducted a comparative integrated analysis of

physiology, proteomics and metabolomics in the leaves of two sweetpotato varieties with different

levels of drought resistance, WZ56 and NZ2, in response to drought. This research provided

important practical guidance for the breeding and popularization of drought-tolerant sweetpotato

and offers a scientific basis for plant drought tolerance research at the molecular mechanism level.

Materials and methods

Plant materials and treatments

Two sweetpotato varieties, WZ56 (drought-tolerant) and NZ2 (drought-sensitive) were

obtained from Jiangsu Xuzhou Sweetpotato Research Center, P. R. China. A greenhouse pot

experiment was conducted at the experimental station of Jiangsu Xuzhou Sweetpotato Research
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Center, Jiangsu Province, China. Healthy stem cuttings from WZ56 and NZ2 were cultured in

plastic pots (20 cm deep and 17 cm diameter) filled with sandy loam soil. There were 20 pots of

each variety with a single seedling in each pot). Drought treatment was conducted 10 days after

transplanting. As described by Zadražnik [13], control (CK) plants were hen grown in soil that

was kept at 40% soil moisture content (SMC) throughout the experiment. Seedlings in the

drought stress (DS) group had irrigation withheld for ~ 20 days at which point SMC was

reduced to around 8%. After treatment was completed, the third full expanded leaves from the

top of CK and DS plants were used for physiological analysis and omics-experiments. Fresh

leaves were flash frozen in liquid nitrogen and stored at -80˚C prior to protein and metabolite

extraction. For proteomics and metabolomics experiments, each biological replicate contained

leaves pooled from three and six different plants, respectively.

Measurement of relative water content, biomass and drought resistance

coefficient

Freshly sampled leaves were weighed to determine the fresh weight (FW), then steeped in dis-

tilled water at 4˚C for 24 h to measure the turgid weight (TW). Leaves were then oven-dried at

a constant 75˚C for 24 h to determine the dry weight (DW). Using these values, relative water

content (RWC) was calculated as follows:

RWC %ð Þ ¼
FW � DW
TW � DW

� 100 ð1Þ

To determine biomass, CK and DS plants of both varieties were collected. Leaves were dried at

80˚C until they reached a constant weight. The quantity of dry matter accumulated in the

shoots was expressed in g per plant.

The drought resistance coefficient (DC) was used to quantify drought resistance among the

two sweetpotato varieties as described by Hu [32].

Determination of gas exchange parameters

The Li-6400XT portable photosynthesis system (LI-COR Biosciences, Lincoln, NE, USA) was

used to detect gas exchange parameters, including net photosynthetic rate (Pn), transpiration

rate (Tr), intercellular CO2 concentration (Ci), stomatal conductance (Gs), and instantaneous

water-use efficiency (WUEi), Where WUEi = Pn/Tr.

Measurement of photosynthesis indices

Chlorophyll was extracted from leaves and the concentrations of total chlorophyll, chlorophyll

a, and chlorophyll b were calculated as previously described [33].

Determination of proline and soluble sugar content

Proline content was determined using the quantity of colored reaction product of proline with

ninhydrin as described by Bates [34]. The concentration of proline was calculated from a stan-

dard curve and expressed in μg/g of fresh weight. The colorimetric method [35] was used to

determine the soluble sugar content.

Assays of antioxidant enzyme

Test kits (Nanjing Jiancheng Biological Engineering Institute, China) were used to detect anti-

oxidant enzyme activities, including ascorbate peroxidase (APX), superoxide dismutase

(SOD), catalase (CAT) and peroxidase (POD).
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Proteomics analysis based on iTRAQ

iTRAQ analysis was performed by Shanghai Luming Biotechnology Co., LTD. This included

protein preparation, iTRAQ labeling, liquid chromatography (LC)–electrospray ionization

(ESI)–tandem mass spectrometry (MS/MS) analysis, protein identification and data analysis,

and bioinformatics analysis.

Peptides were labeled using iTRAQ 8-plex kits (AB SCIEX, USA) according to the manu-

facturer’s protocol. The control samples were labeled with the tags 113 and 114 (NZ2) and

115 and 116 (WZ56), and the drought-stressed samples were labeled with tags 117and 118

(NZ2) and 119 and 121 (WZ56). The iTRAQ-labeled peptide mixtures were fractionated

using strong cation-exchange (SCX) chromatography in the Agilent 1200 HPLC System

(Agilent, Santa Clara, CA, USA) equipped with an Agilent SCX column (2.1 × 150mm,

5 μm). LC-MS/MS analysis of peptides was conducted as previously described with some

modification [36]. After LC-MS/MS analysis, the MS/MS data were processed with Protein

Pilot Software v.5.0 (AB SCIEX, USA) against the Solanales database using the Paragon

algorithm [37]. Protein identification was performed with the search option. The following

search parameters were used: trypsin enzyme, Carbamidomethyl (C), iTRAQ 8 plex (N-

term), and deamidated (NQ) as fixed modifications, Gln-pyro-Glu (N-term Q), oxidation

(M), and deamidated (NQ) as variable modifications. One max missed cleavage was

allowed. The intact peptide mass tolerance was ±0.05 Da, and the fragmented ions mass tol-

erance was 0.1 Da. Unused >1.3 and peptides �2 were used as the credible protein screen-

ing criteria. Based on the average value of repeat relative quantitative values from two

comparison group samples, the differentially expressed proteins (DEPs) were defined as

those with fold-change > 2.0 or < 0.5.

Functional annotation of DEPs was performed using Gene Ontology (http://www.

geneontology.org). The COG (http://www.ncbi.nlm.nih.gov/COG/) database was applied to

functional classification of DEPs, and the Kyoto Encyclopedia of Genes and Genomes (KEGG)

(http://www.kegg.jp/) was used to predict enriched pathways among DEPs. Pathways with a p-

value < 0.05 were considered significantly enriched Cytoscape (http://www.cytoscape.org)

and the string database (http://string-db.org) were used to assess and integrate of protein-pro-

tein interactions.

Metabolomics analysis based on GC-MS and LC-MS

LC-MS and gas chromatography -MS (GC-MS) were used to analyze metabolites. Metabolites

were extracted from ~80 mg of frozen leaf tissue per sample, with six biological replicates.

GC-MS and LC-MS were conducted as previously described [38–40]. The differentially

expressed metabolites (DEMs) between samples were screened using a combination of

Orthogonal Partial least squares Discriminant Analysis ((O)PLS-DA) and Student’s t-test for

GS-MS (VIP >1, p< 0.05) and LC-MS (VIP > 2, p< 0.01, fold change>2). Metabolites were

annotated using the HMDB databases (http://www.hmdb.ca/), METLIN databases (https://

www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/metlin), the

NIST11 standard spectral databases (https://webbook.nist.gov/chemistry/quant-ir/), and

Fiehn databases linked to Chroma TOF software.

Statistical analysis

Data were analyzed using SPSS v20.0 (SPSS Inc, Chicago, IL, USA). Statistically significant

differences were determined with Student’s t-test using the threshold values of p < 0.05

and p < 0.01.
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Results

Morphological, physiological and biochemical responses under drought

stress

To investigate plant responses to drought stress, morphological and gas exchange parameters

and RWC were determined under control and drought conditions. The DC values of the

drought-tolerant and drought-sensitive varieties (WZ56 and NZ2) were 0.93 and 0.46, respec-

tively (S1 Fig). WZ56 showed much higher drought tolerance and lower stress responses than

NZ2. Under control conditions, there was no significant difference in growth between WZ56

and NZ2, all grew rapidly and had bright green leaves. The RWC of WZ56 and NZ2 leaves was

92.3% and 92.8% respectively (Fig 1A and 1B). Growth of both WZ56 and NZ2 was inhibited

and leaves were wilting after 20 days of drought stress (Fig 1A). Although, RWC in the leaves

was decreased in both WZ56 and NZ2 after drought stress, it was ~13% higher in WZ56 than

in NZ2 (Fig 1B). In addition, the Pn, Tr, WUEi, Gs, and Ci values of WZ56 under drought

stress were 10.79 μmol/(m2�s), 1.41 mmol/(m2�s), 7.67 μmol CO2/mmol H2O, 0.06 mmol/

(m2�s), and 177.21 μmol/mol2, respectively. Compared to WZ56, these values were decreased

in NZ2 by 50–70% under drought stress (Fig 1C–1G).

Compared to control conditions, the chlorophyll content of WZ56 and NZ2 decreased

by 10.1% and 24.5%, respectively, under drought stress (Fig 1H). Under control condi-

tions, the proline content was 1.68–1.70μg/g in both genotypes (Fig 1I). After 20 days of

drought stress, the proline content of WZ56 and NZ2 was increased by 272.2% and

77.3%, respectively (Fig 1I), representing a significant difference between the two geno-

types. The variation in soluble sugar content under drought stress was similar to that of

proline (Fig 1J).

Metabolic profiles of two sweetpotato varieties under different moisture

conditions

In total, more than 4000 metabolites were identified in NZ2 and WZ56 sweetpotato leaves

under CK and DS. Principal component analysis (PCA) showed a significant shift in metabo-

lites profile clustering in NZ2 and WZ56 groups under different moisture conditions (Fig 2A

and 2D), indicating significant changes in response to drought stress.

The OPLS-DA statistical analysis models (Figs 2B, 2C, 2E and 2F and 3) identified 114

and 116 differentially expressed metabolites (DEMs) in WZ56 and NZ2, respectively,

between the CK and DS conditions. For WZ56, 94 of the DEMs were up-regulated in CK

compared to DS and 20 were down-regulated (S1 Table), for NZ2, 89 were up-regulated

and, 27 down-regulated (S2 Table). Derivatives of flavonoids and organic acids, lipid metab-

olites, and amino acids accounted for the highest percentage of DEMs (Fig 3A–3D). Among

them, 23 DEMs co-expressed in WZ56 and NZ2 under drought stress (11.6%) could be used

as potential biomarkers of drought stress (Fig 3E). The co-expressed DEMs were enriched

in several metabolic pathways, including biosynthesis of plant hormones, phenylalanine-

tyrosine and tryptophan biosynthesis, alpha-Linolenic acid metabolism, and aminoacyl-

tRNA biosynthesis (S3 Table).

Differential metabolic response of two sweetpotato varieties under drought

stress

PCA of WZ56 and NZ2 samples under drought stress showed a significant shift in the clus-

tering of metabolites profiles, indicating significant metabolic differences in response

drought stress condition (Fig 4A and 4C). The OPLS-DA analysis models based on LC-MS
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showed a total of 91 DEMs (p < 0.05) in the leaves of WZ56 compared to NZ2 under

drought stress (Fig 4B). Among them, 61 were increased and 30 were decreased (S4 Table).

In addition, 27 DEMs were identified by GC-MS, with 14 increased and 13 decreased (S4

Table).

Most notably, flavonoids and derivatives, lipids and lipids-like molecules, amino acid deriv-

atives, organic oxygen compounds, terpenoids, and steroids accounted for the highest percent-

age of these DEMs (Fig 4E). These metabolites primarily contain amino acids, organic acids,

sugar, sugar alcohol, and fatty acid functional groups. The DEMs were enriched in pathways,

including biosynthesis of plant hormones, alpha-Linolenic acid metabolism, biosynthesis of

alkaloids derived from histidine and purine, biosynthesis of unsaturated fatty acids,

C5-branched dibasic acid metabolism, fatty acid biosynthesis and cysteine and methionine

metabolism (S3 Table). The results suggest that these metabolic pathways play an important

role in sweetpotato response to drought stress.

Identification and bioinformatic analysis of differentially expressed

proteins

To further compare differences between WZ56 and NZ2 responses to drought stress, a proteo-

mic study based on iTRAQ labeling and 2D LC-MS/MS analysis was applied to detect protein

abundance changes in leaves. A total of 1140 proteins (unused >1.3 and unique peptide�2)

were identified in these samples (S5 Table).

Fig 1. Morphological, physiological, and biochemical changes in WZ56 and NZ2 under drought stress. (A) WZ56

showed enhanced tolerance to drought compared to NZ2, (B-G) Comparison of parameters between control and

drought-stressed plants and between WZ56 and NZ2 varieties. Parameters measured were (B) relative water content

(RWC), (C) transpiration rate (Tr), (D) net photosynthesis rate (Pn), (E) instantaneous water-use efficiency (WUEi),

(F) stomatal conductance (Gs), (G) intercellular CO2 concentration (Ci), (H) total chlorophyll concentration, (I)

proline content, and (J) soluble sugar concentration. The asterisks indicate statistical significance between the WZ56

and NZ2 varieties. �p< 0.05, �� p< 0.01 (Student’s t-test).

https://doi.org/10.1371/journal.pone.0264847.g001

Fig 2. Principal component analysis (PCA) and partial least squares discriminant analysis (OPLS-DA) of WZ56 and NZ2 leaf metabolic

profiles under control (CK) and drought stress (DS) conditions. (A) PCA plot for all samples (GC-MS), (B) OPLS-DA score plot between

CK and DS for WZ56 (GC-MS), (C) OPLS-DA score plot between CK and DS for NZ2 (GC-MS), (D) PCA plot for all samples (LC-MS), (E)

OPLS-DA score plot between CK and DS for WZ56 (LC-MS), (F) OPLS-DA score plot between CK and DS for NZ2 (LC-MS).

https://doi.org/10.1371/journal.pone.0264847.g002
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DEPs were defined as those with a foldchange > 2 or < 0.5. Based on this criteria and com-

parative proteomic analysis, 192 DEPs were found under drought treatment in WZ56 com-

pared to NZ2 (Tables 1 and S6). Among these DEPs, 97 proteins were up-regulated, and 95

were down-regulated.

Proteins were annotated using GO terms to identify significantly enriched functions in the

DEPs. Annotation categories comprised biological processes (BP), cell components (CC), and

molecular functions (MF). The 20 highest -ranked annotations from each category at the 1%

significance level are shown in Fig 5. Significantly enriched CC terms were cytoplasm, intracel-

lular organelle, plastid, and chloroplast; for MF, enriched terms were ion binding, metal ion

binding, oxidoreductase activity, and tetrapyrrole. These DEPs were enriched in a wide range

of BP terms, including organonitrogen compound metabolic process (14%), generation of pre-

cursor metabolites and energy (10%), photosynthesis (8%), photosynthesis-light reaction (6%),

photosynthesis-light harvesting (3%), reactive oxygen species metabolic process (6%), response

to cadmium ion (6%), hydrogen peroxide metabolic process (5%), and hydrogen peroxide cat-

abolic process (4%) (Fig 6). The analysis showed that some proteins involved in different biol-

ogy process under drought stress, including ascorbate peroxidase (gi|953834935), chlorophyll

a-b binding protein 21 (gi|698478410), peroxidase P7-like (gi|697121824), PsbC (chloroplast)

Fig 3. Differentially expressed metabolites (DEMs) between two sweetpotato varieties under control (CK) and drought stress (DS) conditions. (A) Up-

regulated DEMs in NZ2-DS vs. NZ2-CK, (B) Up-regulated DEMs in WZ56-DS vs. WZ56-CK, (C) Down-regulated DEMS in NZ2-DS vs. NZ2-CK, (D) Down-

regulated DEMS in WZ56-DS vs. WZ56-CK, (E) Venn diagram of DEMs in WZ56 CK vs. DS, NZ2 CK vs. DS, and WZ56 vs. NZ2 DS. Detailed information about

the DEMs is shown in S1 and S2 Tables.

https://doi.org/10.1371/journal.pone.0264847.g003
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Fig 4. PCA and OPLS-DA analysis of metabolite profiles and DEMs functional annotations. (A) PCA for WZ56 and NZ2 metabolite samples analyzed with

GC-MS, (B) OPLS-DA for WZ56 and NZ2 metabolite samples analyzed with GC-MS, (C) PCA for WZ56 and NZ2 metabolite samples analyzed with LC-MS, (D)

OPLS-DA for WZ56 and NZ2 metabolite samples analyzed with LC-MS, (E) DEMs between WZ56-DS and NZ2-DS.

https://doi.org/10.1371/journal.pone.0264847.g004

Table 1. Selected differentially expressed proteins (foldchange>4) between WZ56 and NZ2 under drought stress.

Accessiona Sequence coverage (%) Peptides (95%)b Protein Namec Foldd

gi|404351727 78.1 92 sporamin [Ipomoea batatas] 22.79

gi|6002682 48.2 20 anionic peroxidase swpa2 [Ipomoea batatas] 16.42

gi|970009621 14.6 3 stem-specific protein TSJT1 [Solanum pennellii] 10.51

gi|37783279 52.5 11 anionic peroxidase swpb3 [Ipomoea batatas] 7.19

gi|282935442 21.4 6 anionic peroxidase [Ipomoea batatas] 6.40

gi|697132539 29.8 5 L-ascorbate peroxidase 2, cytosolic isoform X2 [Nicotiana tomentosiformis] 5.57

gi|33516947 51.7 42 RecName: Full = Anionic peroxidase; AltName: Full = SwPA1; Flags: Precursor 5.54

gi|565379315 61.8 77 chlorophyll a-b binding protein 3C, chloroplastic-like [Solanum tuberosum] 5.38

gi|697121824 17.1 3 peroxidase P7-like [Nicotiana tomentosiformis] 5.35

gi|302584050 71.5 211 chloroplast LHCII type I chlorophyll a-b binding precursor protein, partial [Ipomoea nil] 5.31

gi|85690845 11.3 3 aquaporin-like protein [Ipomoea nil] 5.02

gi|697127312 48.7 28 chlorophyll a-b binding protein 8, chloroplastic-like [Nicotiana tomentosiformis] 4.71

gi|75263813 19.9 6 RecName: Full = Peroxidase 15; Short = Prx15; AltName: Full = Anionic peroxidase; Flags:

Precursor

4.70

gi|697112735 4.1 2 leucine—tRNA ligase, cytoplasmic-like [Nicotiana tomentosiformis] 4.70

gi|966873208 36.7 305 putative photosystem II CP43 chlorophyll apoprotein-like [Solanum chacoense] 4.66

gi|966859522 9.3 4 putative asp precursor-like [Solanum chacoense] 4.54

gi|66876475 45.3 184 PsbC (chloroplast) [Cuscuta sandwichiana] 4.42

gi|697177674 19 11 alpha-xylosidase 1-like [Nicotiana tomentosiformis] 4.16

gi|33516948 35.1 26 RecName: Full = Neutral peroxidase; AltName: Full = SwPN1; Flags: Precursor 3.89

a Protein gi number from NCBI.
b The total number of detected peptides (with 95% confidence) for the individual protein species.
c Name of the protein identified by MS/MS.
d The protein expression ratio in WZ56 to NZ2 leaves under drought stress.

https://doi.org/10.1371/journal.pone.0264847.t001
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(gi|66876475), ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (gi|608608638),

cysteine protease (gi|13897890), and Mn-SOD (gi|1160982).

KEGG pathway analysis was also performed on the 192 DEP, and indicated that they were

significantly enriched in metabolic pathways (25%), carbon fixation in photosynthetic

Fig 5. The 20 most enriched biological process, cell component, and molecular function annotations in the 192 DEPs.

https://doi.org/10.1371/journal.pone.0264847.g005

Fig 6. Functional classification of the 192 DEPs in WZ56 vs. NZ2 under drought stress.

https://doi.org/10.1371/journal.pone.0264847.g006
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organisms (8%), photosynthesis-antenna proteins (5%), glyoxylate and dicarboxylate metabo-

lism (4%), proteasome (4%), glutathione metabolism (2%), and oxidative phosphorylation

(1%) (Fig 7A). All DEPs related to photosynthesis and glutathione metabolism were up-regu-

lated under drought stress, indicating a possible role of photosynthesis and glutathione metab-

olism in sweetpotato response to drought stress. Most of the DEPs related to the proteasome

and metabolic pathways were also up-regulated. In contrast, DEPs related to the carbon fixa-

tion in photosynthetic organism pathway, glyoxylate pathway, and dicarboxylate metabolism

pathway were primarily down-regulated (Fig 7B).

Fig 7. Significantly enriched KEGG pathways among DEPs. (A) KEGG pathway annotations for the 192 DEPs in WZ56 compared to NZ2 under drought stress,

(B) Expression level of DEPs in the enriched pathways.

https://doi.org/10.1371/journal.pone.0264847.g007
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Bioinformatics analysis of DEPs and DEMs based on KEGG pathways

KEGG pathway analysis was conducted to integrate the DEPs and DEMs datasets for both

genotypes under drought stress. There were 28 pathways enriched in the DEPs and DEMs.

some of those pathways met the threshold for being considered significantly enriched (p-

value < 0.05), including metabolic pathways, biosynthesis of amino acids, biosynthesis of sec-

ondary metabolites, phenylpropanoid biosynthesis, and 2-Oxocarboxylic acid metabolism (S3

Table). There were complicated interactions between DEPs, DEMs, and KEGG pathways (Fig

8). The DEPs and DEMs related to biosynthesis of amino acids, including valine, leucine, O-

acetylserine, 2-ketobutyric acid, methionine, N-acetyl-gamma-glutamyl-phosphate reductase

(gi|970004241), and ribose-5-phosphate isomerase 3 (gi|970001376), were significantly up-reg-

ulated in WZ56. DEPs and DEMs related to the phenylpropanoid biosynthesis pathway, such

as POD N1-like (gi|966842423) (3.0-fold higher), POD N (gi|698524586) (2.3-fold), anionic

POD (gi|75263813) (4.7-fold), POD swpa2 (gi|6002682) (16.4-fold), anionic POD (gi|

33516947) (5.5-fold), anionic POD swpb3 (gi|37783279) (7.2-fold), anionic POD (gi|

282935442) (6.4-fold), neutral POD (gi|33516948) (3.9-fold), POD P7-like (gi|697121824)

(5.4-fold), and chlorogenic acid (C00852), were also up-regulated in WZ56 compared to NZ2.

This indicated that phenylpropanoid biosynthesis may play an important role in the sweetpo-

tato response to drought stress. Additionally, higher levels of energy metabolism and defense-

related proteins and metabolites in drought-stressed leaves suggested activation of reactive

oxygen species (ROS) scavenging system and improvement of photosynthesis.

Activity of antioxidant enzymes involved in the ROS scavenging system

To determine the effect of drought stress on the antioxidant levels, the activities of APX, SOD,

CAT and POD were quantified. No significant differences were detected in APX, CAT and

Fig 8. Interaction network of DEPs and DEMs with KEGG pathway annotations.

https://doi.org/10.1371/journal.pone.0264847.g008
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SOD activity between WZ56 and NZ2 under control conditions. However, POD, APX, CAT

and SOD activity increased significantly in both cultivars under drought stress, compared to

NZ2, the POD, APX, CAT, and SOD activity of WZ56 increased by 58.2%, 29.2%, 9.5%, and

33.9%, respectively (Fig 9).

Proteins up-regulated in WZ56 compared to NZ2 under drought stress included four

anionic PODs (gi|6002682, gi|37783279, gi|282935442, and gi|33516947), POD P7-like (gi|

697121824), POD 15 (gi|75263813), neutral POD (gi|33516948), and POD N (gi|698524586).

Notably, three of the anionic POD proteins were increased by a large margin ((> 6-fold). In

addition, levels of an APX (gi|953834935), an L-APX 2 protein (gi|697132539), a CAT (gi|

282935438), and an Mn-SOD protein (gi|1160982) were also up-regulated in WZ56 under

drought stress (S6 Table). The changes in enzyme activities were consistent with the protein

expression levels. This consistency demonstrates the high quality of the proteomics data.

Discussion

Water deficit is a major limiting factor for plant growth and yield in arid areas. Enhancing

plant drought tolerance will aid in overcoming this limitation, thus contributing to crop pro-

duction and global food security. To decipher the molecular mechanisms underlying the

Fig 9. Antioxidant enzyme activities. (A) POD, (B) APX, (C) CAT, (D) SOD. CK: control conditions, with soil water content kept at ~40%; DS: drought stress

conditions, with soil moisture content reduced to ~ 8% over 20 days. �p< 0.05 (Student’s t-test) WZ56 vs. NZ2 variety.

https://doi.org/10.1371/journal.pone.0264847.g009
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response of sweetpotato to drought stress, an integrated physiological, proteomics and meta-

bolomics study was conducted. The results showed that drought stress led to drastic changes

in both the proteome and metabolome in the leaves of two sweetpotato varieties. Biological

processes such as photosynthesis and regulation and metabolism of sugars, amino acids and

flavonoids were found to be involved in drought tolerance in sweetpotato.

Effects of drought stress on sweetpotato physiology

To obtain insight into the physiological response of WZ56 and NZ2 to drought stress, several

physiological indicators were measured. The RWC of leaves reflects the water-reserving capac-

ity of its cell, and can closely reflect the balance between water supply and transpiration. Here,

the RWC was found to be higher in WZ56 than in NZ2 under drought stress (Fig 1B). Owing

to increased osmotic regulation of the cell wall, the drought-resistant plant could maintain

high RWC; a higher RWC in turn contributes to maintaining growth, photosynthesis and nor-

mal metabolic activity under water deficit [41]. This suggests that a higher RWC in leaves may

help to reduce the damage caused by drought stress.

Effects of drought stress on photosynthesis and chlorophyll metabolism of

sweetpotato leaves

The proteomics results showed that some proteins involved in photosynthesis were affected by

drought stress (S6 Table). RuBisCO, the first enzyme involved in catalyzing the carbon cycle

and photorespiration, showed slight down-regulation in WZ56 under drought stress (S6 Table).

Although the total chlorophyll content in WZ56 and NZ2 leaves was decreased under drought

stress compared to the control (Fig 1H). WZ56 had higher total chlorophyll content, Pn, Tr,

WUEi, Gs, and Ci compared to NZ2(Fig 1C–1F). Drought stress had significant effects on pho-

tosystem I (PS I) and photosystem II (PS II) [42]. The activity and concentration of photosyn-

thetic carbon reduction cycle enzymes was reduced reduction by drought stress [43].

Photosynthesis is known to be inhibited by changes in chlorophyll content and damage to chlo-

roplasts under drought stress [44]. Drought stress resulted in a decrease in stomatal conduc-

tance (Gs) and internal CO2 concentration (Ci). A decrease in carbon dioxide fixation has been

shown to lead to a decrease in the photosynthetic rate [45, 46]. Our results in combination with

previous findings suggest that the activity of RuBisCO is reduced under drought stress. The

drought-resistant variety of sweetpotato had higher chlorophyll content, Pn, Tr, WUEi, Gs, and

Ci than the drought-sensitive variety, suggesting that drought-resistant variety could maintain

higher rates of photosynthesis than drought-sensitive variety in response to water deficit.

The proteomics analysis revealed that many proteins involved in photosynthesis were up-

regulated in the drought-resistant variety under drought stress. As key components of the light

harvesting system, all of the chlorophyll a/b binding proteins among the DEPs were up-regu-

lated in drought-resistance variety under drought stress (Tables 1 and S6). The light harvesting

chlorophyll a/b binding proteins act as a switch played an important role in photosystem I and

photosystem II. Up-regulation of these proteins could enhance stomatal sensitivity to abscisic

acid (ABA), and results in an increase in plant tolerance to drought stress [47]. The ABA sig-

naling pathway plays a vital role in plant drought resistance; it can trigger stomatal closure to

decrease water loss, and induce a series of changes in gene expression to prevent cells from oxi-

dative damage [48]. Therefore, up-regulation of chlorophyll a/b binding proteins may contrib-

ute to capturing light energy, improving photosynthesis and drought resistance in WZ56.

We additionally found that some proteins involved in photosynthesis, (such as photosystem

I reaction center subunit IV A, photosystem II 44 kDa protein, putative photosystem II CP43

chlorophyll apoprotein-like, photosystem II repair protein PSB27-H1 were significantly up-
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regulated in the leaves of WZ56 (Table 1) in response to drought. These results suggest that up-

regulation of these proteins may contribute to improvement of photosynthesis in WZ56 under

drought stress, further improving its drought resistance through photosynthetic regulation.

Effects of drought stress on sugar metabolism in sweetpotato leaves

The metabolomics results showed that drought stress induced an increase in gentiobiose, ino-

sitol and gluconic lactone content in WZ56 and NZ2 (S1 and S2 Tables), and a significant

accumulation of sucrose in WZ56 (S1 Table). Soluble sugar content showed a similar increas-

ing trend under drought stress, and WZ56 had higher levels of soluble sugar than NZ2 (Fig

1J). Sugars are highly sensitive to environmental stresses and ensure the supply of carbohy-

drates from source to sink organs during stress responses. Many studies have shown that levels

of glucose, fructose, and the raffinose family oligosaccharides (RFOs) increased in plants

under dehydration compared with control conditions [49, 50]. Sucrose is the primary product

of photosynthesis and is widely considered an energy source for metabolic activity in plants

[51]. Soluble carbohydrates are compatible solutes, and their accumulation can decrease the

osmotic potential in plants to ensure sufficient water for normal plant growth under drought

conditions [52, 53]. They may serve as osmolytes and osmoprotectants to prevent membrane

fusion and to stabilize enzymes and other cellular components in response to drought stress

[54, 55]. Moreover, some metabolites, most notably sucrose and fructose, also help to protect

cells from oxidative damage via osmoregulation or ROS scavenging under drought conditions

[56, 57]. These metabolites accumulated significantly in the two sweetpotato varieties studied

here under drought stress, implying that their accumulation was a universal and critical

defense mechanism against drought in sweetpotato.

Effects of drought stress on amino acid metabolism of sweetpotato leaves

Under control conditions, the proline content of WZ56 and NZ2 was found to be comparable.

However, under drought stress, the proline content of WZ56 was significantly increased com-

pared to NZ2 (Fig 1I). The levels of leucine, ornithine, and lysine and its precursor alpha-ami-

noadipic acid also increased significantly in both WZ56 and NZ2 under drought stress

conditions (S1 and S2 Tables). In higher plants, amino acids accumulate in response to various

stresses and have multiple functions in plant growth [58]. They are an important nitrogen

source of nitrogen, and specific amino acids may be able to delay protein degradation under

drought conditions [59, 60]. For example, in response to drought stress, proline protects plant

cell membranes and proteins and functions as a ROS scavenger, thus enhancing plant resis-

tance [61, 62]. Levels of the branched-chain amino acids (BCAAs) valine, leucine and isoleu-

cine and other related amino acids such as lysine, threonine,β-alanine and methionine

generally increase under stress [63]. The observed accumulation of proline and BCAAs in

sweetpotato leaves under drought stress sweetpotato suggests that proline and BCAAs may be

closely associated with plant drought tolerance.

Aromatic amino acids (AAAs) serve as precursors for a large number of specialized metabo-

lites [64] and are known to increase in concentration under drought conditions. Previous stud-

ies showed that increased levels of AAAs were used in producing secondary metabolites during

stress responses [58]. Additionally, phenylalanine influences osmotic adjustment and is a pre-

cursor to many key secondary metabolites (e.g. phenylpropanoids, flavonoids, catechin and

kaempferol) that contribute to plant drought tolerance [65, 66]. Under drought stress, the levels

of L-phenylalanine, L-tryptophan and L-tyrosine were increased in WZ56 and NZ2 compared

to the control conditions (S1 and S2 Tables). This significant drought-induced accumulation of

phenylalanine implies that this amino acid is important for sweetpotato drought tolerance.
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Effects of drought stress on phenylpropanoid biosynthesis and metabolism

of sweetpotato leaves

In this study, DEPs and DEMs related to the phenylpropanoid biosynthesis pathway were

found to be significantly up-regulated in WZ56. These DEPs and DEMs included Polyphenol

oxidase I, POD 15, beta-glucosidase 44-like, and chlorogenic acid (S5 and S7 Tables). Phenyl-

propanoids contribute substantially to the stability and robustness of plant responses to biotic

and abiotic stress [64]. Drought stress could increase expression of genes involved in the phe-

nylpropanoid biosynthesis pathway [67]. In addition, drought stress induces the accumulation

of phenylpropanoids in the vacuoles of mesophyll cells, these phenylpropanoids may consti-

tute a secondary antioxidant system to scavenge H2O2 [68]. Chlorogenic acid is a common sol-

uble phenylpropanoid in the Solanaceae, and acts as an antioxidant [69, 70]. The response of

members of the phenylpropanoid biosynthesis pathway to drought stress indicated co-regula-

tion of DEPs and DEMs in WZ56.

Flavonoids, another type of phenylpropane compound, are a class of important secondary

metabolites that are widely present in plants. Previous studies have shown that flavonoids

exert antioxidant and ROS scavenging effects [71–73]. Here, we found that many flavonoids

were differentially expressed under drought stress. 20 and 21 in NZ2 and WZ56, respectively,

most of which were up-regulated (S1 and S2 Tables). These results suggest that moderate

drought stress increased accumulation of flavonoids in sweetpotato.

Effect of drought stress on antioxidant levels of sweetpotato leaves

Proteomic analysis showed that proteins significantly up-regulated in response to drought

stress, included L-APX 2, POD P7-like, putative POD N1-like, peroxiredoxin, Mn-SOD, APX,

POD N, CAT, probable glutathione S-transferase parC, and glutathione S-transferase-like (S5

Table). These results indicated that co-regulation of these antioxidant enzymes may contribute

to drought stress resistance in WZ56. Drought stress can induce oxidative stress in plants.

Plants can either eliminate or reduce ROS-induced injury by regulating antioxidant content,

which is an effective mechanism of stress resistance [74]. Drought stress may stimulate exces-

sive ROS production, which results in oxidative damage to cellular components [75]. SOD is

generally considered the first line of defense against oxidative stress via conversion of highly

toxic superoxide to less toxic hydrogen peroxide. The ascorbate-glutathione cycle is a major

plant hydrogen peroxide detoxifying system, in which APX is a vital enzyme [76] We found

that POD was significantly up-regulated in leaves under drought stress. The major function of

POD is hydrogen peroxide hydrolysis to relieve cell damage. Glutathione S-transferases

(GSTs) comprise a major family of multifunctional enzymes that plays a key role in the process

of plant detoxification [77, 78]. A conjugate of glutathione (GSH) and cytotoxin is known to

be transferred to the vacuole or expelled in vitro after catalysis by GST [79]. Overexpression of

a GST gene from wild soybean significantly enhanced drought tolerance in transgenic tobacco

[80]. The results of the present study are consistent with those of previous studies, suggesting

that drought stress may induce increased antioxidant enzyme activities to scavenge ROS.

Enzyme activity assays were consistent with the results from proteomics verifying the reliabil-

ity of the proteomic results (Fig 9).

Effects of drought stress on energy metabolism and other metabolism in

sweetpotato leaves

Expression of the ATP synthase beta subunit was found to be significantly increased in WZ56

compared to NZ2 under drought stress (S6 Table). ATP synthase is closely related to energy
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metabolism; it accelerates synthesis of ATP for photosynthetic activities. ATP synthase is a

vital link in electron transport between PS I and PS II [81], and plays a significant role in regu-

lating photosynthetic electron flow in higher plants [82, 83]. It participates in removing dam-

aged proteins, protecting key components, and has a chaperone and peptidase activity [84].

The high—expression levels of ATP synthase could provide the energy required for resistance

to drought stress [85]. Therefore, the up-regulation of ATP synthase in WZ56 may contribute

to increase drought stress resistance.

Compared with NZ2, acid phosphatase activity was significantly increased in WZ56 under

drought stress (S5 Table). The putative harpin binding protein 1-like and aquaporin-like pro-

tein were also found to be significantly increased in WZ56 leaves under drought stress (S5

Table). In wheat, a significant increase in acid phosphatase activity was detected in leaves of a

drought tolerant cultivar, whereas no change was observed in a drought-sensitive cultivar [86].

Overexpression of a harpin-encoding gene in tobacco plants increased tolerance to drought

stress [87]. Exogenous application of harpin significantly activated defense pathway mediated

by jasmonic acid and salicylic acid [88]. Aquaporin-like protein may improve plant drought

resistance by decreasing transpiration via reducing stomatal conductance [89]. Our results

suggest that the up-regulation of these DEPs may enhance resistance to drought stress by

improving defense mechanisms.

In the present study, significant up-regulation of the putative cysteine protease and putative

cysteine proteinase 3-like proteins in WZ56 was observed under drought stress (S6 Table). As

a protease family, cysteine protease participated in various physiological processed of plant

widely. Some cysteine proteases localized in chloroplast and vacuole are capable of degrading

the RuBisCO large subunit, and play an important role in leaves under drought stress [90].

Cysteine proteases also play an important role in programmed cell death [91]. Constitutive

expression of sweetpotato cysteine protease (SPCP2) in Arabidopsis significantly increases tol-

erance to salt and drought stress [92]. Transgenic Arabidopsis expressing cysteine protease

from Salix matsudana showed a higher tolerance to salt compared to the control [93]. Cysteine

proteases are mainly localized in the chloroplasts and nuclei, its expression unrequired ABA,

and are related to drought-induced senescence and programmed cell death. These results indi-

cate that cysteine proteases may play a key role in tolerance to drought stress in WZ56. In

response to drought stress, cysteine protease activity may inhibit RubisCO, or interact with

chlorophyll a/b binding proteins in chloroplasts. This drought-resistance mechanism requires

further study.

Conclusions

In this study, a comparative analysis was conducted using physiological measurements, prote-

omics and metabolomics to reveal the physiological and molecular responses of sweetpotato to

drought stress. Sweetpotato cultivars WZ56 and NZ2 were used, which are drought-tolerant

and drought-sensitive, respectively. Based on physiological measurements, the drought-toler-

ant variety (WZ56) had better water retention capacity and water use efficiency under drought

stress condition. Proteomic analysis showed that sweetpotato responded to drought stress by

changing the expression pattern of a number of proteins involved in photosynthesis, ROS

metabolism, organonitrogen compound metabolism, and generation of precursor metabolites

and energy. In particular, 192 proteins were identified as differentially expressed, 97 of which

were up-regulated by drought stress in WZ56 but not in NZ2. This difference indicated that

these DEPs may play an important role in tolerance to drought stress in WZ56. Metabolomics

analysis revealed that 75 metabolites were increased in WZ56 but decreased in NZ2, many of

which were involved in alkaloid metabolism or biosynthesis of flavonoids and derivatives,
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amino acids, unsaturated fatty acids, fatty acid s, or plant hormones (S5 Table). Up-regulated

DEPs and DEMs in WZ56 were significantly enriched in the phenylpropanoid biosynthesis

pathway. This study presents specific proteins and metabolites associated with drought toler-

ance, and furthermore provides insights into the physiological, proteomic and metabolomic

basis for drought tolerance in sweetpotato.
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