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Abstract: Often an apparent complex reality can be extrapolated into certain patterns that in turn
are evidenced in natural behaviors (whether biological, chemical or physical). The Architecture
Design field has manifested these patterns as a conscious (inspired designs) or unconscious manner
(emerging organizations). If such patterns exist and can be recognized, can we therefore use them
as genotypic DNA? Can we be capable of generating a phenotypic architecture that is manifestly
more complex than the original pattern? Recent developments in the field of Evo-Devo around gene
regulators patterns or the explosive development of Machine Learning tools could be combined to
set the basis for developing new, disruptive workflows for both design and analysis. This study
will test the feasibility of using conditional Generative Adversarial Networks (cGANs) as a tool
for coding architecture into color pattern-based images and translating them into 2D architectural
representations. A series of scaled tests are performed to check the feasibility of the hypothesis. A
second test assesses the flexibility of the trained neural networks against cases outside the database.

Keywords: machine learning; neuronal networks; cGANs; architecture; patterns; artificial intelli-
gence; generative

1. Introduction

Architects have a long tradition of using biomimicry, not only to bring coherence
to design but also as a source of inspiration for problem solving. Natural systems offer
strategies that improve performance and effectiveness in a wide formal repertoire and can
be applied at different stages of the design process [1–3].

The biomimetic aspects of this research are manifested in two parts, always serving
as analogies and methodologies that improve the application of computation for architec-
ture. In other words, authors try to mimic biologic strategies to simulate approaches to a
primitive, digitized architecture (proto-architecture).

The first biomimetic part revolves around the idea of DNA as a code, suggesting the
possibility to encode tridimensional architecture representation into a very simple system
like color patterns. The relevance of this approach is accepting that a code of extreme
simplicity like DNA can be rearranged in ways that produce truly complex phenotypes,
seamlessly solving hundreds if not thousands of geometric relations.

Authors propose to reinforce this relation between extremely simple coding and
complex spatial phenotypes, embracing the idea that the connection is not fully understood
but is still capable of generating valid results. An idea that leads to the concept of emergence
and the opacity of neural networks [4,5].

Therefore, the main objective of the research is to test the capability of generative
adversarial networks (GANs) to unfold color patterns in fully developed geometries that
contain architectural elements and properties. In this conversion, special emphasis is
placed on a non-direct transformation of information that could lead to neural networks
capable of producing multi-scale designs from simple patterns.
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The second biomimetic aspect builds on previous research, when the authors high-
lighted the tendency of geometric gradients to which most parametric modeling is anchored.
While exciting, the digital momentum that has transformed the architecture thanks to al-
gorithm aided design [6] has failed to incorporate all the flexibility that current biological
models suggest. Thus, although evolutionary computation has acquired an important role
in optimizing the field [7], the latest advances in evo-devo have not been incorporated into
these algorithms, missing the opportunity to improve generative tools.

The integration of embryological processes based on gene regulation (patterns, body
plans, enhancers, switches . . . ) dramatically increases the modeling capability, generating
great variety in their populations using light and efficient algorithms [8]. As will be seen,
the generation capability is fundamental to the creation of a simple code (pattern) with the
potential for emergence.

The paper is organized as follows. Section 1 is split in two subchapters: the first
one describes the theoretical background, focusing on generative adversarial networks
and their current applications. The second one relates patterns behavior and evo-devo
regulation as a generative tool, considering data as the code to be compressed within the
patterns, capable of decompress into architectural phenotypes. Section 2 describes the
necessary tools and tests run in this research; it is also described the bio-parametric analogy
in the evo-devo based algorithm and color-data system. Section 3 presents the results from
the neural network and analyzes the data generated. Finally, Section 4 puts into perspective
and concludes the ability of the neural network to corroborate the initial hypothesis.

1.1. The Relevance of AI and Its Impact in Recent Years
1.1.1. Applications of Different Types of Machine Learning

From its inception in the late 1940s and since Alan Turing proposed the test [9] to
measure machine intelligence and John McCarthy coined the term [10], Machine Learning
(ML) has had a constant evolution toward the idea of the artificial brain. The field has
experienced a late resurgence within the last decade, as a result of more accessible tools and
hardware, set to solve traditional problems such as reasoning, representation, planning,
learning and recognition [11]. One of the most advantageous abilities of these algorithms
is the capacity to recreate specific tasks without the need to use explicit instructions [12].

Machine Learning methods like Deep Learning Neural Networks [13], Deep Be-
lief Networks (DBN) [14], Recurrent Neural Networks (RNN) [15] and Convolutional
Neural Networks (CNN) [16] have found applications in the field of computer vision,
audio/speech recognition, machine translation, social network filtering, bioinformatics,
drug design and much more.

Some of these algorithms rely on image databases and different training methods.
Neural networks (NN) can learn and guess the contents of an image, like the one used
in the experimentation of this paper. As a consequence, industries with large sets of data
accumulated are more prone to use these algorithms. ML algorithms can be used in the
healthcare industry to detect and assess health issues, where risks and threats can be
predicted by finding patterns according to symptoms and genetic information in a patient’s
medical history.

Artificial NN is already present in a multitude of other existing fields and is often used
to predict human behavior and decision-making. E-commerce platforms already use them
to find similar items to attract customers and streaming services use complex algorithms to
predict users’ future interests.

Thus, in the short term, AI derivatives already represent an engine of change in the
labor field that has and will have economic and political consequences (ref. the evolving
nature of work).

1.1.2. Generative Adversarial Networks

Within NN [17], Generative Adversarial Networks (GANs), first introduced by [18]
are a set of two NN, one being the generator, with the ability to create new synthetic
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instances of data and the other the discriminator (Scheme 1). Within the generative models,
adversarial networks have been some of the most successful ones but despite that, GANs
are very difficult to train [19]. These NN have achieved remarkable performance on various
tasks but suffer from training instability because the gradients given by the discriminator
contain considerable adversarial noise, which, as a result, misleads the update of the
generator and leads to unstable training [20].
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Generative models need to be based on a function that is trained by a large set of
data; that establishes the ground truth of the generator. The function will accordingly
be able to generate a result related to the mentioned database. These networks can be
used as generative models, capable of populating new data from a previously trained NN.
Consequently, GANs have the possibility to generate non-existing data from the features
that exist within the first data set. The other NN, the discriminator, classifies the data and
correlates the output with the input, trying to filter and classify the real data and the falsely
generated data [22].

1.1.3. Conditional GAN

In the framework of this paper, a supervised conditional GAN is used as a solution
to image-to-image problems, predicting pixels from pixels [23], using the pix2pix toolset.
Later, Wang et al. [24] found a way to increase the resolution of the images, allowing for
the use of higher resolution images, thus reducing the noise created by the generator and
thus favoring the task of the discriminator.

The conditional in GAN models derives from the need to force the training in one
direction [25] to avoid a certain lack of control on modes of the generated data. This
can be achieved by feeding data that needs to be a condition on both the generator and
discriminator. In the case of this paper, it is by using paired images for evaluating the
results (Scheme 2).
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1.1.4. Machine Learning and Architecture

For the last two decades, architecture design has been deeply influenced by digital
tools and by a digitalization process resulting from the implementation of building infor-
mation modeling (BIM) methodologies (Autodesk Revit, 2000). The Parametricism style
wave [26] allowed architects to explore shapes and forms that do not only rely on form
or function in 1929 [27] but are a result of form-generating processes within. Architec-
ture design concepts started to be much more closely aligned to form-driven design and
performance-driven [28] as a result of digital form-finding methodologies.

Tools and a contemporary approach to architecture allowed for breaking the classical
understanding of spaces, structures and form. Architecture is but can now be expressed as,
the result of complex generative rules. These rules can be described as a pseudo-genetic
language that can produce a code-script of instructions for form-generation [29]. The use
of parametric code as a genetic code leads also to a morphogenesis process that allows
the designer to establish a fitness criterion and appraise the evolution of the architecture
itself [30].

Previous to the use of AI, ML and regardless of the use of BIM methodologies, more
mundane approaches via heuristic methods [31] to generate automatic architecture plan
distributions have been examined, all of them prior to the introduction of Grasshopper
(Rutten, 2007), a tool that allowed the architectural industry to access algorithmic and
generative modelling with ease. Physically-based planning [32], Constraint-based [33],
Generative Design [34], Discursive Grammar [35], Heuristic Algorithms [36] and Genetic
approaches [37,38] were explored among others methods.

The use of ML algorithms and NN has allowed adding more complexity and case
studies to the topic of computer-generated architecture. Relevant recent works in this
category worth mentioning are explorations from Stanislas Chaillou [39], using the proven
creativity abilities of GaNs to generate different realities of the drafting process, all ap-
plied to floor plan designs. Within the same line of work, Huang & Zheng [40] propose
codification for architectural elements (Figure 1), allowing a smoother learning experience
for the NN, based on previous works done by Zheng et al. (2017) for generating urban
and city-scale planning. Other examples from Mohammad et al. [41] on applying GaNs
to design façades explore the relationship and symbiosis between architects and AI for
making design decisions, which have proven to be successful.
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In the current state, works and case studies involving architecture and ML algorithms
tend to be primarily on the 2D representational space. Although proven powerful, more
research in this field is needed in relation to a NN to comprehend the depth of objects for
a 3D object reconstruction using convolutional architectures. Wu et al. [42] already have
demonstrated the possibilities of bridging the gap via the so-called 2.5D to generate shapes
and forms, based on previous studies about the prediction of 3D shapes [43–46].

1.2. Pattern Images as Genotypic Data for Architecture in Gans
1.2.1. Patterns

From a generative point of view, it is absolutely essential to be able to encode informa-
tion. Finding a way to mimic biological strategies to extrapolate their level of complexity
to architecture will help to take advantage of the full potential of our computational tools.
Information patterns can store and establish relations in data, can be scale aware while
having fractal properties or adaptive while following a very limited set of rules [47].

The archetype of these processes is DNA. In the very same way that nucleoids com-
press the genomic data of DNA in a light and readable way, the computation could store
architectural geometry inside within its series of bits, tweaking the weights within the
NN [48].

DNA, also referred to as genetic code, clearly has similarities with mechanical or
digital codes such as Morse, Baudot or ASCII, where long strings of information (nucleoid
or binary) are converted into higher layers of information or symbols. As Richard Dawkins
states: “the machine code of the genes is uncannily computer-like” [49].

In biology, ribosomes receive instructions from RNA to produce specific amino acids
that will end up generating certain proteins. In our experiment, the parametric model
receives the instructions from the color channels and converts them into geometrical
commands that end up generating the architecture.

Among different types of data, digital images might be one of the most extended
and useful ones. Authors have already exploited the characteristics within the internal
structure of images in previous articles [50], making use of the channels associated with
each pixel to convert data and express geometric relations among their pixels.

Bypassing the well-known world of CGI, the last few years have awakened a whole
field like Computer Vision primarily focused on analysis [51] but also generating outcomes
as has been mentioned in the GAN’s chapter. As one of the principal information channels,
Images have established a strong relationship with the latest developments in AI.

Moreover, images can be the result of extremely complex processes, outcomes that
can be understood as phenotypes, where astonishing geometry emerges through the
combination of simple rules. Some well-known examples of this behavior are Alan Turing’s
theory of morphogenesis based on reaction-diffusion chemical patterns [52], Lindenmayer’s
tree branched L-Systems [53], Stephen Wolfram’s computing experiments for natural
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patterns generation [54], the genetic explanation of Evolutionary Development by Sean
Carroll [55] or the “natural” cities of Steven Johnson [56]. No matter the field, patterns
express the hidden relations within data.

It is without question that natural patterns can be useful to architecture in a wide range
of usage and scales [57]. Material design [58], structure and façades [59] and the urban
level [60] can follow many of the biologic rules that can be “easily” simulated through
software [61].

These generations of patterns may lead to emergent and unexpected results to articu-
late a computational architecture that can be exponentially more powerful than contem-
porary architecture; an architecture that is more related to biologic and natural processes,
working like a custom, adaptive and complex system focused on efficiency rather than
optimization and standardization.

1.2.2. Data Relation and Generation

Many GANs have proved resourceful when generating images from simplified im-
ages; the neural networks successfully identify shapes and are able to solve the relation
between them; for example, GauGAN’s landscape generator [62] or the façade image
translation from pix2pix-tensorflow [23]. An exploding field like self-driving cars is cur-
rently based on computer vision and tagging, which has led to datasets focused on object
identification [51,63].

However, all these attempts seem to keep a fairly direct relationship between the input
layer (with ID colors) and the realistic output generated as can be seen in Figure 2. We
could say that data has been simplified but the spatial relations inside the pixels have not
changed. In the same way, there is no change in the typology of the image.
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Figure 2. pix2pix (left) and Nvidia’s GauGAN (right). Screenshot showing the direct conversion from input and output.

A truly light and complex code needs to break this direct relation to further simplify
the information. If we refer back to the DNA example, no one could imagine that an endless
string of four different letters could be converted into a full living being.

This research argues if it is possible that GANs understand coded patterns related to
an architectural representation with images that are not directly related. How far can a
GAN encode hierarchical changes in the structure of the data? How much can the data be
simplified? How flexible is its understanding of cases outside the training?

Can a bi-dimensional pattern like a colored square grid become an isometric represen-
tation with architectural values?

1.2.3. Parametric Design to Service Machine Learning

Unlike other fields, design jobs like architecture might have an advantage in intro-
ducing ML workflows into the discipline. Thanks to parametric and generative CAD
software [6], architects can easily build and prepare their own database for NN training.
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Any simple script is able to generate several million outputs [64] that can serve as
image references for the NN. On top of that, the authors of this article have developed in
previous research data workflows based on evolutionary-developmental biology in order
to optimize performance and maximize variation [8]. These workflows have been applied
to the current case study and will be better explained in the following chapter.

Moreover, the data used to generate those outputs is explicit in the script and can
also be easily extracted and associated with the outputs, as well as converted in any
necessary data type (like a pattern image). In other words, parametric designs can produce
infinite examples with their input-output relations (genotype-phenotype conversion) to
train NN models.

To exemplify the relevance of having access to the relationship between input and
output, the authors point out that a large part of the development of AI today comes
precisely to resolve or omit this relationship, either by using AI to find patterns [65] or in
training NN that do not need to establish relationships between inputs and outputs [66].

2. Materials and Methods
2.1. Tools and Systems

Compared to other deterministic models, the use of deep learning offers unprece-
dented flexibility in the field of computing. However, the search for the perfect relationship
between the different nodes of the NN also produces the adverse result of opacity.

The lack of understanding about what happens within the NN is not exempt from
criticism [67,68] and everything seems to indicate that it will be necessary to incorporate
measures to guarantee the correct functioning of the darker part [69].

To counteract this indetermination, a series of tests are developed to confirm the
different parts of the hypothesis.

The first part of the experiment also has rendering and visualization implications.
There are significant contributions to the research field of real-time rendering through the
use of NN [70], even applied to the specific field of architecture [71]. However, they mainly
focus on the direct conversion of geometry into materials and light simulation.

The work of Wu et al. [72] in Learning Shape Priors for Single-View 3D Completion
and Reconstruction can be considered as a step further, where images with 3D information
(normals, depth) are translated into 3D geometries.

As mentioned previously, one of the critical objectives of this experiment is to test
the ability of a NN to convert relatively simple patterns into rather complex architectural
spaces. Therefore, making the leap between the two-dimensional and the isometric rep-
resentation is a fundamental part of the original hypothesis. In addition to the isometric
representation, several rendering values have been added to the image, such as omni light
and ambient occlusion.

In general terms, the case study consists in the generation of color patterns and ar-
chitectural isometrics that are related through parametric rules. The designed algorithm,
builds both inputs (patterns and isometrics) from an established set of relationships. These
inputs are then used to train the neural network, in the hope that it will be able to “dis-
cover” and learn these established relationships. Throughout the experiment, successive
configurations are adjusted to assess the learning of the neural network and the quality of
the outputs.

2.1.1. Software and Hardware

The experiments carried out in this research have been developed in Google Colab, a
free tool from the Google ecosystem specific to the development of ML and deep learning
applications. Colab allows remote use of Google GPUs and TPUs, although, as it is a
free tool, Google limits the maximum connection time to its virtual machines, making
it impossible to run more than twelve hours. The amount of memory available for the
development is not constant in each session but it oscillates around 13 GB of RAM and 110
GB of Hard Drive.
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The Colab development environment is defined in Python 3.6 (v3.6.x, 2019, USA) and
has pre-installed many of the most-used libraries to develop ML applications. Among
those that have been used for this research, we find:

• TensorFlow v 2.3.1
• Keras v 2.3.1.
• Scikit-learn v 0.22.2.post1
• Matplotlib v 3.2.2
• Numpy v 1.19.4

Google Colab specs (free version):

• CPU: Intel(R) Xeon(R) CPU @ 2.20GHz
• GPU: Tesla K80
• RAM: 12 GB

Test C03 (described later on) was run on a laptop with the following specs:

• CPU: Core i7-7700HQ de Intel (MSI Apache)
• GPU: GeForce GTX 1050 Ti de 4 GB
• RAM: 16 GB (DDR4)
• HD: 256 GB SSD

2.1.2. Evo- Devo Modelling and Color-Data Systems

The parametric definition used follows prior research where a workflow founded
on flow-based programming, polygonal meshes modelling and evo-devo strategies were
established to maximize variation and efficiency [8].

Unlike the majority of current visual-programming architecture, adding the evo-
devo capabilities encourages a truly emergent result. While the former tends to generate
gradients and similar versions, reorganizing data as if it were genes allows the model to
change more flexibly and freely.

The 1995 Nobel Prize in biology [73] raised a better understanding of how genes relate
to the embryology development, evidencing a geometric and pattern-based structure within
living beings. Body plans, allometric growths, genetic switches, homeobox genes and
mutations describe a powerful tool kit based on hierarchies and data transformation [55].

Examples of these regulatory switches stablishing strong relations between biology and
geometry can be found in Barbier et al., controlling spatiotemporal pattern formations [74]; or
evolutionary enhancers studies in Drsophila from Matthew et al. [75] (Figure 3).

The digital architecture generated for this research makes use of a simplified version
of the one developed by the authors but still faithful to the logic that prevails both in
evo-devo biology and computation [76].

The generative algorithm is based on a bi-dimensional grid (4 × 4) populated by the
color pattern that regulates the different modifications depending on the color (Figure 4).
Following evo-devo mimetics, this data is explicit throughout the model; always latent
inside the geometry-affecting different aspects of the architecture, turning on and off
mesh transformations related to allometry (height), subdivision (tiles) and homeoboxes
(openings). The result is an endless variation of architectural typologies.

Color-transformation association can be seen further on in Table 1.
As a data encoding experiment, it is important to maintain a balance between a simple

and yet powerful system to generate diversity. This requires structuring the colors to
associate them with possible phenotypes so that they all manifest themselves to a greater
or lesser extent.

As already mentioned, the color system is closely linked to the generation of diversity
that mimics the evo-devo processes. Colors work as genetic switches that activate different
aspects of the parametric genotype; that is, meshes colors function as the patterns that
trigger specific actions.

In this sense, color space science and the channels (RGB—Red, Green, Blue) that make
up the colors are used as data paths but other factors such as luminosity (AHSL— Alpha,
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Hue, Saturation, Lightness) are also analyzed in order to expand the possibilities of the
system [50,78,79].
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Table 1. Transformations based on color channel and luminance.

Channel Transformation Dark Color/Event Light Color/Event

Luminance Existence Void Fill
Red Allometry One floor Two floors

Green Subdivision No subdivision Catmull-Clark subd.
Blue Homeobox Solid Openings
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Every channel in Table 1 is assigned to a specific transformation, where the specific
lightness of the channel is analyzed. If the color is dark, the event does not trigger; if it is
light, it does. The proportions between dark and light have been changed and are detailed
in the Data Color Systems description.

2.1.3. Data Color System 1

The first event is to create/delete cells within a rectangular grid. If the color is
luminance and is below 0.5 (0–1), it gets deleted; if it is higher, a cubic cell appears.

After the cells have been generated, three transformations are applied based on
the colors’ cell channels (RGB). The luminance of each channel is evaluated, and, again,
depending on if it is lower or higher than 0.5, an event is triggered.

Color generation was restricted to specific ranges to facilitate their differentiation.
However, the color distribution tends to create rather compact architectures with few
empty spaces.

Early tests showed that increasing the number of color levels brought the ratio of
created-deleted cells closer to 50%, which was more appropriate from an architectural point
of view (Table 2). This behavior is due to the resulting luminance of the colors, which is
not necessarily the mathematical addition of the RGB channel.

Table 2. Incrementing color levels leads to 50% void/fil ratio.

Levels Individuals
Tested

Dark Colors
(Empty Cell) Light Colors Total Colors Percentage of

Dark Colors

2 500 411 2877 3288 12.50%
4 500 998 2282 3280 30.43%
8 500 1288 1996 3284 39.22%

However, adding more levels of colors without directly associating them with genes
expressing changes showed that the NN behaved less efficiently. For this reason, a new
system was established, which may seem more complex as a starting point but which
later turns out to be more direct and better associated with the parametric model and
its characteristics.

2.1.4. Data Color System 2

The second system is based on thirds shares (Table 3). It allows having the minimum
number of colors (each one related to a specific modification/phenotype) while keeping a
good balance in the proportion of events, including the creation/deletion cell.

Table 3. Possible events and their probability. Notice that the third channel value is 125 (below 127.5).
Each channel position is combined in a three part color (red-green-blue).

Channel Value Existence % Total % Event %

255
66% Cell creation

21.8% Light event 33.3% of events

125 44.5% Dark event 66.6% of events

0 33% Cell deletion 33.3% No event -

As the diagram shows (Figure 4), instead of using a straight separation between
dark and light to remove cells, a 1/3 conditional was used. This will produce an uneven
distribution that is not harmful to the tests.

Each of the channels was divided into three levels, with the middle one slightly below
the middle value. Because of this, averaging in that level results in 0 value.

As a result, there are 27 different colors with the following distribution of events:
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2.2. Test Settings and Training

Fixed settings for all experiments in Table 4 unless it is specifically mentioned.

Table 4. List of tests A to C.

Test
Name

Input
Image Target Image #

Images
#

Epochs
# Total
Images

A01 pattern binary iso gray 250 50 12,500
A02 pattern binary iso red 250 50 12,500
A03 pattern binary iso gray 500 50 25,000
A04 pattern binary iso gray 250 100 25,000
B01 pattern color iso color 250 50 12,500
B02 pattern color iso color 350 70 24,500
C01 pattern iso color iso color 250 50 12,500
C02 pattern iso color iso color 350 70 24,500
C03 pattern iso color iso color 500 100 50,000

• Images used have been specifically dimensioned to 250 by 250 pixels.
• Output images set to 10.
• Ratio for generator-discriminator set to 80–20%.

The following tests progressively increase the complexity of the geometries as they
require more complex coding systems through the color channels. Tests have been classified
into four main objectives:

1. Group A of the tests is aimed at checking the hypothesis and assessing the impact of
the settings on the algorithm.

2. Group B’s objective is testing the response to the increasing complexity.
3. Group C tests propose a different approach based on the pixel’s relations.
4. Group D checks the flexibility of networks trained with external inputs.

Two different types of geometries will be tested:

5. Cubic volumes (group A).
6. Architectural volumes (group B, C and D).

2.2.1. Test A0#—Binary Patterns

To check the feasibility of the initial hypothesis and the ability to transform images in
a non-linear way, the first test considers the conversion of binary patterns (black/white
void/fill) into simple isometric volumes (Figure 5).
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These tests are also aimed at having a better understanding of the settings and their im-
plications.

• Test A01 (250-50) considers the simplest and initial case of conversion into grey vol-
umes.

• Test A02 (250-50) compares the relevance of color by introducing red volumes that
might help to distinguish between shadows and geometry.

• Test A03 (500-50) checks the impact of the database size.
• Test A04 (250-100) checks the impact of the number of epochs.

2.2.2. Test B0#—Color Patterns

B-tests Introduce for the first time 27-colour patterns. As explained in previous
chapters, each of the colors is split into channels to activate different events. To better
analyze the results, the different objects of the architectural models are also colored: yellow-
façade, Turkish-garden, purple-ground floor, blue-first floor.

• Test B01 (250-50) introduces for the first-time color patterns.
• Test B02 (350-70) increases the size of the database.

2.2.3. Test C0#—Isometric Patterns

Due to the results in Group B, a third group (C##) of tests was developed where the
initial conditions of the input image were changed from a square grid to an isometric
representation of that same grid.

With this group of tests, the researchers look for a more efficient way to train the NN
while testing the impact of more direct relations between the pixels in both images.

• Test C01 (250-50) introduces isometric patterns. To be compared with B01.
• Test C02 (350-70) increases database size. To be compared with B02.
• Test C03 (500-100) developed in-depth to use as a base for Test D##.

2.2.4. Test D0#—External Patterns

To evaluate the flexibility of the trained NN, completely new inputs of different
typologies are fed into the algorithm.

• Test D01 adds extra cells to the grid (5 × 5)
• Test D02 randomly fills the image with cells.
• Test D03 checks organic patterns: Voronoi, reaction-diffusion, l-system.

3. Results

Figures in this chapter have been exported directly from the code. Tables’ data of
image comparison based on percentage similarity produced at IMGonline.com.ua (accessed
on 20 December 2020) [80].

3.1. Training Outputs (Test A-C)

Test A01. Has proven successfully that non-direct relations between the paired images
can be recognized by the cGAN (Figure 5). Few cells may appear in a wrong position.

Test A02. Immediately after the first test, there was a suspicion that shadows in
grayscale could hinder the process. Figure 5 shows how results from A02 are sharper and
better defined than in A01. Occlusion shadows hinder the processes because volume and
ground were misunderstood by the NN. However, the image comparison algorithm did
not express these improvements.

Test A03 and A04 do not specifically have any conclusion or improvement over test
A01. When it comes to “understand” and rightfully express the geometry, both parts have
proved equally relevant. Nonetheless, Table 5 and Figure 9 show evidence that increasing
the number of echoes significantly increases the definition of the images.

IMGonline.com.ua
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Table 5. Image comparison data from group A.

A01 A02 A03 A04

Average 98.60% 98.06% 97.23% 99.13%
Min. value 97.90% 96.70% 93.42% 98.41%
Max. value 99.10% 98.67% 99.33% 99.45%

Test B01 (Figure 6 and Table 6). As color and more complex geometry is introduced,
the default training settings (250-50) proved insufficient. Although shapes could be rec-
ognizable, there is an almost complete absence of openings and interior levels, as well as
some of the volumes.
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Table 6. B-tests image comparison data.

B01 B02

Average 88.91% 93.46%
Min. value 85.98% 89.74%
Max. value 94.88% 97.17%

Test B02 (Figure 6) shows a remarkable improvement over its predecessor. Volumes
and their openings are more defined and interior colors start to appear, sometimes in the
wrong order.

Test C01. Introduced as a parallel way to compare how important the pixel distribution
can be. The pattern has been converted to an isometric, so there is a lower level of
abstraction. Results were better than in test B01 with the same amount of training but it
brings a number of disadvantages that will be discussed in the conclusions. Colors and
openings are noisy but in the right place (Figure 7).

Test C02. Thanks to the database increment, an improvement can be seen in the same
way that B02 improved over B01. The results are less noisy but equally accurate.

Test C03. Over-trained when compared to its predecessors in order to check its
performance in difficult situations outside of the training data base. This NN will be saved
for Test D##.
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3.2. External Outputs (Test D)

As previously described, the last group of tests has been fed with images outside of
the training database. There are three subgroups described as:

1. (D01) Enlarging the original grid to 5 × 5 pixels.
2. (D02) Deconstructing the grid and spreading it through the image.
3. (D03) Using other patterns, like reaction-diffusion or voronoi.

Data from D01 is added in Table 7 and represented in Figure 8, since is the only test
in group D that can be analyzed. In Figure 8 we can see how the neural network is able
to intuit the position of the elements (openings, heights, colors . . . but the level of noise
and distortion is greater than in any of the previous examples. Taking into account that the
intuitions are correct, the results are extremely positive considering that a 5 × 5 pattern has
never been introduced in the neural network.

Table 7. C## and D01 tests data.

C01 C02 C03 D01

Average 96.84% 98.10% 99.01% 88.23%
Min. value 93.20% 96.47% 97.80% 85.13%
Max. value 98.95% 99.34% 99.48% 91.30%
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In Figure 9, in addition to the importance of resources, we can see how test D01 is not
far from the results of B01. And although it was concluded that the training in B01 was
insufficient, the fact that the assessment by comparison of the images is almost the same in
a network trained with examples (B01) as in one that has not been (D01) opens the door to
interesting options.
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Figure 9. Graph comparing average (black dotted line) and min-max boundaries of each experiment (grey bars). Most
relevant are: A03 due to low count of echoes, the improvement from B to C tests and the indetermination of D01.

While test D01 is generated parametrically (both pattern and isometric), patterns in
D02 and D03 where handmade designed. For this reason, there is no possible comparison
with the “right” answer.

In D02 Authors have tried to change the patterns by: separating, deconstructing,
reorienting and scaling. The results are below previous experiments but still the net-
work is capable of generating recognizable isometrics with a certain level of intuition
(Figure 10). It is specially negative the resulting reoriented pattern, completely breaking
the isometric representation. On the other hand, it seems that ground is better defined than
roofs transitions.
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Figure 10. Captures from test D02.

Results in D03 proof that the NN is not prepared for geometries completely outside of
its training. Although some positive things can be observed (ground treatment and color
understanding), the isometric architectures fail to generate organic shapes or reinvent the
original system (Figure 11).
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4. Discussion and Conclusions

The main conclusion is that the initial hypothesis can be easily achieved by the
cGAN, opening a world of possibilities around complex pattern encoding and architecture
representation at many levels. The majority of tests support this claim and have shown
the importance of data-base sizes and, especially the amount of echoes run. Despite the
differences between pattern and isometric, every test improved as new resources where
added (Figure 9). In fact, the D01 test proved to be positively intuitive despite not having
received training from its inputs, practically matching the values of the B01 test that had
been trained.

This approach is not only as a strategy for simplifying and compressing reality into
more efficient information but also as a powerful tool to unleash complexity into architecture.

The value of the conversion goes beyond assigned specific geometries and their
isometric representation with colors but the ability to understand the relation between the
colors in the pattern. This fact can be clearly seen when tilted roofs appear; depending on
the heights of the cells, it is a demonstration in which the cGAN establishes decisions that
are outside of the color by itself and depends on neighborhood and patterns.

The authors believe that the capacity of cGANs to generate content extremely quickly
in a tremendously simple process encourages their integration into the workplace. Websites
or apps can run the trained GANs in the face of the difficulty of installing and learning
certain software [81]. Calculating without calculating could mean a change of the paradigm
in terms of simulation in fields such as structures, sunshine, energy efficiency and so forth.

In terms of graphic representation, the cGAN has successfully included omni light
and occlusion shadows into the final outputs. Together with pseudo-3D representation
(isometric), the results include a value that could potentially disrupt technologies like 3D
modelling or computer-generated imagery.

5. Limitations

Some of the limitations regarding the specifics of the tests run are:
The color coding used for the generative model has a tendency toward manifesting

changes in opposition to do nothing. This is due to the modifiers related to colors; since
light colors are attributed to changes and the existence of the cell in the first pattern, it is
most likely that those cells express the changes. In other words, although colors are split
into channels, darker colors will always have a smaller frequency.

Using a fourth channel (Alpha) to create or delete cells in the grid would fix this bias
but it would make visual analysis and file management more difficult (from the human
point of view).
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This does not affect the experiment’s success since the generative model was only
a simplified version to test the conversion from color patterns into geometry through
deep learning.

Besides that, the use of isometrics can sometimes be complicated by the co-incidence
of certain perspectives. Reinforcing one of the axes over the others could solve this issue.

As far as the use of patterns in isometrics is concerned and despite the improvement
in the behavior of the network, it is necessary to take into account what it means to
establish a direct relationship between the pattern arrangement and the actual location of
the architecture. Slopes and differences in the terrain would hide the color and distort the
size of the pattern, making a universal conversion system unfeasible. Therefore, since the
experiments in B## have been successful, it is convenient to continue investing resources in
that direction. The problems mentioned -such as the slope or height of the ground- could
also be solved by assigning them to specific colors or values of the pattern.

The scalability and abstraction of the patterns are not without questions. Encoding or
mathematical studies associated with architecture are not without risk, as was eloquently
exposed in [82]. How much can architecture be simplified? How much can we encode and
abstract patterns that unfold into reality-complex architecture?

Together with resource limitations for appropriately training the NN, designers should
carefully check for bias and verify the perfect functioning of their applications. As tests
B01 and D01 show (Figure 9), ML’s only limitation might be the size of its database and
experience, which could be overcome in subsequent years as technology improves and
adapts towards AI.

In closing, it is worth commenting on the results in test D02 and D03. Most of the
examples have shown a certain level of intuition but unfortunately, there is also a dramatic
lack of definition. It would have been more interesting if the results had been wrong or
different but well-defined. Thus, one can see that the NN does not respond well to those
examples outside the training (Figures 10 and 11, test D02 and D03).

It is also worth mentioning that the database used was particularly rigid in modulation
and geometry and this could be the cause of the lack of response from the NN. The use of
natural patterns, although interesting decisions can be seen and the grid that was turned
90◦, worked particularly badly.

To conclude this research, despite the simplicity of the tests carried out, the authors
recommend increasing the complexity of the projects exponentially to find its limitations.
Now that the viability of the process has been demonstrated, new experiments should be
carried to gain knowledge on possible levels of abstraction and how they impact on neural
network learning. Similarly, the ability to scale information should also be addressed,
either in the architectural/pattern design or image resolution in the neural network.

The proposed methodology can be applied to any architectural scale, providing
detailed decisions to solve hundreds of encounters in a hierarchical an intelligent way,
whether they are aesthetic, constructive or urban based.

Figures such as Michael Hansmeyer [83] should be considered references for their
theoretical approach towards a morphogenetic architecture based on patterns and fractals.
But also its application on urban design to autonomously specify smaller scale details while
addressing main territory patterns or city neighborhoods [84].
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