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Evaluating the Use of Linear Mixed-Effect Models for
Inference of the Concentration-QTc Slope Estimate as a
Surrogate for a Biological QTc Model

Y Huh* and MM Hutmacher

In concentration-QTc modeling, oscillatory functions have been used to characterize biological rhythms in QTc profiles.
Fitting such functions is not always feasible because it requires sufficient electrocardiograph sampling. In this study, drug
concentration and QTc data were simulated using a published biological QTc model (oscillatory functions). Then, linear
mixed-effect models and the biological model were fitted and evaluated in terms of biases, precisions, and qualities of
inferences. The simpler linear mixed-effect model with day and time as a factor variables provided similar accuracy of the
concentration-QTc slope estimates to the complex biological model and was able to accurately predict the drug-induced QTc
prolongation with less than 1 ms bias, despite its empirical nature to account for biological rhythm. The current study may
guide a concentration-QTc modeling strategy that can be easily prespecified, does not suffer from poor convergence, and
achieves little bias in drug-induced QTc estimates.
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Assessing proarrhythmic risk has been a key issue during
drug development for the past decade1 due to reports of
QT interval prolongation for nonantiarrhythmic drugs. In
2005, the US Food and Drug Administration (FDA) released
the ICH E14 guidance, which proposed a thorough QT
study (TQT study) be conducted to assess the risk of QT
prolongation of new drugs.2 It did not take long for the TQT
study to be criticized. Authors have reported that its primary
statistical method, i.e., the intersection union test, can suf-
fer from low power, the maximum mean difference from pla-
cebo provides a positively biased estimate of
prolongation,3–5 and the result cannot be used directly to
predict the outcomes in subjects at risk for increased expo-
sures. Another criticism of the TQT trial is cost-
effectiveness. The use of concentration-QTc (CQTc) analy-
ses has increased significantly to address these issues.
CQTc analyses provide increased efficiency in that the use
of exposure facilitates integration of information across the
sampling times and treatment groups, in contrast to the
time point-based E14 analysis.6 Additionally, CQTc analy-
ses can be performed with data from early development
(phase I). In fact, a good number of studies have suggested
the use of CQTc analysis of early phase studies as a sub-
stitute for a TQT study.7–9 The Consortium for Innovation
and Quality in Pharmaceutical Development and the Car-
diac Safety Research Consortium have collaborated
recently to run a single ascending dose-like study with six
marketed drugs, which were previously characterized by
TQT studies, to investigate whether equivalent information
about QT effects can be obtained from either a TQT inter-
section union test or a CQTc analysis.6

It is well known that QT intervals exhibit biological
rhythms such as circadian patterns.10–12 Several authors
have proposed oscillatory time functions to characterize

biological rhythms in QTc profiles within a subject.10,13,14

However, fitting such functions is not always feasible,
because the estimation of parameters governing these
oscillations requires sufficient electrocardiograph (ECG)
sampling. This can be a challenge even for a TQT study.
Bayesian methods have even been proposed because of
the dimensionality of the biological model.8,14,15 Other
authors have proposed modeling baseline- and/or placebo-
corrected QTc data (dQTc/ddQTc) to eliminate or reduce
the correlation. While such strategies might work for a TQT
study, generally these are not feasible solutions for Phase I
study designs. Ultimately the goal of the analysis is to
accurately estimate drug-induced QTc prolongation in the
presence of such biological rhythms, and perform inference
to establish what extent of prolongation can be precluded.
Valid inference depends upon accurate confidence intervals
(CIs). Prespecification of the model is essential for this rea-
son. Precise prespecification of a biological model is diffi-
cult, because the number of oscillatory functions will likely
be dictated by the study design. Given that the primary
objective of the CQTc analysis is determining the extent of
QTc prolongation as a function of concentration, and not
estimating the magnitude of biological variability, complex
models may not be necessary for decision making.

The objective of this simulation study was to evaluate
specific linear mixed effect (LME) models for biases, preci-
sions, and qualities of inferences under different pharmaco-
kinetic (PK) profile scenarios and study designs in the
presence of biologically varying QTc. Specifically, the per-
formance of an LME model using sampling time as a factor
variable was evaluated as an empirical way of addressing
such variation in the data. To the best of our knowledge,
such a study has not been conducted. Because biological
rhythms are time-dependent processes, the performance of
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the LME model may be different depending on the Tmax of
a drug. Therefore, three different Tmax magnitudes were
investigated: short (Tmax � 1 h), intermediate (Tmax � 3 h),
and long (Tmax � 6 h). The amount of QTc prolongation
(no QTc prolongation, 5 ms and 10 ms prolongation at geo-
metric mean Cmax (peak plasma concentration) of supra-
therapeutic dose) and study design (TQT-like with rich ECG
data and early phase studies with sparse ECG data) were
also assessed. Ultimately, we pursue a modeling strategy
that can be prespecified and achieve little bias in ddQTc
estimates, and in the process, evaluate if a biological model
is really necessary for decision making.

RESULTS
PK-Pharmacodynamic data simulation
Table 1 displays study designs (sampling times, sample
sizes, doses administered, etc.) used in simulations. The
PK-ECG matched sampling times in phase I were selected
based on three different Tmax scenarios to capture the Cmax

within each sampling scheme. In addition, inclusion of
day 0 ECG sampling in phase I designs (phase I 1 day 0)
was also investigated. For each simulated scenario, 1,000
QTc datasets were simulated using a published biological
model.13

Assessment of the bias and estimation error
Figure 1 and Table 2 summarize the estimation error of
drug effect parameters for the TQT study design with 5 ms
true QTc prolongation. All LME models tended to have
mildly negatively biased slope estimates, which was antici-
pated because of the incorporation of 20% measurement
error in the concentration. The model with time as a factor
variable (model 2) resulted in the least biased estimates
across all three Tmax scenarios (24.51% – 25.70% vs.
24.69% – 214.3%, Table 2). Incorporating an autoregres-
sive residual error structure (model 3) did not reduce the
slope estimate attenuation. The superiority of model 2 was
confirmed by the assessment of coverage probability of the
90% CIs of the slope estimates (Figure 2a). Wald-type CIs

maintained a nominal coverage rate of 90%, except for the

intermediate Tmax case which just missed the nominal rate

(89%, data not shown). Of interest, the bias in slope for the

simple LME without time effects (model 1) was similar to

model 2 for the short Tmax scenario, yet was worse for the

intermediate and long Tmax scenarios. Between-subject var-

iability (BSV) on slope was overestimated for all models

including the biological model, except for the autoregressive

model. Inter-occasion variability in the biological model

used for simulation was not identified as day-to-day variabil-

ity in LME models. Therefore, random effects on day were

not incorporated. Residual variability was positively biased

for all LME models (30.6%–36.2% bias, Figure 1) because

these models did not capture structurally the subject-

specific oscillation due to the biological rhythms. The full

biological model consisting of two cosine functions suffered

from overparametrization; only 40% of runs completed with

a successful covariance step. A reduced biological model

with one cosine function was fitted instead (>70% success-

ful covariance step). The accuracy of the slope estimate for

the reduced biological model was similar to model 2

(23.87 – 27.15% bias). When the accuracy was evaluated

for the full biological model including all converged runs

(regardless of successful covariance step) the slope esti-

mate was still negatively biased (24.36% – 26.81% bias).
For the pooled phase I study design, slope attenuation

was more pronounced (<210.0%) compared with the TQT
study design, as indicated in Figure 3 and Table 2. The
model 1 showed the most severe bias (224.9% – 249.7%)
and poor coverage of the true slope. Model 2 yielded the
least biased slope estimates (211.8% – 218.7% vs.
212.6% – 249.7%, Table 2) and reasonable coverage of
true slope in all the Tmax scenarios (Figure 2a) despite its
bias. Adding the autoregressive residual error component
did not improve the prediction results in phase I designs as
well. Because of the sparse sampling, BSV on slope could
not be estimated and was fixed to zero for most runs,
resulting in a skewed distribution as depicted in Figure 3.
Residual variability increased for all LME models to a

Table 1 Description of studies used in the analysis

Study Description of study

N (number

of subjects) Treatment

ECG extraction and

time-matched

PK sample

TQT Three-way crossover,

placebo-controlled study

60 Placebo, 25 and 250 mg 0, 0.5, 1, 2, 2.5, 3, 4, 6, 8, 12, and 24 h

Phase I SAD Parallel group, dose

escalating study

28 Placebo, 25, 50, 100,

and 200 mg

Short Tmax:0, 1, 2, 4, 8, and 24 h

Intermediate Tmax: 0, 1.5, 3, 6, 12, and 24 h

Long Tmax: 0, 3, 6, 9, 12, and 24 h

MAD Parallel group, dose

escalating study

28 Placebo, 20, 40, 60,

and 80 mg

Short Tmax: 0, 1, and 2 h on day 1, 3, and 6.

Intermediate Tmax: 0, 1.5, and 3 h on day 1, 3, and 6.

Long Tmax: 0, 3, and 6 h on day 1, 3, and 6.

Phase I 1 day 0 SAD Parallel group,

baseline-controlled,

dose escalating study

28 Placebo, 25, 50, 100,

and 200 mg

Short Tmax:0, 1, 2, 4, 8, and 24 h on day 0 and 1

Intermediate Tmax: 0, 1.5, 3, 6, 12, and 24 h on day 0 and 1

Long Tmax: 0, 3, 6, 9, 12, and 24 h on day 0 and 1

MAD Parallel group,

baseline-controlled,

dose escalating study

28 Placebo, 20, 40, 60,

and 80 mg

Short Tmax: 0, 1, and 2 h on day 0, 1, 3, and 6.

Intermediate Tmax: 0, 1.5, and 3 h on day 0, 1, 3, and 6.

Long Tmax: 0, 3, and 6 h on day 0, 1, 3, and 6.
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similar extent observed with the TQT study design (24.5%–
35.5% bias, Figure 3). Neither the full nor reduced biologi-
cal models were able to be applied to the phase I design
(<8% successful covariance step), because of sparse
sampling.

As shown, slope attenuation for the LME models is
more pronounced for phase I studies compared with a
TQT study, and model 2 resulted in the most accurate
slope estimates for the short Tmax case among different
Tmax scenarios. Compared with the TQT study, the
phase I design in our analysis had (1) very limited sam-
ples per subject (n 5 6 for single ascending dose and 9
for multiple ascending dose vs. 12 for TQT), (2) a smaller
dose range (20–200 mg compared with 25 and 250 mg in
TQT), (3) did not have time-matched baselines, and (4)
was a parallel design (placebo was not given to all sub-
jects). To evaluate these factors, an increased number of
subjects (n 5 104), number of observations per subject
(n 5 6 for single ascending dose and 15 for multiple
ascending dose), and dose range (n 5 20–300 mg) were
tested. However, none of the conditions improved the
accuracy of slope estimates (213.6% – 216.8% bias for
LME model 2, data not shown). Inclusion of a higher dose

level only increased the precision of slope estimates (data
not shown). However, when day 0 or baseline ECG sam-
pling was included (phase 1 1 day 0), the accuracy of
slope estimate was significantly improved, especially for
the long Tmax scenario (Table 2). Also, the coverage prob-
ability of the true slope was less sensitive to the selection
of LME models when day 0 was included (Figure 2a). A
two-way crossover, placebo-controlled phase 1 design
was additionally investigated for testing sensitivity, and it
further improved the accuracy of slope estimates with
�26.00% bias, a similar level of bias to the TQT study
(data not shown). The simulation results were not affected
by the magnitude of the slope (Supplement Table S1,
which is available online). Thus, these results should
apply to larger slopes that are of interest based on the
Consortium for Innovation and Quality in Pharmaceutical
Development and the Cardiac Safety Research Consor-
tium proposals for phase I.6

For the no QTc prolongation case, absolute bias was
reported (Table 3). There was no obvious bias observed
across the LME models and this is because measurement
error is not an issue when the true slope is 0. The false
positive rate and 95% CIs of the slope estimates are

Figure 1 Box and whisker plots of the estimation errors for drug effect model parameters in different Tmax scenarios of TQT study
design. Models 1, 2, and 3 represent linear mixed effects models 1, 2, and 3, respectively, and the biological model represents a
reduced model consisting of only one cosine function. Boxes denote the 25th and 75th percentiles and the filled circles inside the box
denotes the median. Whiskers represent the 5th and 95th percentiles.
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displayed in Figure 2b. The results indicated that the false
positive rate was not sensitive to the selection of LME mod-
els nor study design, having � 2.5% error in most of the

Tmax cases. The false positive rate was relatively high for
the TQT short Tmax scenario (6%–8%), but the 95% CI
lower bound was very small, approximately 1026 – 1024,

Table 2 Biases (mean estimation error) of slope estimates (in %) and ddQTc estimates (in ms) by study design in 5ms QTc prolongation case

Model

Tmax scenarios

Short Tmax Intermediate Tmax Long Tmax

Intermediate Tmax

without

measurement error

Bias in

slope (%)

Worst bias

in ddQTc (ms)

Bias in

slope (%)

Worst bias

in ddQTc (ms)

Bias in

slope (%)

Worst bias

in ddQTc (ms)

Bias in

slope (%)

TQT study

1 24.69 20.24 212.0 20.60 211.8 20.58 27.67

2 24.51 20.23 25.70 20.29 25.44 20.27 20.37

3 214.3 20.73 212.9 20.65 29.12 20.45 20.27

Reduced biologicala 23.87 NE 27.15 NE 25.94 NE 22.89

Full biologicalb 24.36 NE 26.81 NE 25.72 NE 22.10

Phase I study

1 224.9 21.00 249.7 21.98 240.0 21.58 245.8

2 211.8 20.48 214.0 20.55 218.7 20.74 0.103

3 212.6 20.51 214.9 20.59 220.8 20.82 0.652

Phase I study 1 day 0

1 216.7 20.68 227.8 21.10 217.4 20.68 NE

2 210.0 20.41 28.80 20.35 210.8 20.42 NE

3 210.5 20.43 210.3 20.41 211.7 20.46 NE

NE, not evaluated.
aReduced biological model consist of one cosine function as a biological part.
bAll the converged runs were included regardless of successful covariance step.

Figure 2 Coverage probability of slope estimates and false positive slopes. (a) Coverage probability of slope estimates containing the
true slope calculated with 90% confidence intervals of slope estimates in 5 ms QTc prolongation scenario and (b) % false positive
slopes of linear mixed effects models in the no QTc prolongation scenario (95% confidence interval excludes 0). Dashed line repre-
sents the 2.5% type 1 error.
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for those false positive slopes. TQT study seems to under-
estimate the variability of slope, thereby resulting in tighter
95% CI and higher % false positive slopes.

When the 20% measurement error in PK was removed (eval-
uated using the intermediate Tmax scenario), accuracy of the
slope estimate improved remarkably (< 1.00% bias) overall
(Table 2). Only the simple LME model 1 without time factor still
yielded negatively biased slope estimates. The negative bias in
the slope estimates of LME models having time as a factor vari-
able (model 2) resulted mainly due to measurement errors in
the PK and not model misspecification.

Prediction of drug-induced QTc prolongation
Both the best LME model and biological model resulted in
23.87% – 27.15% bias of the slope estimates in the pres-
ence of 20% measurement error. Slope attenuation in LME
models is a well-known issue when the independent vari-
able includes measurement error. However, such bias may
not be directly translated into the prediction of QTc prolon-
gation, which is the main purpose of CQTc analysis. There-
fore, the true ddQTc were compared with model-predicted
ddQTc for the highest dose group of each study type (250
mg for TQT and 200 mg for phase 1). The comparisons are
summarized by time (Figure 4). The worst bias among
ddQTc estimates across time is reported in Table 2. As
shown in Figure 4, 75% of the prediction errors between

Table 3 Biases of slope estimates (in %) by study design in no QTc prolon-

gation case

Model

Tmax scenarios (bias in slopea, %)

Short Tmax Intermediate Tmax Long Tmax

TQT study

1 20.00493 20.0480 20.111

2 20.000685 20.00331 20.00163

3 0.000107 20.00186 20.000312

Phase I study

1 20.0579 20.268 20.428

2 20.000212 20.0190 0.0392

3 0.00271 20.0197 0.0394

Phase I study 1 day 0

1 20.0323 20.134 20.183

2 0.00434 0.0149 0.0186

3 0.00449 0.0180 0.0206

aSince true slope is zero, mean estimation error could not be calculated.

Sum of (estimate - true) 3 100 was reported instead.

Figure 3 Box and whisker plots of the estimation errors for drug effect model parameters in different Tmax scenarios of phase 1 study
design. Models 1, 2, and 3 represent linear mixed effects models 1, 2, and 3, respectively. Boxes denote the 25th and 75th percentiles
and closed circle inside the box denotes the median. Whiskers represent the 5th and 95th percentiles.
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the true and model-predicted ddQTc were within 1 ms (i.e.,
in the interquartile range), for both the TQT and phase I 1

day 0 study designs. There was more variability in the
phase I study results compared with those from the TQT
study, but the accuracy and precision were significantly
improved when day 0 was included. Overall, the worst
biases were small, less than 1 ms across all the Tmax sce-
narios for phase I and less than 0.5 ms for the TQT and
phase I 1 day 0 designs (Table 2).

DISCUSSION

The present study evaluated the performance of LME models
for assessing drug-induced QTc prolongation in the presence
of physiologically induced QTc variability. The results indi-
cated that the simpler LME model with time as a factor vari-
able provided similar accuracy of the CQTc slope estimates
to the complex biological or reduced biological models,
despite its empirical nature (Table 2). Additionally, the LME

model was able to predict accurately the drug-induced QTc
prolongation (ddQTc), with less than 1 ms bias, even in the
presence of a 24.51% – 218.7% bias in slope estimates.

CQTc analysis with true concentrations confirmed that
bias in LME slope estimates were induced by measurement
error, not by model misspecification. The slope in a linear
model is known to be attenuated when an independent vari-
able includes measurement error, because it is estimated
with regression error.16 Bonate evaluated this, and reported
that significant bias (<210%) only occurred in the presence
of assay measurement errors greater than 30%–40%.17 In
contrast with that study, multiplicative measurement error,
which is more likely in analytical assays, was used in our
analysis. A magnitude of 20% was selected, because the
FDA has set the limit of precision in analytical method to
15% coefficient of variation, allowing a 20% coefficient of
variation for the lower limit of quantification.18 Our simula-
tions showed slope attenuation was small (24.51% –
25.70% in model 2) for all the Tmax scenarios of a TQT
study design, which is in agreement with the work by

Figure 4 Box and whisker plots of the estimation errors for ddQTc in different Tmax scenarios of both TQT and phase 1 studies. Linear
mixed effect model 2 was selected as the best model and difference between true ddQTc (true concentration 3 true slope) and model-
predicted ddQTc (observed concentration x slope estimates) were calculated in ms. Boxes denote the 25th and 75th percentiles and
closed circle inside the box denotes the median. Whiskers represent the 5th and 95th percentiles.
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Bonate et al. On the other hand, the extent of slope attenu-
ation was more significant for phase I study designs and
depended on the PK characteristics of the drug, observing
greater bias in long Tmax scenario. Several methods have
been proposed to correct for this bias.16,19–21 However,
these require several unprovable assumptions, e.g., estab-
lishing a relationship between true independent variables
and their observed errors. Also, methods requiring
simulation-extrapolation as proposed by Cook et al.20,21

can be time consuming. Considering that the bias in ddQTc
estimates from LME model is at most 20.74 ms for the
long Tmax scenario, slope attenuation caused by 20% mea-
surement error is not likely an issue for predicting QTc pro-
longation of a drug.

The reason that the ddQTc estimates were reasonable
despite the bias in slope is that slope estimates are cali-
brated for the measurement error of observed concentra-
tions.16 The predictive property of slope estimated in the
presence of measurement errors is different when we use
summary statistic of Cmax for ddQTc predictions, because
mean Cmax does not include the same level of measure-
ment errors as observed concentrations. Therefore, we did
not consider inference on mean Cmax to test QTc prolonga-
tion of a drug here. One can instead look at the upper
bound of the 1-sided 95% CI of predicted ddQTc across
observed concentrations and find the concentration value at
which certain levels of ddQTc increase are precluded.
This is also helpful when unanticipated concentration
increases exist, e.g., drug–drug interactions or genomic
predisposition.

The stochastic approximation expectation maximization
method with importance sampling as implemented in NON-
MEM was used to obtain the estimates of standard errors
for the biological models in our analysis, because of numer-
ical difficulties with the first-order conditional estimation
method. The performance of stochastic approximation
expectation maximization method was sensitive to the initial
conditions as reported by Plan et al.,22 and only when we
set initial values as the true values, could we get good
convergence rates (>99%) for the TQT study design. How-
ever, the two-cosine model still suffered from over-
parameterization, likely due to sparse sampling between 12
and 24 hours in our design. Our sampling scheme is
reduced compared with the original study,13 yet is more
consistent with standard TQT study designs. A reduced
biological model having one cosine function was investi-
gated as a substitute to the full model to improve such out-
comes. Poor convergence rates and the need to modify the
model based on a design are not conducive to rigorous
inference, which is what is typically sought in QTc analyses.
Prespecification of the model is ideal. However, such issues
lead to difficulty in model prespecification (or confidence
therein) or deviation from prespecified models resulting
from poor convergence rates or overparameterization. As
investigators make subjective changes to the model to
avoid these issues, the robustness of the inference
becomes increasingly suspect. The LME approach consid-
ered here is easily prespecified, does not suffer from poor
convergence and can make similarly informed decisions
about QTc prolongation as the biological model. The linear

model also is easily implemented in phase I designs as dis-
cussed below.

Several phase I design modifications were investigated to
improve performance — aiming to approach the TQT study
results. The dose range, sample size, and number of samples
per subject were relatively small in our analysis compared with
typical First In Human (FIH) study designs to evaluate a worst
case setting. Changing these did not significantly improve the
results. However, when day 0 was included, the slope attenua-
tion was significantly improved, having�210.8% bias in all the
Tmax scenarios for the best LME model. It appears that includ-
ing ECGs within a subject where the concentration was known
to be 0 improved the accuracy. In this regard, the short Tmax

case outcomes were as good as those for the phase I 1 day 0
study, because the PK profile contained more low concentration
data (at later time points).

Model-based CQTc analysis of phase I data has been
increasingly considered to detect QT prolongation of a drug as
an alternative approach of TQT study. A successful outcome of
the recent Consortium for Innovation and Quality in Pharma-
ceutical Development and the Cardiac Safety Research Con-
sortium collaboration can add more evidence to obviate a need
for TQT study for all NCEs, using CQTc assessment in early
phase study. However, one criticism of the CQTc analysis is
that the model selection criteria is not prospectively defined;
rather the model is retrospectively determined by the observed
data.6,9 In this regard, this current study may guide several
points needed to be considered in establishing CQTc models
that can be prespecified. Overall, the LME model with fixed
effects for day and time to account for circadian rhythm resulted
in the least biased estimates of the drug effect parameter and
drug-induced QTc prolongation across all study designs with
different PK characteristics. For a placebo-controlled crossover
design, like a TQT study, biases of LME slope estimates were
small (�25.70%), and accuracies of predicted QTc prolonga-
tions were acceptable in all the Tmax scenarios. For parallel
group designs, the magnitude of slope estimate in CQTc linear
model should be more carefully interpreted especially for long
Tmax drugs, which do not include very low concentrations in their
PK profile. When a placebo-controlled design cannot be imple-
mented, including day 0 can improve the accuracy and preci-
sion of the slope parameter and QTc prolongation predictions.

METHODS
PK sata simulation
Concentrations for a hypothetical drug were simulated using
a one compartment model with a typical clearance of 40 L/h,
an apparent volume of distribution of 125 L and three differ-
ent rate constants for absorption, 0.07 (long Tmax, i.e., 6
hours), 0.3 (intermediate Tmax, i.e., 3 hours), and 2 hours21

(short Tmax, i.e., 1 hour). BSV of 33% was incorporated on
all the population PK parameters (i.e., CLi5CL3expðgÞ). To
account for measurement errors in drug concentrations, nor-
mally distributed residual errors with mean 0 and standard
deviation of 20% were incorporated using a proportional
error structure (i.e., CðtÞ5True Concentration ðtÞ3ð11eÞ).

Table 1 describes the study designs used in the analysis.
The phase I studies considered four dose cohorts consist-
ing of five subjects on active treatment and two on placebo
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(28 subjects in total). In the multiple ascending dose study,
treatments were given twice daily for 6 days. Steady state
was achieved on the third day of dosing.

Pharmacodynamic data simulation
The CQTc model for simulation was based on a published
biological QTc model13 with an additive concentration effect
component. It was assumed that concentration and QTc
exhibit a linear relationship because most of the observed
concentrations are far less than the EC50. The drug effect
was simulated in three different scenarios, no QTc prolon-
gation (true slope of 0 ms/ng/mL), 5 ms prolongation (true
slope of 0.00365, 0.0072, and 0.0172 ms/ng/mL for short,
intermediate, and long Tmax respectively), and 10 ms pro-
longation at geometric mean Cmax of supratherapeutic dose
(2 times the slopes above). The BSV on slope was
assumed to be 33%. Mathematical expression of the phar-
macodynamic model is the following:

QTC0i 5QTC0 3 expðg2Þ

A2i5A1 3 expðg2Þ

u1i5u1i 3 expðg3Þ

A2i5A2 3 expðg4Þ

u2i5u2i 3 expðg51g6Þ

slopei5slope 3 ð11g7Þ

QTCðiÞ5QTC 3 bA1i cos
p
12
ði2u1i Þ1A2icos

p
6
ði2u2i Þc

1slopei 3 CpðtÞ1e1

where QTc0 (378 ms for male and 395 ms for female) repre-
sents a typical baseline QTc interval (ms), An (0.0052 for A1

and 0.01 for A2) represents amplitudes (ms), /n (20.5 for /1

and 14.2 for /2) represents circadian rhythm phases (h) and
t represents the clock time (h). Cp(t) was the true concentra-
tion, but observed concentration was used during estimation.
g1, g2, g3, g4, and g7 are BSV which were normally distrib-
uted with mean 0 and 4.2, 69, 33, 38, and 33% coefficient
of variation, respectively. BSV on /2 (g5) was fixed to 0 and
interoccasion variability of g6 was set to 44% coefficient of
variation. The residual error, e was normally distributed with
mean 0 and standard deviation of 4 ms. An additive residual
error model was used here, despite the proportional error
used in the original publication, because the additive error
assumption is more common in CQTc analyses. All the ran-
dom effects were assumed to be uncorrelated.

CQTc model development
Three different LME models were considered. To address
fluctuations in the mean due to circadian rhythms, fixed
effects for day and sampling time were added as factor var-
iables (model 2) to the simplest LME (model 1). Because
the fixed effects might not capture the pattern completely,
an autoregressive error structure for residual variance was
incorporated additionally to mitigate the potential effects of
correlated residuals (model 3). Random effects were incor-
porated on the intercept and slope using a diagonal covari-

ance matrix as shown in the following equation. Random
effects on day were not incorporated because the BSV esti-
mates were nearly 0.

Model 1 : QTCijk 5ðb
l1gl

i Þ1bl3dSEX5Fe1ðbC1gC
1 Þ3Cijk 1eijk

Model 2 : QTCijk 5ðb
l1gl

i Þ1bl3dSEX5Fe1bDj 3dDay5j � j 6¼ 1e

1 bTk 3dTime5k � k 6¼ 0e1ðbC1gC
i Þ3Cijk1eijk

Model 3 : Model 21autoregressive error
�

Cuv ðeijk ; eijk
0 Þ5r2l2; s5jtijk 2tijk

0 j
�

where QTcijk represents a QTc response, i indexes the sub-
ject, j indexes day, and k indexes extraction time within day.
The parameter bl represents the baseline response, bF repre-
sents the baseline effect of females, bDj represents the day
effect, and bTk represents the kth nominal time effect within a
day. Bracketed expressions represent indicator functions
which 5 1 if the condition in brackets is true and 5 0 other-
wise. In model 3, r2 is the residual variance, q represents the
correlation parameter and s is the absolute difference
between nominal times. Model parameters were estimated
using maximum likelihood as implemented in the lme function
in R version 3.0.1. (R Project for Statistical Computing).

The performance of the biological CQTc model was also
evaluated. Because the data did not support the full biologi-
cal model, a reduced biological model consisting of one
cosine function was also fitted. The biological model param-
eters were estimated using stochastic approximation expec-
tation maximization followed by importance sampling as
implemented in NONMEM 7.3.0 (ICON Development
Solutions).

Performance Comparison
The bias in drug effect parameters such as slope, BSV on
slope, and residual variance were evaluated as a mean of
percent estimation error:

Bias in parameter estimates

5
1
x

XN

i51

parameter estimate2true parameter
true parameter

� �
3100

To evaluate the predictability of QTc prolongation, bias in
model-predicted ddQTc was reported as a mean of estima-
tion error in ms at sampling time t:

True ddQTcijðtÞ5true conventrationij ðtÞ3true slope

ddQTc estimateijðtÞ5observed concentrationijðtÞ3slope estimate1

Bias in ddQTcðtÞ5 1
10003N

Xlono

i51

XN

j51

�
ddQTc estimateij ðtÞ2true ddQTcij ðtÞ

�

where i represents ith dataset and j represents jth individual.
Coverage probability of the 90% CIs of the slope estimates
for the true slope have also been calculated. In the case of
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no QTc prolongation, false positive slope rates (exclusion of
0) were calculated using 95% CIs of the slope estimates.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?

� QT intervals exhibit biological rhythms and oscillatory
functions have been proposed to characterize the pat-
terns in Concentration-QTc (CQTc) modeling. However,
fitting such functions is not always feasible because it
requires sufficient ECG sampling, which is unlikely in
early phase design.

WHAT QUESTION DOES THIS STUDY ADDRESS?

� This study assessed whether linear mixed-effect (LME)
models accurately and precisely estimate CQTc slope
and drug-induced QTc prolongation (ddQTc), and ulti-
mately evaluated if a biological model (oscillatory func-
tions) is necessary for decision making.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

� The simpler LME model with time as a factor variable
provided similar accuracy of the CQTc slope to the bio-
logical model and accurately predicted ddQTc with less
than 1 ms bias.

HOW THIS MIGHT CHANGE CLINICAL
PHARMACOLOGY AND THERAPEUTICS

� Even though CQTc analysis of phase 1 data has been
increasingly considered, there was no consensus on the
modeling strategy yet. This study proposed LME approach
which is easily prespecified, does not have poor conver-
gence issue, and achieves little bias in ddQTc estimates.
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