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Abstract

Biofertilizer plays a significant role in crop cultivation that had reduced its inorganic fertilizer

use. The effects of inorganic fertilizer reduction combined with Pennisetum giganteum z.x.

lin mixed nitrogen-fixing biofertilizer on the growth, quality, soil nutrients and diversity of the

soil bacterial community in the rhizosphere soil of pakchoi were studied. The experiment

composed of 6 treatments, including CK (no fertilization), DL (10% inorganic fertilizer reduc-

tion combined with Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer), ZL

(25% inorganic fertilizer reduction combined with Pennisetum giganteum z.x.lin mixed nitro-

gen-fixing biofertilizer), SL (50% inorganic fertilizer reduction combined with Pennisetum

giganteum z.x.lin mixed nitrogen-fixing biofertilizer), FHF (100% inorganic fertilizer) and JZ

(100% inorganic fertilizer combined with sterilized Pennisetum giganteum z.x.lin mixed

nitrogen-fixing biofertilizer). Compared with conventional fertilization, the 25% reduction in

chemical fertilizer applied with the Pennisetum giganteum mixed nitrogen-fixing biofertilizer

resulted in higher plant height, plant weight, chlorophyll content, soluble protein content, sol-

uble sugar content, vitamin C content, alkali hydrolyzed nitrogen content, available phos-

phorus content, available potassium content and organic matter content in pakchoi, and

these variables increased by 11.81%, 8.54%, 7.37%, 16.88%, 17.05%, 23.70%, 24.24%,

36.56%, 21.09% and 19.72%, respectively. In addition, the 25% reduction in chemical fertil-

izer applied with the Pennisetum giganteum mixed nitrogen-fixing biofertilizer also had the

lowest nitrate content, which was 53.86% lower than that with conventional fertilization. Dif-

ferent fertilizer treatments had a significant effect on the soil bacterial community structure.

Compared with conventional fertilization, the coapplication of Pennisetum giganteum z.x.lin

mixed nitrogen-fixing biofertilizer and inorganic fertilizer significantly increased the relative

abundance of Proteobacteria and Actinobacteria in the soil. The results of the redundancy

analysis (RDA) showed that soil organic matter, alkali-hydrolyzed nitrogen, available phos-

phorus, available potassium, pH and water content had a specific impact on the soil bacterial

community. Among the factors, soil water content was the main factor affecting the soil
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bacterial community, followed by soil organic matter, soil pH, available potassium, soil avail-

able phosphorus and soil alkali-hydrolyzed nitrogen.

Introduction

Soil microorganisms are an important part of the soil ecosystem [1], participating in the

decomposition of organic matter, nutrient element cycles and energy conversion [2–4]. These

microorganisms play an important role in maintaining the productivity, function and stability

of the ecosystem [5–6], which is a key indicator for measuring soil quality and productivity

[7]. Bacteria are the most abundant and largest group of microorganisms, usually accounting

for 70%~90% of soil microorganisms. Bacteria have the richest genetic diversity and can effec-

tively promote the decomposition of organic matter and release of nutrients, participating in

nutrient cycling processes such as carbon and nitrogen cycling and maintaining the energy

flow and material cycles of the ecosystem [8–10].

With the development of modern agriculture in China, inorganic fertilizer plays a very

important role in agricultural production. However, the long-term unsustainable application

of inorganic fertilizers has resulted in serious problems to the ecological environment that

occur daily. A large number of studies have shown that the amount of fertilizer applied in

China has exceeded the optimal amount economically and has resulted in losses of economic

benefits to farmers [11]. At the same time, excessive application of inorganic fertilizer has also

caused critical environmental pollution. Scientific research has confirmed that the overuse of

inorganic fertilizers has become the main source of agricultural pollution [12–14]. Biofertili-

zers are products containing living cells of different types of microorganisms that have the abil-

ity to convert nutritionally important elements from unavailable to available forms through

biological processes [15]. Biofertilizer can not only promote plant growth and development

and improve the stress resistance of crops and the quality of agricultural products [16–17] but

also improve soil fertility, fertilizer utilization efficiency and soil microbial community struc-

ture [18–21].

Pakchoi (Brassica chinensis L.) is cultivated within a large northern to southern range in

China [22]. Pennisetum giganteum z.x.lin belongs to the phylum angiospermae, class monocot-

yledons, family gramineae and genus Pennisetum. It is a typical C4 plant that is suitable for

growing in tropical, subtropical and temperate zones [23]. Pennisetum giganteum z.x.lin has

high nutritional value, good palatability and wide application. It can not only replace sawdust

to cultivate edible and medicinal mushrooms, addressing the conflict between forest and

mushroom industry development but also be used as animal forage, and it has wide application

in ecological management [24]. An endophytic diazotroph is a kind of microorganism that

colonizes healthy plants and combines with host plants for nitrogen fixation. It plays an impor-

tant role in nitrogen fixation, biological control and plant growth [25]. Peng [26] et al. found

that the light absorption and growth rate of rice leaves increased by 12% and the yield

increased by 16% after inoculation with endophytic diazotrophs. Govindarajan [27] et al. inoc-

ulated Burkholderia MG43 into sugarcane and found that this approach could replace half of

nitrogen fertilizer and save 70 kg ha-1 nitrogen fertilizer. At present, there are many studies on

the endophytic nitrogen-fixing bacteria of Gramineae and crops, but there are few studies on

the endophytic nitrogen-fixing bacteria of Pennisetum giganteum and its nitrogen-fixing bacte-

ria fertilizer. To provide a theoretical basis for the scientific and appropriate application of Pen-
nisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer and partial replacement of
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chemical fertilizer, this experiment was carried out to study its effect on the growth and quality

of pakchoi, the physical and chemical properties of soil and the diversity of the bacterial

community.

Materials and methods

Experimental site description

The experiment was conducted in August 2018 at the greenhouse of the National Engineering

Research Center of JUNCAO Technology base, Fujian Agriculture and Forestry University,

Fuzhou, China. The soil organic matter content was 31.14 g/kg, the alkali-hydrolyzed nitrogen

content was 36.0 mg/kg, the available phosphorus content was 63.1 mg/kg, the available potas-

sium content was 115.5 mg/kg, and the pH value was 5.26.

Preparation of test materials

The Kosakonia radicincitans nitrogen-fixation strain was isolated from Pennisetum giganteum
z.x.lin and preserved in the laboratory. The sterilized samples of macromycorrhizal roots were

placed into a sterilized mortar and cut with sterile scissors, and then, the proper amount of

PBS buffer to grind the roots was added. The extract (0.1 mL) was coated on an Ashby solid

medium plate, and the culture was inverted at 28~30˚C for 2–3 days to observe colony growth.

Then, the single bacteria growing on the Ashby solid medium plate was inoculated to the Nfb

solid medium again for rescreening. The strains that could grow on the Nfb medium were

selected, the color of the medium changed from blue to green, and the strains were inoculated

again on the Ashby solid medium. This process was repeated three times. Finally, the selected

colonies were inoculated on the Nfb slant medium and saved for future use and identification

[28]. Bacillus mucilaginosus was isolated from the rhizosphere soil of Pennisetum giganteum
and preserved in the laboratory. After gradient dilution, the soil samples were coated on sili-

cate bacteria culture medium and cultured in a constant temperature incubator at 30˚C for 48

h. According to the growth speed and morphology of the colony, a clear colony with mucilagi-

nous protuberance was removed from the separation plate and then separated on the solid

plate until a pure culture was obtained [29]. The pakchoi variety was No.2 Brassica chinensis
from New Zealand that was bought from the local market. Inorganic fertilizer (N:P:K = 18:6:6)

was bought from Fujian AoLiGaoTa Fertilizer Co., Ltd. The stems and leaves of Pennisetum
giganteum z.x.lin were selected from the jointing stage or mature stage, crushed, dried at a low

temperature and passed through a 100 mesh sieve. The waste mushroom substrates of Gano-
derma lucidum were selected and cultivated with Juncao grasses, dried and crushed at a low

temperature and passed through a 100 mesh sieve. The nutrient solution formula consisted of

brown sugar 30–50 g/L, MgSO4 0.5–1.5 g/L, and calcium superphosphate 10–20 g/L.

Preparation of Pennisetum giganteum z.x.lin mixed nitrogen-fixing

biofertilizer

The activated Kosakonia radicincitans and Bacillus mucilaginosus were inoculated into an

Luria-Bertani (LB) liquid medium at a ratio of 1:1, the culture oscillated at 150–180 r/min at

30˚C until logarithmic growth. In a polyethylene film fermentation bag with a breathing valve,

150–200 mL bacterial solution, 650–750 g of dry Pennisetum giganteum z.x.lin, 250–350 g

waste mushroom substrates of Ganoderma lucidum, and 100–150 mL nutrient solution were

mixed, and fermentation occurred at 25–32˚C for 5–10 days. Fermentation ended if the mate-

rial became soft and dark. Compound microbial fertilizer was tested according to NY411-2000

nitrogen-fixing bacteria fertilizer [28].

Chemical fertilizer reduction & Pennisetum giganteum z.x.lin mixed nitrogen-fixing bacterial fertilizer
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Experimental test design

The experiment of inorganic fertilizer reduction combined with Pennisetum giganteum z.x.lin

mixed nitrogen-fixing biofertilizer was carried out. Six treatments were set up, and three plots

with a replication of each treatment were arranged in completely random groups. The area of

each plot was 12 m2, with a total of 18 plots. The amount of inorganic fertilizer applied was

525 kg ha-1 according to the recommended amount of fertilizer applied locally. The proportion

of fertilizer applied is shown in Table 1.

Sampling and analysis

On the harvest day, the whole plant sample was collected. The root soil was washed, plant

height was measured with a ruler, and the fresh weight was measured by electronic balance.

Chlorophyll content was determined by a SPAD-502 Plus chlorophyll content analyzer. The

soluble protein content was determined by Coomassie brilliant blue colorimetry [30]. The sol-

uble sugar content was determined by anthrone colorimetry [31]. The vitamin C content was

determined by the 2,6-dichlorophenol-indophenol method [32]. The nitrate content was

determined by nitrate-nitrogen colorimetry [33].

The soil samples were collected at depths of 0–20 cm. The "S" method was used in each plot

to collect the rhizosphere soil samples of the pakchoi at 5 random points, and the samples were

fully mixed as a soil sample. The method was repeated in each plot three times. Fresh soil sam-

ples were divided into two parts. One part was brought back to the laboratory for cryopreser-

vation at -80 ˚C for soil microbial sequencing analysis. The second part was brought back to

the laboratory for indoor air-drying to determine the soil physical and chemical properties.

The soil organic matter was determined by the potassium dichromate volumetric dilution

method. In a 500 mL triangular flask, 0.5000g of the soil sample was accurately weighed; then,

1 mol/L (1/6 K2Cr2O7) solution was added to the soil sample to ensure it mixed evenly; and

finally, 20ml of H2SO4 was added, and the triangular flask was slowly rotated to ensure the

reagent and soil fully mixed to oxidize the soil organic matter. The alkali-hydrolyzed nitrogen

was determined by the alkali-hydrolyzed diffusion method. This method involved weighing

2.00 g of air-dried soil sample, passing it through a no. 18 sieve, putting the material into a dif-

fusion dish, adding 1 mol/L NaOH solution to 10.0 ml of hydrolyzed soil, and converting the

hydrolyzed nitrogen alkali hydrolyzed into NH3. The available phosphorus was determined by

the molybdenum blue colorimetric method. This method involved weigh 2.5 g of the air-dried

soil sample, passing the sample through a 20 mesh sieve into a 150 mL triangular flask and

adding 50 mL of 0.5 mol/L NaHCO3 solution to ensure the sample was fully mixed with the

Table 1. The proportion of fertilizer in the different fertilizer treatments.

Sample

ID

Treatment groups Pennisetum giganteum z.x.lin mixed nitrogen-fixing

biofertilizer application (kg ha-1)

Inorganic fertilizer

application (kg ha-1)

CK No fertilization 0 0

DL 10% inorganic fertilizer reduction combined with Pennisetum
giganteum z.x.lin mixed nitrogen-fixing biofertilizer

750 472.5

ZL 25% inorganic fertilizer reduction combined with Pennisetum
giganteum z.x.lin mixed nitrogen-fixing biofertilizer

750 393.75

SL 50% inorganic fertilizer reduction combined with Pennisetum
giganteum z.x.lin mixed nitrogen-fixing biofertilizer

750 262.5

FHF Conventional fertilization 0 525

JZ Conventional fertilization combined with sterilized Pennisetum
giganteum z.x.lin mixed nitrogen-fixing biofertilizer

750 525

https://doi.org/10.1371/journal.pone.0228709.t001
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soil to extract the available phosphorus in the soil. The available potassium was determined by

the flame photometric method. This method involved weighing 5.00 g of the air-dried soil

sample, passing it through a 1 mm sieve into a 100 mL triangular flask and adding 50 mL of a 1

mol/L neutral NH4OAc solution to ensure the sample was fully mixed with the soil for extrac-

tion of available potassium in the soil. The oil pH was determined by the potentiometric

method [34].

Extraction of soil genomic DNA, amplification of the 16S rDNA v3-v4

region and high-throughput sequencing

Total genomic DNA from the soil was extracted using a Mobio PowerSoil1DNA Isolation Kit

(Mobio, USA). After the extraction of genomic DNA, 1% agarose gel electrophoresis was used

to detect the extracted genomic DNA. Using extracted soil genomic DNA as the template, the

16S rDNA v3-v4 region was selected as the amplified fragment by PCR amplification, followed

by high-throughput sequencing. Primer sequences were 336F (5’—gtactcctacgggaggcagca-3 ’)

and 806R (5’—gtggactachvgggtwtctaat-3 ’) [35]. The PCR system (25 μL) involved the follow-

ing: 30 ng DNA samples, forward primer (5 μmol/L) 1 μL, reverse primer (5 μmol/L) 1 μL,

BSA (2 ng/μL) 3 μL, 2 x Taq Plus Master Mix 12.5 μL, and dd H2O 7.5 μL. The PCR conditions

were as follows: predenaturation at 94˚C for 5 min, denaturation at 94˚C for 30 s, annealing at

50˚C for 30 s, extension at 72˚C for 60 s, and 30 cycles. Finally, the process was extended at

72˚C for 7 min. The amplification results were subjected to 2% agarose gel electrophoresis,

and the PCR products were recovered using an AxyPrepDNA gel recovery kit (AXYGEN).

The PCR products were eluted by Tris_HCl, detected by 2% agarose electrophoresis and then

sequenced by the Illumina Miseq sequencing platform from the Beijing Ollwegene Technology

Co., LTD.

Processing of sequencing data

First, the double-ended sequence data obtained by the Illumina Miseq sequencing slice pairs

of reads were joined together into a sequence according to the overlap relationship between

the PE reads. At the same time, the quality of the reads and the effect of splicing were filtered

by quality control, and the samples were effectively distinguished according to the sequence at

the ends of the fore and aft barcode and primer sequence to calibrate sequence direction,

namely, to optimize the data. Then, OTU clustering analysis was performed on the valid data

in the samples at the 97% level. Based on the results of the OTU clustering analysis, a multiple

diversity index analysis and sequencing depth detection were performed on the OTUs. Based

on taxonomic information, statistical analysis of bacterial community structure was carried

out at various classification levels.

The data were statistically analyzed by graphpad prism 5.01 software, Data were statistically

evaluated using analysis of variance (ANOVA) tests. All statistical analyses were considered

significant at the P<0.05 level. The results are presented as the mean ± standard deviation

(SD). Different small letters are significantly different at the 0.05 level under different fertiliza-

tion treatments.

Results

Growth and chlorophyll content of pakchoi under different fertilizer

treatments

Compared with other treatments, in treatment ZL, the height of pakchoi significantly

increased and was 11.81% higher than that in treatment FHF (Fig 1a). In terms of fresh weight

Chemical fertilizer reduction & Pennisetum giganteum z.x.lin mixed nitrogen-fixing bacterial fertilizer
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per plant, there was no significant difference between treatment ZL and treatments SL and

FHF. However, there was a significant difference among treatments DL, JZ and CK (Fig 1b).

Among them, treatment ZL had the highest per plant fresh weight, which was 8.54% higher

than that of treatment FHF (Fig 1b). In the chlorophyll fraction, there was no significant differ-

ence in chlorophyll content between treatment ZL and treatments DL and SL. However, com-

pared with treatments FHF, JZ and CK, there were significant differences (Fig 1c). The highest

chlorophyll content was found in treatment ZL, which was 7.37% higher than that in treatment

FHF.

Nutrient concentration

Compared with treatment FHF, treatments DL, ZL, and SL had higher soluble protein, soluble

sugar, and vitamin C contents in pakchoi. Among them, treatment ZL had the highest soluble

protein, soluble sugar, and vitamin C contents, and they increased by 16.88%, 17.05% and

23.70%, respectively, compared with those of treatment FHF. However, the nitrate content

under treatment ZL was the lowest, which was 53.86% lower than that of treatment FHF

(Table 2).

Physicochemical properties of pakchoi rhizosphere soil

The physical and chemical properties of the soil are shown in Table 3. The results show that

the content of organic matter, alkali-hydrolyzed nitrogen, available phosphorus and available

Fig 1. Effect of different fertilizer treatments on pakchoi: (a) plant height, (b) fresh weight per plant, and (c) chlorophyll

content.

https://doi.org/10.1371/journal.pone.0228709.g001
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potassium in the soil increased due to conventional fertilization and application of Pennisetum
giganteum z.x.lin mixed nitrogen-fixing biofertilizer in the six treatments. The content of

alkali-hydrolyzed nitrogen in treatment ZL was the highest, which was not significantly differ-

ent from that in treatments DL, SL, FHF and JZ but significantly different from that in treat-

ment CK. The soil available phosphorus content in treatment ZL was the highest, which was

not significantly different from that in treatment SL and was significantly different from that

in treatments DL, FHF, JZ and CK. The available potassium content in the soil in treatment

ZL was the highest; there was no significant difference between treatments DL, SL, FHF and

JZ, but there was a significant difference between CK. The soil organic matter content in treat-

ment ZL was the highest, which was not significantly different from that in treatments DL, SL,

FHF and JZ and significantly different from that in treatment CK. The soil pH value of treat-

ment DL was the highest, which was not significantly different from that of treatments ZL and

CK but significantly different from that of the other treatments. There was no significant dif-

ference in soil moisture content between treatments ZL, SL, FHF and CK, while there was a

significant difference between treatments DL and JZ.

Alpha diversity of the soil bacterial community

In this study, Illumina Miseq high-throughput sequencing was carried out in 6 different fertili-

zation treatments of pakchoi. The results in Table 4 show that the OTU bacterial communities

in each sample were treatment CK> FHF>DL> JZ> ZL> SL. There was no significant dif-

ference in the Chao1 index between treatment CK and treatments DL, ZL, FHF, JZ, but there

was a significant difference between treatment CK and treatment SL. There was no significant

difference in the Shannon indexes of the bacterial communities among treatments. The

sequence depth index of the nifH gene in each sample ranged from 92.22% to 94.17%, which

Table 2. Effect of different treatments on pakchoi nutrients.

Treatments Soluble protein (mg/g) Soluble sugar (mg/g) Vitamin C (μg/g) Nitrate (μg/g)

CK 25.57±0.77d 16.60±1.43c 180.98±14.03c 175.06±16.35ab

DL 29.84±0.94abc 20.45±0.75ab 232.96±22.47ab 147.71±18.89b

ZL 32.41±0.83a 22.11±1.34a 244.66±14.29a 143.12±16.37b

SL 30.90±1.16ab 21.02±0.78ab 225.21±16.80abc 163.46±14.49b

FHF 27.73±1.32cd 18.89±0.75bc 197.79±17.61bc 220.20±20.34a

JZ 29.11±0.73bc 19.38±1.47abc 204.03±16.83abc 214.69±17.62a

The data are presented as the mean ± standard deviation (SD). Different letters in the same column mean significant difference at 0.05 level.

https://doi.org/10.1371/journal.pone.0228709.t002

Table 3. Soil basic properties under different treatments.

Treatments AN (mg/kg) AP (mg/kg) AK (mg/kg) OM (g/kg) pH WC (%)

CK 48.6±5.3b 75.8±8.6c 137.1±10.0b 40.1±5.3b 5.17±0.05ab 27.50±0.66a

DL 56.4±5.9ab 93.2±9.2bc 168.5±11.7ab 50.1±4.8a 5.36±0.08a 25.23±0.73b

ZL 65.1±6.5a 112.8±7.3a 176.3±13.5a 51.6±5.8a 5.31±0.03ab 27.25±0.22a

SL 58.6±3.4ab 102.6±8.2ab 160.1±15.1ab 48.6±6.7ab 4.78±0.07c 27.63±0.11a

FHF 52.4±5.2ab 82.6±5.6bc 145.6±11.3ab 43.1±6.4ab 5.13±0.12b 27.44±0.73a

JZ 54.6±5.3ab 87.9±5.9bc 148.9±7.6ab 44.2±5.0ab 4.82±0.04c 25.72±0.25b

OM, soil organic matter. pH, soil pH. AN, soil Alkali-hydrolyzed nitrogen. AP, soil available phosphorus. AK, soil available potassium. WC, soil water content. Note.

The data are presented as the mean ± standard deviation (SD). Different letters in the same column mean significant difference at 0.05 level.

https://doi.org/10.1371/journal.pone.0228709.t003
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indicated that the coverage rate of each sample library was very high. The high probability of

sequencing in each sample indicated that the sequencing result can reflect the actual situation

of microorganisms in each sample. According to the Shannon-Wiener curve (Fig 2), the curves

of all the samples tended to be flat, indicating that the amount of sequencing data is large

enough to reflect the vast majority of microbial information in the samples.

PCA analysis of community composition structure at the generic level was carried out by R

software. The results of the PCA community diversity analysis (Fig 3) showed that PC1 and

PC2 explained 20.32% and 15.20% of the variation in the bacterial communities in pakchoi

soil, respectively, and the cumulative total explained 35.52% of the total variables. The close

distance between points DL and SL and ZL and FHF indicates the high similarity of the bacte-

rial flora between the treatment points of DL and SL, ZL and FHF. The distance between all

fertilization treatments and the control points was great, indicating that different fertilization

treatments significantly changed the soil bacterial community structure.

Table 4. Analysis of soil bacterial community diversity under different fertilization treatments.

Treatment Chao1 index Shannon index Good coverage (%)

DL 3189.81±210.26ab 9.38±0.02a 93.77±0.36ab

ZL 3252.57±443.93ab 9.10±0.48a 93.37±0.88ab

SL 2864.32±211.32b 9.03±0.36a 94.17±0.46a

FHF 3276.36±393.68ab 9.13±0.63a 93.15±0.80ab

JZ 3225.52±268.01ab 8.99±0.22a 93.34±0.55ab

CK 3752.93±245.23a 9.74±0.26a 92.22±0.46b

The data are presented as the mean ± standard deviation (SD). Different letters in the same column mean significant difference at 0.05 level.

https://doi.org/10.1371/journal.pone.0228709.t004

Fig 2. Shannon-Wiener curves of soil bacterial communities treated with different fertilizers.

https://doi.org/10.1371/journal.pone.0228709.g002
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Analysis of bacterial community composition at the phylum and genus

levels

From the level of the middle phylum (Fig 4), Proteobacteria had the highest relative abundance

of bacteria in the different fertilization treatments, with a relative abundance ranging from

Fig 3. PCA analysis of soil bacterial communities under different fertilization treatments.

https://doi.org/10.1371/journal.pone.0228709.g003

Fig 4. Community composition of soil bacteria at the phylum level.

https://doi.org/10.1371/journal.pone.0228709.g004
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27.42% to 37.70%, followed by that of Chloroflexi (10.63%-24.07%), Acidobacteria (9.67%-

20.27%), Actinobacteria (10.81%-20.09), Gemmatimonadetes (5.27%-7.99%), Firmicutes

(2.84%-11.29%), and Bacteroidetes.1.83%-3.4%). The relative abundance of Acidobacteria in

treatment CK was significantly higher than that in the other five treatments. The amount of

Proteobacteria was higher in treatment DL than in the other five treatments. The relative

abundance of Gemmatimonadetes in treatment ZL was obviously higher than that in the other

five treatments. The relative abundance of Actinomycetes and Bacteroidetes in treatment SL

was obviously higher than that in the other five treatments. The relative abundance of Firmi-

cutes in treatment FHF was obviously higher than that in the other five treatments. The rela-

tive abundance of Chlorophora in treatment JZ was higher than that in the other 5 treatments.

At the genus level (Fig 5), the dominant bacteria genera under different treatments were

Acidothermus (1.74%~4.78%), Rhizomicrobium (1.03%~2.39%), Gemmatimonas (1.21%

~1.92%), Candidatus_Solibacter (1.09%~2.49%), Bryobacter (1.01%~1.43%), Sphingomonas
(1.04%~2.11%), H16 (1.07%~2.16%), Rhodanobacter (1.42%~1.68%), Mizugakiibacter (1.76%

~2.61%), Dyella (1.23%), Luteibacter (2.71%), Haliangium (1%~1.84%), Acidibacter (2.15%),

Actinospica (1.27%), Bryzomicrobium (1.39%). The results showed that different fertilization

treatments had a great influence on the species and relative abundance of soil bacteria.

Relationship between soil bacterial communities and soil physical and

chemical factors

Soil physical and chemical factors and bacterial communities were analyzed using RDA corre-

lation analysis. RDA1 and RDA2 explained 56.46% and 26.07% (Fig 6), respectively, of the

changes in bacterial communities in each sample. That is, all soil physical and chemical factors

explained 82.53% of the changes in the bacterial communities. The correlation between soil

moisture content and bacterial community was the highest, followed by that between soil pH,

organic matter, available potassium and bacterial community, and the correlation between

available phosphorus, alkali-hydrolyzed nitrogen and bacterial community was the smallest.

The angle between the vector arrows of soil pH, organic matter, available potassium, available

phosphorus and alkali-hydrolyzed nitrogen environmental factors was small and may have a

synergistic effect.

Fig 5. Community composition of soil bacteria at the genus level.

https://doi.org/10.1371/journal.pone.0228709.g005
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Discussion

We studied the effects of inorganic fertilizer reduction combined with Pennisetum giganteum
z.x.lin nitrogen-fixing biofertilizer on Brassica chinensis L. The results showed that the treat-

ments had different effects on plant height, fresh weight per plant, chlorophyll content, soluble

protein, soluble sugar, vitamin C and nitrate content. Among them, the 25% inorganic fertil-

izer reduction combined with Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer

had the best effect on plant height, fresh weight per plant, chlorophyll content, soluble protein,

soluble sugar and vitamin C content, and these factors increased by 11.81%, 8.54%, 7.37%,

16.88%, 17.05%, 23.70%, respectively, and the nitrate content decreased by 53.85% in this

treatment compared with that in the conventional fertilization treatment. Studies have shown

that biofertilizer has a great effect on maize yield [36]. Biofertilizer treatment can improve the

chlorophyll content of oat leaves and promote the accumulation of total nitrogen in stems,

leaves and ears of grain [37].

Soil microorganisms are an important factor affecting soil ecological processes. These

microorganisms play an important role in soil formation, the biogeochemical cycle of ecosys-

tems, the degradation of pollutants and the maintenance of groundwater quality [38–39]. Soil

microbial diversity is considered to be an important factor in maintaining soil health [40]. The

results of this study showed that the dominant phyla of rhizosphere soil bacteria were Proteo-

bacteria, Chloroflexi, Acidobacteria, Actinobacteria, Firmicutes, Gemmatimonadetes and Bac-

teroidetes. The results are similar to those obtained in previous studies on different types of

farmland soil. The difference between those studies and this study is that the relative

Fig 6. RDA analysis of the soil bacterial community and soil properties.

https://doi.org/10.1371/journal.pone.0228709.g006
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abundance of each dominant group varies greatly because the species and abundance of the

dominant groups are influenced by soil type, texture and crop varieties [41–42]. Compared

with no fertilization and only the application of inorganic fertilizer, the application of Pennise-
tum giganteum z.x.lin mixed nitrogen-fixing biofertilizer combined with inorganic fertilizer

significantly improved the abundance of Proteobacteria and Actinomycetes in the soil. Zhang

et al. [43] found that microbial organic fertilizer increased the abundance of soil Proteobac-

teria. Wang et al. [44] found that fertilization and straw mulching significantly increased the

relative abundance of Actinomyces. Our results are consistent with those of these authors. Pre-

vious studies have shown that Proteobacteria are gram-negative bacteria and are eutrophic

bacteria. These bacteria have a positive correlation with nutrient content [45–46], which is crit-

ical to the global carbon, nitrogen and sulfur cycles [47], and they play a very important role in

biological nitrogen fixation, biological control and plant growth promotion [48]. Actinomy-

cetes can produce a variety of secondary metabolites (antibiotics) and extracellular enzymes,

which play an important role in the defense of plant diseases [49]. The increase in the abun-

dance of these two types of bacteria plays an important role in improving soil quality, increas-

ing soil nutrient content, enhancing stress resistance and promoting plant growth and is

conducive to the sustainable development of soil microecology. The increase in nutrient con-

tent in soil was assumed to be due to stimulation of the growth of Proteobacteria and Actino-

mycetes by applying the Pennisetum giganteum z.x.lin mixed nitrogen-fixing bacterial fertilizer

combined with inorganic fertilizer, which led to their increase in abundance in the soil.

With the development of modern agriculture in China, the inappropriate application of

inorganic fertilizers has caused increasingly serious harm to the agricultural ecological envi-

ronment. In recent years, with the increasing attention of society on the protection of agricul-

tural ecological environments, research on replacing inorganic fertilizers with biofertilizer has

attracted much attention [50]. Han et al. [51] showed that the content of soil organic matter,

total nitrogen, total phosphorus, total potassium, available phosphorus and available potassium

increased by 42.2%, 58.8%, 8%, 12.6%, 37.2% and 40.2%, respectively, when treated with rhizo-

bia and PGPR bacterial fertilizer. Pang et al. [52] showed that soil organic matter and quick-

effect N, P and K contents were significantly higher than those in a control treatment without

adding microbial agents. The results of this study showed that compared with no fertilization

and only the application of inorganic fertilizer, the combined application of inorganic fertilizer

and Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer could improve the physi-

cal and chemical properties of the soil to a certain extent. When a 25% reduction in chemical

fertilizer was combined with Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer,

the content of alkali-hydrolyzed nitrogen, available phosphorus, available potassium and

organic matter in the soil increased most obviously, and the soil pH also improved to a certain

extent. Changes in soil nutrients change the structure and functional diversity of microbial

communities [53]. The growth, activity and functional diversity of the soil microbial commu-

nity were affected by various soil physical and chemical properties, including soil pH, total

nitrogen (TN), soil organic carbon (SOC) and soil enzyme activity. Under fertilization, pH is

the main driving factor changing microbial communities such as bacteria, fungi, archaea and

protozoa. TN, SOC, enzyme activity and other factors are important contributors to the com-

position of different microbial communities [54–57]. Soil bacteria are essential for maintaining

soil fertility and ecosystem functions and are often sensitive to fertilizer inputs [58]. Many

studies have shown that fertilization changes the soil fertility and nutrient content, such as

organic carbon [59] and total nitrogen [60–61], directly driving the transformation of soil

microbial communities and increasing or decreasing the diversity of the microbial commu-

nity. Fertilization also indirectly affects soil microorganisms by changing soil properties [62].

Soil microorganisms can secrete active growth substances such as auxin, cytokinin, and zeatin

Chemical fertilizer reduction & Pennisetum giganteum z.x.lin mixed nitrogen-fixing bacterial fertilizer

PLOS ONE | https://doi.org/10.1371/journal.pone.0228709 February 12, 2020 12 / 17

https://doi.org/10.1371/journal.pone.0228709


to promote plant growth [63]. Therefore, under fertilization, soil physical and chemical prop-

erties and microorganisms interact to jointly promote the growth of plants, improving the

yield of plants. The results of this study showed that soil organic matter, alkali-hydrolyzed

nitrogen, available phosphorus, available potassium, pH and water content all had certain

effects on the changes in the soil bacterial community. Among the factors, soil water content

was the main factor affecting the change of bacterial community. Soil pH is also an important

index affecting bacterial community structure [64–65]. However, pH was not the main factor

affecting the structure of the bacterial community in this study. This result may have been due

to the differences in the soil environments between different research areas or the relatively

small differences in the pH values of the soil samples among the different fertilization treat-

ments, which did not meet the threshold of changing bacterial communities and thus did not

have enough impact on the soil bacterial community. The effects of fertilizer application on

soil bacterial diversity and community composition were different in the ecosystems [66–70].

At present, there is contradictory information on the impact of biofertilizer on soil microbial

diversity, which may be related to the type of fertilizer, the amount and duration of application,

soil type and utilization mode. Therefore, the influence of other factors on soil microbial diver-

sity needs to be further studied.

Conclusions

In conclusion, when the ratio of inorganic fertilizer and Pennisetum giganteum z.x.lin mixed

nitrogen-fixing biofertilizer is appropriate, it can promote the growth of pakchoi, improve the

nutritional quality, soil fertility and bacterial community of pakchoi. When the reduction ratio

of chemical fertilizer is large, it can also improve the quality of pakchoi. However, the reduced

ratio hinders the growth of pakchoi due to the lack of nutrient supply. When the reduction

ratio of chemical fertilizer is small, the nutrient supply is sufficient, but the change in the soil

environment leads to a reduction in beneficial bacteria in the soil, thus hindering the growth

of pakchoi and reducing its quality. Therefore, considering factors such as the growth and

quality of pakchoi and its soil environment, the effect of a 25% reduction of chemical fertilizer

and the application of Pennisetum giganteum mixed nitrogen-fixing bacterial manure is the

best. The results of this study can provide an important theoretical basis for the rational reduc-

tion of chemical fertilizer and the scientific and reasonable application of Pennisetum gigan-
teum mixed nitrogen-fixing bacterial manure.
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