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Abstract

We previously demonstrated that transient receptor potential vanilloid subfamily 5 (TRPV5)

expression was decreased in renal cell carcinoma (RCC) compared with that in normal kid-

ney tissues, a finding that was correlated with vitamin D receptor (VDR) expression, but fur-

ther investigations is warranted. The aim of this study was to elucidate whether VDR could

regulate the expression of TRPV5 and affect proliferation and metastasis in RCC. In this

study, we used lentivirus to conduct the model of VDR overexpression and knockdown caki-

1 and 786-O RCC cell lines in vitro. The results demonstrated that VDR overexpression sig-

nificantly inhibited RCC cells proliferation, migration and invasion, and promoted apoptosis

by the MTT, transwell cell migration/invasion and flow cytometry assays, respectively. How-

ever, VDR knockdown in RCC cells had the opposite effect. The RNA-sequence assay,

which was assessed in caki-1 cells after VDR overexpression and knockdown, also indi-

cated that significantly differentially expressed genes were associated with cell apoptotic,

differentiation, proliferation and migration. RT-PCR and western blot analysis showed that

VDR knockdown increased TRPV5 expression and VDR overexpression decreased TRPV5

expression in caki-1 cells. Furthermore, knockdown of TRPV5 expression suppressed the

VDR knockdown-induced change in the proliferation, migration and invasion in caki-1 cells.

Taken together, these findings confirmed that VDR functions as a tumour suppressor in

RCC cells and suppresses the proliferation, migration and invasion of RCC through regulat-

ing the expression of TRPV5.

Introduction

Renal cell carcinoma (RCC) is the most common form of kidney cancer [1] with an estimated

65,340 new cases diagnosed and 14,970 deaths in 2017 in the United States [2]. Despite signifi-

cant advances in RCC treatment, the prognosis remains poor, and the mortality rate remains
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high [3]. Consequently, it is urgently needed to study the molecular mechanisms of prolifera-

tion and metastasis in RCC, which may provide new treatment methods.

Recently, several lines of evidence showed that 1,25-dihydroxyvitamin D (1,25(OH)2D),

whose action is mediated through binding to the Vitamin D receptor (VDR) and is the active

metabolite of vitamin D, could reduce the risk of RCC [4–7]. On the other hand, VDR

expressed in the normal kidney was decreased during malignant transformation to RCC and

was associated with RCC prognosis [8–10]. These findings confirmed that VDR may play a

key role in RCC development and progression.

The transient receptor potential vanilloid subfamily 5 (TRPV5) is a new type of highly selec-

tive calcium channel proteins that is mainly found in the kidney, is related to calcium trans-

port, and plays an important role in maintaining the stability of the intracellular calcium

concentration [11, 12]. TRPV5 was detected in human carcinoma of the colon, parathyroid

glands, lung, and kidney [13–16]. Previous studies in animal and cell models revealed that

TRPV5 transcription is tightly regulated by and correlated with 1,25(OH)2D and VDR, More-

over, the human TRPV5 promoter contains several consensus Vitamin D-responsive elements

[17–19]. In a previous study we also found that TRPV5 expression was correlated with VDR

[16]. This evidence likely suggests that VDR is probably involved in the development and pro-

gression of RCC via regulating the transcription of TRPV5.

In this study, we first analysed the expression level of VDR in the RCC cell lines caki-1 and

786-O cells. Nest, we used lentivirus to conduct the model of VDR overexpression and knock-

down RCC cell lines in vitro. Several functional experiments confirmed that VDR overexpres-

sion decreased cell proliferation, migration, invasion and promoted apoptosis in RCC cells,

whereas knockdown of VDR expression led to a completely opposite effect. Next, we found

that the TRPV5 expression level was negatively correlated with VDR, whose overexpression

down-regulated TRPV5 expression and knockdown up-regulated TRPV5 expression in caki-1

cells. Finally, we further demonstrated that knockdown of TRPV5 suppressed proliferation,

migration and invasion induced by VDR knockdown in caki-1 cells. Taken together, our data

demonstrated that VDR could act as a tumour suppressor to suppress proliferation, migration

and invasion in RCC cell lines. Furthermore, VDR could regulate the expression of TRPV5,

and the knockdown of TRPV5 could reverse the carcinogenesis induced by VDR knockdown

in RCC cell lines. These findings might indicate a novel target for the biological treatment of

RCC.

Materials and methods

Cell culture

The human RCC cell lines caki-1 and 786-O were purchased from the Type Culture Collection

of the Chinese Academy of Sciences (Shanghai, China).Two cell lines were routinely cultured

in DMEM (HyClone, Shanghai, China) and RPMI-1640 (HyClone, Shanghai, China), respec-

tively, containing 10% FBS (Natocor, Córdoba, Argentina) supplemented with 1% penicillin/

streptomycin. Cells were grown at 37˚C in a humidified incubator containing 5% CO2

(Thermo Scientific Forma).

Lentivirus vector production and cell infection

Lentivirus carrying the VDR gene (leVDR) was generated in pLent-EF1a-FH-CMV-GP vector,

and the empty vector served as the control (leCtrl). Short hairpin RNAs targeting VDR or

TRPV5 were generated in pLent-U6-GFP-Puro vectors, and empty pLent-U6-GFP-Puro vec-

tors were used as controls. All lentiviruses were packaged by Vigene Biosciences Company,

Ltd. (Shandong, China). The Caki-1 and 786-O cells were infected with the lentivirus at an
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MOI of 50 and 20, respectively. At 72 h post-infection, the cells were observed for the presence

of the GFP marker suing a fluorescence microscope. Nest, puromycin was added to screen the

stable cell lines, and the screening process was contined for a week with a screening concentra-

tion of 3 μg/ml. Stable VDR-overexpression, VDR knockdown and/or TRPV5 knockdown

RCC cell lines were successfully constructed.

Quantitative real-time RT-PCR

Total RNA was extracted from cells using TRIzol reagent (Invitrogen Life Technologies, Carls-

bad, CA, USA) according to the manufacturer’ s protocol and then was reverse transcribed

using the 5× All-in-one RT MasterMix Kit (Abm), real-time RT-PCR was performed using

SYBR1 Green-I as the fluorogenic dye. Nest, 3 μL of cDNA was added to a 20 μL reaction sys-

tem of EvaGreen 2× qPCR Mastermix version with 0.6μM of each pair of gene specific primers.

mRNA expression was normalized as the ratio to that of β-actin in each sample. The RT-PCR

primers used were as follows: 5’-TGGAGACTTTGACCGGAACG-3’; VDR reverse: 5’-
GGGCAGGTGAATAGTGCCTT-3’; TRPV5 forward: 5’-TGGCACTGTTCACCACCTT
T-3’; TRPV5 reverse: 5’-CAATGATGGCGAAGGCGAAG-3’; β-actin for-
ward: 5’-CAGGGCGTGATGGTGGGCA-3’; β-actin reverse: 5’-CAAACATCA
TCTGGGTCATCTTCTC-3’.

Western blot analysis

The cells were harvested and lysed in RIPA buffer (Sigma-Vetec, St. Louis, MO, USA) supple-

mented with a 1% phenylmethylsulfonyl fluoride (PMSF) on ice, and then they were centri-

fuged at 12000 × g for 15 minutes at 4˚C, followed by collection of the supernatants. Next, the

protein concentrations were determined using the BCA protein assay kit (Thermo Fisher Sci-

entific, USA). The proteins were blended with loading buffer and boiling water for 5 minutes.

Equal amounts of protein from each sample were fractionated using 10% SDS-PAGE gels and

were electrotransferred onto polyvinylidene difluoride (PVDF) membranes. The membranes

were blocked for 2 hours with 5% skim milk in TBST buffer at room temperature and were

incubated overnight with the relevant primary antibodies at 4˚C, washing and incubation for

90 minutes with secondary antibodies at 37˚C. Finally, the membranes were incubated with

enhanced chemiluminescence (ECL) reagent, and the proteins were detected using the chemi-

luminescence imaging system (Shanghai, China). The expression of β-actin was used as the

control. Anti-VDR was purchased from Thermo Scientific (Rockford, USA). Anti-TRPV5 was

purchased from Santa Cruz Biotechnology (CA, USA). Anti-β-Actin, goat anti-mouse second-

ary antibodies (511103) and goat anti-rabbit secondary antibodies (511203) were purchased

from Zen Bioscience (Chengdu, China). Goat anti-rat antibodies were purchased from

Biosharp (Chengdu, China).

Cell proliferation assay

Cells were seeded at a concentration of 2,000 or 3,000 cells/well in 96-well plates and then were

incubated at 37˚C in a 5% CO2 humidified atmosphere. At the indicated time points, the cells

were incubated with thiazolyl blue tetrazolium bromide (MTT; 5 mg/ml; Sigma-Aldrich Co,

St. Louis, MO, USA) at a final concentration of 0.5 mg/ml for 4 h. After discarding the super-

natants, 150 μL of dimethyl sulfoxide (DMSO; Sigma-Aldrich Co, St. Louis, MO, USA) was

added to each well. The plates were read at 570 nm using an ELISA reader (Bio-Rad). All

experiments were performed in triplicate.
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Cell apoptosis assay

Cell apoptosis analysis was performed by flow cytometry using an Annexin V-FITC/PI apo-

ptosis detection kit (keyGEN BioTECH). Cells were seeded in 6-well plates; after 72 h post-

infection, the cells were harvested and washed with ice-cold PBS and then were blended with

500 μL of binding buffer. The cell suspensions were thoroughly mixed with 5 μL of Annexin

V-FITC and 5 μL of PI in the dark at room temperature for 10 min, and all samples were sub-

jected to FCM within 1 h. All experiments were performed in triplicate.

Transwell assay

Cells were serum starved for 6 h. For the cell migration assay, 30,000 or 70,000 cells in 200 μL

of serum-free media were seeded into the upper chamber of a transwell with polycarbonate

membranes (8.0-μm pore size; Corning Incorporated, ME, USA), The lower chamber con-

tained 500 μL of medium supplemented with 10% FBS. For the cell invasive assay, the upper

chamber of the transwell was coated with Matrigel (Corning, Bedford, MA, USA), similar to

that described above. At the indicated time points, the non-migrated cells on the upper surface

were removed by wiping with a cotton swab, and the migrated cells on the lower surface were

fixed with 4% paraformaldehyde for 30 min, stained with crystal violet solution for 20 min,

and then were rinsed in PBS. The number of cells was counted in 5 randomly chosen fields

(magnification, ×200). All experiments were performed in triplicate.

Transcriptome sequencing analysis

The VDR overexpression and knockdown of caki-1 cells were used for experiments. Total

RNA was extracted using TRIzol reagent, Transcriptome sequencing and data analysis by

Chengdu Basebio Company completed. P<0.05 was considered statistically significant.

Statistical analyses

Statistical analyses were performed using GraphPad Prism 6 and SPSS 22, all the data were pre-

sented as means ± SD. P<0.05 was considered statistically significant.

Results

Lentiviral-mediated knockdown and overexpression of VDR in RCC cells

To examine the expression level of VDR in RCC cell lines caki-1 and 786-O, VDR expression

levels were measured by RT-PCR and WB. VDR expression in caki-1 cells was higher than

that in 786-O cells (Fig 1A).To further characterize VDR function, we used lentivirus to con-

duct the model of VDR overexpression and knockdown in RCC caki-1 and 786-O cells. The

efficiency of treatments was measured by RT-PCR (Fig 1B) and WB (Fig 1C). VDR expression

was significantly down-regulated following infection with shVDR lentiviral vector that effi-

ciently knocked down VDR expression compared with the control vector (shVDR vs shCtrl).

However, VDR expression was significantly up-regulated following infection with leVDR len-

tiviral vector that efficiently generated VDR overexpression compared with empty control vec-

tor (leVDR vs leCtrl).

VDR inhibits caki-1 and 786-O cell proliferation

The decreased expression of VDR in RCC tissue suggested that it might play an inhibitory role

in tumourigenesis. Thus, we investigated the effect of VDR on the cell proliferation of caki-1

and 786-O cells using the MTT assay. VDR overexpression significantly inhibited the
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proliferation of caki-1 and 786-O cells compared with that in LeCtrl cells. By contrast, VDR

knockdown promoted caki-1 and 786-O cell proliferation (Fig 2A).

VDR inhibits 786-O cell migration and invasion

Migration and invasion are fatal steps in cancer progression. We performed transwell migra-

tion and invasion assays to examine the role of VDR in 786-O cells. The transwell migration

assay results (Fig 2B) showed that VDR overexpression significantly decreased the number of

migrated cells, and VDR knockdown increased the number of 786-O cells that traversed the

filter compared with their respective controls. Transwell invasion assay results (Fig 2C) dem-

onstrated that VDR overexpression in 786-O cells remarkably reduced the number of cells that

passed through Matrigel compared with the vector control. The VDR knockdown groups had

fewer cells passed through the Matrigel than the vector control. These results suggest that VDR

inhibits 786-O cell migration and invasion.

VDR promotes caki-1 cell apoptosis

Cell apoptosis assays were performed using flow cytometry. Caki-1 cell apoptosis was signifi-

cantly increased in the VDR-overexpressed caki-1 cells compared with that in the control

group cells. However, apoptosis was decreased in the VDR knockdown caki-1 cells compared

with that in the control cells (Fig 3). These results indicate that VDR expression is an impor-

tant determinant of apoptosis in caki-1 cells.

Changes in VDR regulate the expression of TRPV5

To understand the relationship between VDR and TRPV5, we performed RT-PCR and WB

analyses to measure TRPV5 expression after VDR overexpression and knockdown in caki-1

Fig 1. VDR expression levels in the caki-1 and 786–0 RCC cell lines with different treatments. VDR mRNA

expression was measured by RT-PCR and was normalized to that of β-actin. VDR protein expression was analysed by

WB, and β-actin was used as a loading control. �p<0.05, ��p<0.01, ���p<0.001. (A) VDR expression levels in caki-1

cells were higher in 786-O cells. (B) & (C) Overexpression of VDR by infection with the VDR-expressing lentivirus

(leVDR) and knockdown of VDR with shRNA lentivirus (shVDR) in caki-1 and 786-O cells.

https://doi.org/10.1371/journal.pone.0195844.g001
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Fig 2. VDR inhibits RCC proliferation, migration and invasion. (A) The MTT assay showed that the proliferation of

caki-1 and 786-O cells was significantly inhibited by VDR overexpression and promoted by knockdown of VDR

compared with their respective control cells. Each data point represents the mean ± SD of absorbance values. Transwell

migration (B) and invasion (C) assays (magnification, ×100) showed that the migration and invasion of 786-O cells were

significantly decreased following infection with leVDR lentivirus and were increased following infection with shVDR

lentivirus compared with each vector control. The graph indicates the mean ± SD of the number of cells from 5 random

high-power fields (magnification, ×200). �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0195844.g002

VDR suppresses proliferation and metastasis in RCC cell lines via regulating TRPV5

PLOS ONE | https://doi.org/10.1371/journal.pone.0195844 April 16, 2018 6 / 14

https://doi.org/10.1371/journal.pone.0195844.g002
https://doi.org/10.1371/journal.pone.0195844


cells. The shVDR lentiviral-infected group had higher levels of TRPV5 expression than the

shCtrl group, whereas the leVDR lentivirus-infected group had lower levels of TRPV5 expres-

sion than the le-Ctrl group (Fig 4). These results suggest that changes in VDR alter the expres-

sion of TRPV5 at the mRNA and protein levels, and the TRPV5 expression level was

negatively correlated with VDR expression.

TRPV5 regulates caki-1 RCC cell proliferation and metastasis via TRPV5

To further investigate the mechanism underlying TRPV5 and VDR expression changes in

RCC, we next constructed a shTRPV5 lentivirus vector to knockdown TRPV5 expression.

After co-treating caki-1 cells with shVDR and shTRPV5, we analysed the TRPV5 expression

level by RT-PCR and WB, revealing that TRPV5 expression was decreased (Fig 5A). The MTT,

transwell migration and invasion assays revealed that VDR knockdown significantly promoted

the proliferation, migration and invasion of caki-1 cells compared with that of the control

Fig 3. VDR promotes RCC apoptosis. Flow cytometry indicated that VDR overexpression increases caki-1 cell

apoptosis, and VDR knockdown decreases caki-1 cell apoptosis. Graphs for each treatment group and the percentage of

cell apoptosis are shown. X-axis: PL1-H Annexin V; Y-axis: PL2-H PI. The data were expressed as means ± SD of three

independent experiments. �p<0.05, ���p<0.001.

https://doi.org/10.1371/journal.pone.0195844.g003

Fig 4. VDR regulates TRPV5 expression. (A) RT-PCR and (B) WB were performed to examine the expression of

TRPV5 following VDR overexpression or knockdown in caki-1 cells. Changes in TRPV5 expression were increased

following infection with shVDR lentivirus and were decreased following infection with leVDR lentivirus. �p<0.05,
��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0195844.g004
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vector in caki-1 cells. However, knockdown of TRPV5 reversed the effect of VDR knockdown

on caki-1 cell proliferation, migration and invasion, and there was no significantly change in

the migration, cell number regarding migration (p = 0.16) and invasion (p = 0.34) in shVDR+-

shTRPV5 co-treated caki-1 cells compared with that in the control lentiviral vector control

cells (Fig 5B–5D). These data suggest that VDR regulated caki-1 cell proliferation and metasta-

sis via TRPV5.

Bioinformatics analysis of differently expressed genes in VDR-

overexpression and -knockdown caki-1 cells

To investigate the effect of the overexpression and knockdown of VDR on gene expression in

caki-1 cells, we performed the RNA-sequence assay on different infected cells. Seven hundred

eighty-four significantly differentially expressed genes, including 539 up-regulated and 245

down-regulated genes, were detected after VDR overexpression in caki-1 cells compared with

those in control cells. Gene Ontology (GO) analysis of biological processes indicated signifi-

cantly differentially expressed genes were associated with cell apoptosis, differentiation, prolif-

eration and migration (Fig 6A). KEGG pathway enrichment analysis indicated that

significantly differentially expressed genes were associated with the TNF signalling pathway,

TGF-beta signalling pathway and carcinogenesis pathway (Fig 6B). However, 681 significantly

differentially expressed genes, including 244 up-regulated and 437 down-regulated genes, were

detected after VDR knockdown in caki-1 cells compared with that in the control cells. KEGG

Fig 5. TRPV5 knockdown reverses the effect of VDR knockdown on caki-1 cell proliferation, migration and invasion.

(A) TRPV5 mRNA expression was detected by RT-PCR and was normalized to that of β-actin. TRPV5 protein expression

was detected by WB using β-actin as a loading control. shV+T is shVDR+shTRPV5 co-treated. (B) Cell proliferation ability

was analysed by the MTT assay in control, shVDR-treated, or shVDR+shTRPV5-treated caki-1 cells; (C-D) Cell migration

and invasion ability were measured by the transwell assay. The graph indicates the mean ± SD of the number of cells from 5

random high-power fields (magnification, ×200). �p<0.05, ��p<0.01.

https://doi.org/10.1371/journal.pone.0195844.g005
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pathway enrichment analysis indicated this significantly differentially expressed genes were

associated with the TNF signalling pathway, apoptosis, the Wnt signalling pathway and the

carcinogenesis pathway (Fig 6C). These results suggest that VDR plays an important role in

the biological functions and signalling pathways of caki-1 cells.

Discussion

As the biologically active metabolite of vitamin D, 1,25(OH)2D exerts strong anti-proliferative,

pro-differentiation and pro-apoptotic actions in some cells, tissues and cancers [20,21]. In

addition to its ability to reduce the risk of RCC, 1,25(OH)2D levels are negatively correlated

with the risk of colorectal cancer, breast cancer, lung cancer and bladder cancer [22–26], and

its intervention could also improve the prognosis of patients with haematological malignancies

[27]. Most of the known biological effects of 1,25(OH)2D are mediated through binding to

VDR, a nucleoprotein that belongs to the steroid hormone receptor superfamily [20,21]. Thus,

VDR may be involve in cancer development and might reduce the risk of cancer associated

with 1,25(OH)2D. However, the expression and role of VDR in tumours have been reported

previously for other types of cancer. The high expression of VDR in prostate tumours reduces

the risk of lethal cancer [28]. Additionally, VDR knock-out mice show increased sensitivity to

carcinogen challenge [20]. Furthermore, VDR expression was associated with clinical prognos-

tic factors such as tumour size and lymph node involvement in breast cancer, suggesting that

Fig 6. Bioinformatics analysis of differently expressed genes after VDR overexpression and knockdown in caki-1

cells. After VDR overexpression, GO analysis of biological process (A) indicated differentially expressed genes were

associated with cell apoptotic, differentiation, proliferation and migration. KEGG pathway enrichment analysis (B)

indicated differentially expressed genes were associated with the TNF signalling pathway, TGF-beta signalling pathway

and carcinogenesis pathway. In the VDR knockdown cells, (C) KEGG pathway enrichment analysis indicated that

significantly differentially expressed genes were associated with the TNF signalling pathway, apoptosis, Wnt signalling

pathway and the carcinogenesis pathway.

https://doi.org/10.1371/journal.pone.0195844.g006
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VDR expression may be clinically significant and VDR may be a factor with prognostic rele-

vance [29]. These lines of evidence demonstrated that VDR may interact with 1,25(OH)2D to

reduce the risk of cancer and play a potential antitumour role in the development and progres-

sion of cancer.

The present study found that VDR was co-expressed in the caki-1 and 786-O RCC cell

lines, and VDR was expressed at a high level in caki-1 cells with high metastatic potential and

at a low level in 786-O cells with low metastatic potential. To determine the functional roles of

VDR in RCC cell lines, we used the shVDR lentivirus vector, which efficiently silenced VDR

expression, or lentivirus carrying the VDR gene, which efficiently generated VDR overexpres-

sion in the RCC cell lines. Next, we performed a series of functional experiments. As expected,

VDR overexpression significantly inhibited cell proliferation, migration, and invasion and

promoted apoptosis in RCC cell lines. Conversely, VDR knockdown promoted cell prolifera-

tion, migration, and invasion and inhibited apoptosis. Taken together, our findings confirmed

that VDR functions as a tumour suppressor in RCC cell lines. Similar to these functional

experiments, our RNA-sequence analysis results showed significantly differentially expressed

genes were associated with cell apoptosis, proliferation and migration by GO analysis in VDR-

overexpression caki-1 cells compared with those in the vector control cells.

Several studies have examined how VDR exerts antitumour efficacy. For instance, VDR

and 1,25(OH)2D can inhibit cell proliferation through up-regulation of the cyclin-dependent

kinase inhibitor p21 and p27 [30,31]. Additionally, VDR inhibits cell migration and invasion

via inhibiting the Wnt/β-catenin signalling pathway and increasing the expression of E-cad-

herin [32–34]. VDR can also play a pro-apoptotic role by inhibiting the expression of anti-apo-

ptotic proteins Bcl-2 and Bcl-XL [35]. The Wnt signalling pathway and apoptosis pathway

were detected in this study by KEGG pathway enrichment analysis of RNA-sequence analysis,

which was performed on VDR-overexpression and -knockdown caki-1 cells. In addition, the

TGF-β signalling pathway was related to VDR and 1,25(OH)2D [36,37], which were also

detected in this study and could act as tumour suppressors [38]. Thus, VDR may function

through these pathways to exert antitumour efficacy in RCC cell lines.

VDR and 1,25(OH)2D3 were reported to play a regulatory role in TRPV5 activity. The

mRNA and protein expression levels of TRPV5 were decreased in the kidneys of vitamin D-

deficient or VDR knock-out mice, and the injection of 1,25(OH)2D3 could significantly

increase the mRNA expression of TRPV5 in kidneys. Thus, the expression of TRPV5 is

strongly dependent on the intake of vitamin D. Moreover, the human TRPV5 promoter con-

tains several consensus vitamin D-responsive elements [18,19]. Our previous study also found

that the expression of TRPV5 was associated with VDR. In this study, we further confirmed

that the TRPV5 mRNA and protein expression levels were regulated by VDR, in which VDR

overexpression down-regulated TRPV5 expression whereas VDR knockdown up-regulated

TRPV5 expression. The above studies suggest that VDR could regulate the transcription of

TRPV5.

Several studies showed that TRPV5 is involved in tumours. TRPV5 is poorly expressed or

not expressed in normal colon tissues but is highly expressed in colon adenoma and adenocar-

cinoma [13]. TRPV5 expression was also found to be increased in adenoma samples compared

with that in normal parathyroid glands [14]. On the other hand, decreased expression of

TRPV5 in tumour tissues was observed in non-small cell lung cancer patients and was associ-

ated with a shorter median survival time after surgical resection [15], and different expression

levels of TRPV5 were detected among the different RCC histopathological subtypes that arise

from different origins [16]. Furthermore, the present study demonstrated that knockdown of

TRPV5 expression in caki-1 cells suppressed VDR knockdown-induced changes in prolifera-

tion, migration and invasion ability. These findings likely suggest that altered TRPV5
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expression may be associated with RCC carcinogenesis. At the same time, we verified that

VDR could regulate the transcription of TRPV5. Therefore, we presume that VDR could sup-

press the proliferation and metastasis of RCC cell lines via regulation of TRPV5 expression.

As a cellular Ca2+ channel, TRPV5 is predominantly expressed in response to the Ca2+

influx step in the process of transcellular Ca2+ transport in the kidney [11]. The role of Ca2+ in

the overall cancer-related cell signalling pathways is uncontested. Alterations in Ca2+ homo-

eostasis increase proliferation and induce differentiation or apoptosis [39,40]. The calcium sig-

nalling pathway may be the link between VDR and TRPV5. Vitamin D interacts with VDR to

regulate the transcription of TRPV5, and then TRPV5 modulates the cellular calcium concen-

tration and affects the biological behaviour of RCC cells.

There were several limitations in our present study. A negative correlation between TRPV5

and VDR was shown in RCC cell lines; however, the precise mechanism by which VDR sup-

presses migration and invasion via TRPV5 remains clear. In addition, additional pathways

may be involved in the VDR regulation of biological processes in RCC and warrant further

investigation.

In conclusion, VDR could suppress RCC carcinogenesis, whereas VDR knockdown led to

promoting effects. Moreover, TRPV5 expression levels were negatively correlated with VDR,

and VDR could suppress the proliferation, migration and invasion of RCC via regulation of

TRPV5 expression. A better understanding of the role and relationship of VDR and TRPV5 in

tumourigenesis might provide new gene therapy strategies for RCC.
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