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Abstract: Identification of actin-depolymerizing factor homology (ADF-H) domains in the structures
of several related proteins led first to the formation of the ADF/cofilin family, which then expanded
to the ADF/cofilin superfamily. This superfamily includes the well-studied cofilin-1 (Cfl-1) and
about a dozen different human proteins that interact directly or indirectly with the actin cytoskeleton,
provide its remodeling, and alter cell motility. According to some data, Cfl-1 is contained in various
human malignant cells (HMCs) and is involved in the formation of malignant properties, including
invasiveness, metastatic potential, and resistance to chemotherapeutic drugs. The presence of other
ADF/cofilin superfamily proteins in HMCs and their involvement in the regulation of cell motility
were discovered with the use of various OMICS technologies. In our review, we discuss the results of
the study of Cfl-1 and other ADF/cofilin superfamily proteins, which may be of interest for solving
different problems of molecular oncology, as well as for the prospects of further investigations of
these proteins in HMCs.
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1. Introduction

The key features of malignant neoplasms include uncontrolled proliferation, as well as the ability
to invade surrounding tissues (invasion) and to spread locally and regionally or even to distant parts
of the body (metastasis). These features are the basis for ideas (which appeared in the 19th century)
about the common origin of malignant tumors from stem cells [1,2] and for revealing typical patterns
that are associated with tumor phenotypes [3], in particular, by using different OMICS technologies [4].
Nevertheless, malignant tumors vary by tissues of origin and types of differentiation. Moreover, there
is a body of evidence that the majority of malignant tumors have intratumoral cell heterogeneity,
i.e., are composed of multiple clonal subpopulations of tumor cells with heterogenic morphology
that differ on functional properties, in particular on invasive and metastatic potential. Accordingly,
malignant tumors can significantly differ by gene expression patterns, including those that are involved
in the regulation of proliferation, invasion and metastasis [5–7].

The invasion and metastasis are considered to be caused by the dysregulation of motility of
malignant cells (see, e.g., Bravo-Cordero et al. [8] and Martin et al. [9]). The accumulated data suggests
that changes in cell motility can be triggered by certain actin-binding proteins (ABPs) which provide
the formation, function, and restructuring of the actin cytoskeleton [10–13]. The detection of these
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changes allows the clarification of the molecular basis of malignant transformation and the role of
certain proteins (in particular, ABPs) in this process [11–13], and, in addition, allows the list of potential
tumor biomarkers to expand [14–16].

Over the past ten years coflin-1 (Cfl-1) has attracted special attention among ABPs [14,16,17], along
with other members of the actin-depolymerizing factor (ADF)/cofilin superfamily [18,19]. In particular,
in our previous studies of the proteomic profiles of different human malignant cells (HMCs), Cfl-1 was
almost always found as one of the major proteins [15], and that fact is reflected in the Russian proteomic
databases [20,21]. As a consequence, it is interesting to analyze some current trends in the study of
ADF/cofilin superfamily members.

2. Actin-Depolymerizing Factor/Cofilin Superfamily

2.1. From First Actin-Depolymerizing Proteins to Actin-Depolymerizing Factor/Cofilin Superfamily

In the 1980s, several different proteins with actin-depolymerizing activity were identified in
vertebrates [22,23]. According to various authors, actin-depolymerizing proteins were characterized
by molecular weight (MW) ~19 kDa [22] or ~93 kDa [23]. Almost at the same time proteins with MW
~19 kDa became known as cofilins for their ability to form cofilaments with actin [24]. A similar protein
with low MW was termed destrin (destroys F-actin; Dstn), or ADF (e.g., Vartiainen et al. [25] and
UniProt P60981). An actin-depolymerizing protein with MW ~93 kDa proved to be gelsolin [23,26].
Confusingly, the alternative name ADF is sometimes used for gelsolin as well as for destrin (UniProt
P06396). Three closely related actin-depolymerizing proteins that are usually identified in most
vertebrates, Cfl-1, Cfl-2, andDstn (ADF), are often referred to as traditional cofilins. In the late 1990s,
traditional cofilins and some related proteins found in different species began to be regarded as a
special family, called the ADF/cofilin family [25,27,28].

At the turn of the 20th–21st centuries Lappalainen et al. found special actin-binding modules of
about 150 amino acid residues in polypeptide chains of ADF/cofilins [29]. These modules formed
specific three-dimensional structures with six-stranded mixed β-sheets. The abovementioned modules
were named actin-depolymerizing factor homology domains, or ADF-H domains (Figure 1).
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Figure 1. Structure of human cofilin-1 (Cfl-1). (A) Scheme of secondary structural elements identified
in the actin-depolymerizing factor homology (ADF-H) domain (amino acid residues 4–153) of human
Cfl-1. The dashed boxes show the regions corresponding to β-strands. (B) Ribbon diagram of the
human Cfl-1 structure (adapted from PDBsum [30], PDB ID: 1q8x).
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Lappalainen et al. used the results of genome sequencing of different species that appeared in
public databases in order to search for proteins containing ADF-H domains [29]. They identified 39
proteins with sequence similarity to ADF/cofilins. The analysis of primary structures of these proteins
showed that they could be subdivided into three structurally distinct classes: ADF/cofilins, twinfilins,
and developmentally regulated brain proteins (drebrins)/actin-binding proteins 1 (Abp1s) [29].
In addition to three traditional cofilins, the first class included actin-depolymerizing protein (depactin)
from Asterias amurensis [31], coactosin from Dictyostelium discoideum [32] and actophorin from
Acanthamoeba [33]. The second class consisted of proteins which were named by Lappalainen et al. as
twinfilins due to the fact that their amino acid sequences contained two ADF-H domains [29]. Twinfilin
genes were originally published in 1994 and 1997 as genes encoding A6 protein tyrosine kinases.
In 1998, the protein was initially identified in Saccharomyces cerevisiae, and its sequence homology
to ADF/cofilin proteins was demonstrated [29,34]. Later, twinfilin homologues were found in other
eukaryotes, except in plants. The third class was composed of drebrins and Abp1s. Drebrins [35] were
initially found in chick brain and considered as neuron-specific F-actin-binding proteins able to provide
the plasticity of cytoskeleton and to serve as intracellular regulators of morphogenesis [36]. Abp1s
are the proteins initially found in yeast. At the beginning of the 21st century the presence of Abp1s in
mammals, including humans, was shown [37,38]. Analysis of the sequence alignments of the ADF-H
domains allowed the production of the first phylogenetic trees for three classes of ADF-H domain
proteins, which indicated the existence of their common ancestral protein and ancestral gene [25,29].

Further investigations resulted in a considerable extension of data on ADF-H domain proteins.
In the 2000s, new ADF-H domain protein was detected in the tissues of some vertebrates and became
known as glia maturation factor (GMF) [39]. Nakano et al. referred GMF and related proteins to
the GMF-family [40]. The first proteins from this family became known in the 1970s–1980s [41,42].
They had capacity to serve as a growth regulator for neurons and glia. In the 1990s with the use of DNA
technologies, genes and transcripts encoding proteins closely related to the GMF were discovered in
humans. These proteins were called glia maturation factors beta (GMF-B) and γ (GMF-G) (UniProt
P60983, O60234).

In 2010, Nakano et al. proposed the consideration of all ADF-H domain proteins as members of a
single protein superfamily [40], the ADF/cofilin superfamily. These authors built a new expanded
phylogenetic tree for four protein families and one individual group of ADF-H domain proteins.
This phylogenetic tree was created based on structural and functional data and, in particular, on the
ability to bind monomeric G-actin and polymeric F-actin.

2.2. Classification, Structure, and Actin-Binding Properties

Classification of ADF/cofilin superfamily members relies on their structural (amino acid
sequences, ADF-H domains) and functional (actin binding) features. According to Nakano et al. [40],
there are five groups of ADF-H domain proteins. Two of these groups—twinfilins (bind to G-actin
and cap the barbed ends of actin filaments) and drebrin/Abp1s (only bind to F-actin)—fully coincided
with two classes described previously by Lappalainen et al. [29]. Unlike Lappalainen et al. [29],
Nakano et al. [40] additionally described the group of GMF-family members (GMF-G can bind F-actin)
and did not include coactosin and coactosin-like proteins, which only bind to F-actin, in the group of
ADF/cofilins (that bind to both F- and G-actin and promote actin depolymerization).

The first group (ADF/cofilins) consists of proteins that were identified in different organisms
ranging from S. cerevisiae to Homo sapiens. It includes traditional cofilins (Cfl-1, Cfl-2, Dstn), depactin,
and actophorin. These proteins with a MW of about 20 kDa have a significant structural similarity.
Each of them consists of ADF-H domain with a few additional amino acid residues (including initiatory
methionine) at the N-terminus of the polypeptide chain and about ten amino acid residues at the
C-terminus (according to UniProt; Table 1). The proteins referred to as traditional cofilins have been
detected in a variety of vertebrates and are the most studied members of the ADF/cofilin superfamily.
For human cofilins the tissue specificity has been demonstrated. Cfl-1 encoded by CFL1 gene is widely
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distributed in various tissues and is named non-muscle isoform (UniProt P23528). Cfl-2—muscle
isoform—may exist in at least two variants due to alternative splicing of a single gene CFL2 [43]. One of
these isoforms (Cfl-2b) is present in skeletal muscle and heart, and the other (Cfl-2a) has been revealed
in various tissues (see also UniProt Q9Y281). Dstn encoded by DSTN gene is also widely distributed
in various tissues (UniProt P60981). ADF/cofilins can bind F-actin and sever actin filaments. On the
one hand, severing of the actin filament causes actin depolymerization. On the other hand, it can lead
to actin polymerization directly or indirectly by producing free barbed ends [44]. Along with binding
of F-actin, ADF/cofilins have the ability to bind G-actin in a 1:1 ratio [24,29]. It is currently believed
that the molecules of the traditional ADF/cofilins have two distinct actin-binding sites, the G/F-site
located in the C-terminus and the F-site located in the N-terminus. The F-site is involved in the
binding of F-actin, and the G/F-site is required for binding to both the G-actin and the F-actin [45].
The functionally important amino acid residues at the N-terminal end of the human cofilins are shown
in Figure 2. ADF/cofilins bind preferably to ADP-forms of G- or F-actin and use energy from ATP
hydrolysis in actin polymerization [46]. It has been demonstrated that cofilin can directly bind not only
to actin, but also to phosphatidylinositol 4,5-bisphosphate (PIP2) [47] and to serine/threonine-protein
kinase LIMK1 [48]. ADF/cofilins from vertebrates are found to contain nuclear localization sequences
(see Figure 2 and UniProt P23528).
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Figure 2. N-termini of human traditional cofilins Cfl-1, Cfl-2 and destrin (Dstn) according to UniProt
(P23528, Q9Y281, P60981, respectively). Red “S” indicate serine residues which can be phosphorylated.
Identical regions of amino acid sequences are framed. Nuclear localization signals are labeled in yellow.
Repeating hydrophobic amino acid residues are labeled in green. Repeating positively charged amino
acid residues are labeled in blue. Repeating negatively charged amino acid residues are labeled in gray.
Starting parts of ADF-H domains (see below) are shown by the dotted red lines.

The proteins from the second group (twinfilins) have two tandem ADF-H domains that are
located near the N-terminus of the polypeptide chain and are separated by a linker area of several
dozen amino acid residues. Typical twinfilins have a MW of about 40 kDa. It has been shown that
at least in humans, mice, and S. cerevisiae, twinfilins are presented by two isoforms, each of which
are encoded by their own gene (e.g., TWF1 and TWF2 in human, according to UniProt Q12792 and
Q6IBS0). Additionally, in mice, an alternative promoter is responsible for production of two proteins:
TWF-2b in striped muscles (heart and skeletal muscles) and TWF-2a mainly in non-muscle tissues and
organs [49]. Twinfilins can interact with G-actin forming 1:1 complexes, and some of the twinfilins can
bind F-actin, as well. In mammals, two ADF-H domains of twinfilins allow both capping of the barbed
end of actin filaments and sequestering of actin monomers [50].

The third group is composed of drebrins and Abp1s, proteins with a single ADF-H domain,
but with higher MW (~70 kDa) than the traditional cofilins and twinfilins. Drebrins are typical
for vertebrates. Three isoforms—embryonic (E1 and E2), and adult (A)—have been found to be
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generated by alternative splicing from a single gene DBN1. In humans, drebrins are presented in
brain neurons and also in the heart, placenta, skeletal muscle, kidney, pancreas, peripheral blood
lymphocytes including T-cells (see [51] and UniProt Q16643). Abp1 proteins have a slightly lower
MW than drebrins, but a similar primary structure. Abp1s have been found in mammals, including
humans [37,38]. The human Abp1 protein has a MW of 48 kDa and the structure of the polypeptide
chain which is very similar to the structure of typical drebrins. This fact has served as the basis for the
recommended name of this protein— drebrin-like protein (synonyms hematopoietic progenitor kinase
1-interacting protein of 55 kDa (HIP-55), drebrin-F) (UniProt Q9UJU6). Drebrins and Abp1s have a
single ADF-H domain in their N-termini, followed by a nonconserved central region and a C-terminal
region. These proteins have been shown to bind F-actin and stabilize actin filaments. Some proteins of
this group (but not human drebrin) have a C-terminal Src homology 3 (SH3) domain [50].

The fourth group is presented by the GMF-family proteins. These proteins have a small MW
(14–17 kDa). GMF has been found in the tissues of some vertebrates. Despite the presence of ADF-H
domain, GMF is not able to directly bind actin. GMF-B that is present in the brain of all vertebrates
is also not able to bind actin (UniProt P60983). GMF-G is present predominantly in lung, heart, and
placenta (e.g., [52] and UniProt O60234). It has structural similarity to GMF-B; however, unlike GMF-B,
it was found to interact with F-actin [52,53]. Goroncy et al. analyzed the structure of ADF-H domains
of GMF proteins. The authors obtained recombinant mouse GMF-B and GMF-G proteins, and studied
their structures using nuclear magnetic resonance spectroscopy [39]. Both GMF structures displayed
two additional β-strands in one of the loops. These β-strands were not seen in the protein structures
of other ADF-H classes, thus, according to Goroncy et al. [39], these β-strands may be a class-defining
feature. Both GMF-B and -G can interact with the actin-related protein 2/3 (Arp2/3) complex, inhibit
its activity and induce actin disassembly [40]. Another member of GMF-family, GMF1, the yeast
protein discovered by Nakano et al. [40], is also able to interact with the Arp2/3 protein complex and
to suppress its activity.

The fifth, separate, group includes coactosin from D. discoideum and coactosin-like proteins
(from different species including that of H. sapiens—UniProt Q14019). These proteins are entirely
composed of a single ADF-H domain and have a MW (about 17 kDa) similar to the MW of traditional
cofilins. However, unlike ADF/cofilins, coactosin and coactosin-like proteins bind only F-actin and
do not promote actin depolymerization [40,50]. Moreover, some antagonistic relations between the
traditional cofilins and coactosin-like 1 protein have been reported [54]. Interestingly, coactosin from
Entamoeba histolytica has been recently described as an unusual type of coactosin which binds both
F- and G-actins [55].

Some characteristics of the main human ADF/cofilin superfamily members are summarized in
Table 1.
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Table 1. Characteristics of the main human actin-depolymerizing factor (ADF)/cofilin superfamily members according to [56–63] and UniProt.

Protein Name, Gene Symbol
(UniProt Number)

Length
(Positions *)

Domains, Length
(Positions) Motifs, Signals Binding Partners

Cofilin-1, CFL1 (P23528) 165 * (2–166) ADF-H, 150 (4–153) Nuclear localization signal F- and G-actin (actin depolymerization and
polymerization), PIP2, cortactin, LIMK1

Cofilin-2, CFL2 ** (Q9Y281) 165 * (2–166) ADF-H, 150 (4–153) Nuclear localization signal F- and G-actin (actin depolymerization and
polymerization), PIP2

Destrin, DSTN (P60981) 164 * (2–165) ADF-H, 150 (4–153) Nuclear localization signal F- and G-actin (actin depolymerization and
polymerization), PIP2

Twinfilin-1, TWF1 ** (Q12792) 349 * (2–350)
ADF-H 1, 138 (2–139) G-actin and F-actin (barbed-end-capping activity)

ADF-H 2, 139 (175–313)

Twinfilin-2, TWF2 (Q6IBS0) 348 * (2–349)
ADF-H 1, 136 (4–139) G-actin and F-actin (barbed-end-capping activity)

ADF-H 2, 137 (177–313)

Drebrin, DBN1 ** (Q16643) 648 * (2–649) ADF-H, 130 (3–134) Proline-rich, profilin-binding motif F-actin (actin stabilization), cyclin-dependent kinase 5,
connexin 43 and other proteins

Drebrin-like protein, DBNL **
(Q9UJU6)

430 (1–430)
ADF-H, 130 (4–133) Proline-rich,

Ser269/Thr291-phospho-sensor motif
F-actin (actin stabilization), SH3 and multiple ankyrin
repeat domains proteinsSH3, 60 (371–430)

Glia maturation factor beta,
GMFB (P60983) 141 * (2–142) ADF-H, 136 (4–139) Proteins of Arp2/3 complex (actin disassembly)

Glia maturation factor gamma,
GMFG (O60234) 141 * (2–142) ADF-H, 136 (4–139) F-actin, proteins of Arp2/3 complex (actin disassembly)

Coactosin-like protein, COTL1
(Q14019) 141 * (2–142) ADF-H, 129 (2–130) F-actin (actin stabilization)

* After removing initiator methionine; ** Expression with alternative splicing and formation of different transcripts. PIP2: phosphatidylinositol 4,5-bisphosphate; LIMK1: LIM domain
kinase 1; F-actin: filamentous actin; G-actin: globular actin; SH3: Src homology 3 domain; Arp2/3: Actin-related protein 2/3 complex.
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2.3. Biological Functions

Traditional cofilins, the most well-studied members of the ADF/cofilin superfamily, are known
to modulate actin dynamics by catalyzing actin depolymerization or polymerization through the
severing of actin filaments. The effect of cofilins on actin filaments (assembly or disassembly) depends
on the concentration of active cofilins, the relative concentration of G-actin, and some protein factors.
In low concentrations, ADF/cofilins sever the actin filaments and promote depolymerization. High
concentration of cofilins is suggested to promote actin nucleation and polymerization [64]. Cofilins
can contribute to actin polymerization producing free barbed ends and supplying actin monomers.
Cfl-1 is currently understood to modulate actin nucleation and filament branching through synergy
or competition with the Arp2/3 complex. The Arp2/3 protein complex is a seven-subunit complex
of actin-related proteins that enables binding to actin, providing nucleation and formation of actin
branches [65,66]. The formation of actin branches is one of the key events of the production of
lamellipodia, which are essential for cell motility. Cfl-1 and Arp2/3 have been shown to work in
synergy (i.e., with a cooperative effect) producing free barbed ends for actin polymerization [67].
In parallel, Cfl-1 can reduce the affinity of the Arp2/3 complex for filaments and promote dissociation
of old actin branches [68]. Cfl-1 and Cfl-2 have also been shown to regulate the assembly of actomyosin
complex blocking the binding of tropomyosin and myosin II to actin filaments [24,69]. It was found
that, in vivo, cofilins participated in the reorganization of actin cytoskeleton in response to stresses
and different cell stimuli [70]. Overexpression of cofilins leads to the formation of stress fibers,
contractile actin bundles that have been found in non-muscle cells and shown to play an important
role in cellular contractility, providing cell adhesion, migration (including assembly of lamellipodia
and filopodia), and morphogenesis [71]. Due to this function, cofilins are regarded as molecular
regulators of development processes. Cfl-1 and destrin are required for ureteric bud branching
morphogenesis [72]. According to Sparrow et al. [73], Cfl-1 is necessary for dynamic changes in the
cytoskeleton needed for axon engagement and is essential for Schwann cell myelination. Evidence
for the involvement of Cfl-1 (and the Arp2/3-complex) in the regulation of axonal growth cones
has been recently reviewed by Dumpich et al. [74]. Cofilin can also participate in regulation of cell
proliferation in response to mechanical stresses. In mammalian epithelial cells it inhibits through
the cytoskeleton remodeling activity of Yes-associated protein 1 (YAP1) and Translin-associated zinc
finger protein 1 (TAZ1), mediators of Hippo signaling pathway and organ growth, thus inhibiting
cell proliferation [75]. Numerous data on the participation of Cfl-1 in development are summarized
in review [76]. To sum up, ADF/cofilins play an essential role in the controlling of actin dynamics.
They have a dual effect on actin filaments and may contribute to cellular contractility through both the
local actin depolymerization and the formation of stress fibers, and therefore they are important for
morphogenesis and development.

In addition, cofilins have also functions in cells that are not directly related to the regulation
of actin dynamics. The first is that cofilins can provide transport of actin molecules (which do not
contain the nuclear localization signals) to the nucleus [77]. Using immunofluorescence microscopy,
Ono et al. revealed ADF (Dstn) and cofilin in nuclei of cultured myogenic cells and demonstrated
the colocalization of ADF and cofilin in intranuclear actin rods [78]. G-actin which is transported to
the nucleus by means of Cfl-1 may act as a key player for nuclear structure and function regulating
both chromosome organization and gene activity (e.g., see [79]). Cofilin has been characterized
as a connecting link between T-cell co-stimulation and actin translocation to the nucleus [80,81].
Co-stimulatory signals from ligand attachment to accessory receptors like the cluster of differentiation
2 (CD-2) are required for the production of the T-cell growth factor interleukin 2 (IL-2) and cell
proliferation. In T lymphocytes, cofilin is a component of the costimulatory signaling pathways:
CD-2 stimulation leads to dephosphorylation of cofilin, binding to G-actin and translocation into the
nucleus [80,82]. In addition to G-actin, Cfl-1 is also able to transport to the nucleus various regulatory
proteins that affect the processes of transcription (e.g., Runt-related transcription factor 2 (Runx2))
and cell differentiation [83]. The other function of cofilins that is not related to the regulation of actin
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dynamics is their participating in apoptosis. Cofilin oxidation and translocation to the mitochondrion
has been found to induce apoptosis through the opening of the mitochondrial permeability transition
pore and release of cytochrome c [84]. At last, Cfl-1 has been shown to directly activate phospholipase
D1 which is important for cell migration [85,86].

The essential roles of traditional cofilins (Cfl-1, Cfl-2 and Dstn) in mammals have been proved by
experiments on cofilin/ADF-knockout mouse strains [87–89]. In such experiments, the homozygous
mice Cfl-1−/− were embryonic lethal while heterozygous mice Cfl-1+/− were viable. It was shown that
Cfl-1 was not essential for the extensive morphogenetic movements during gastrulation, because
the other proteins (e.g., Dstn) can provide cellular contractility instead of Cfl-1 at this stage of
embryogenesis. However, the Cfl-1 knockout at later stages dramatically altered the processes of
neuronal development. Although Dstn was overexpressed in mutant embryos Cfl-1−/−, this could
not compensate for the lack of Cfl-1, suggesting that these proteins might have a different function
in embryonic development. Mice lacking ADF were viable and had no alterations during embryonic
development [87]. The Cfl-2 knockout led to severe protein aggregate myopathy in a mouse model [89].

The various cellular functions of traditional cofilins including those in regulation of nuclear
integrity and transcriptional activity, apoptosis, nuclear actin monomer transfer, and lipid metabolism
are discussed in recent review of Kanellos and Frame [90].

A schematic model summarizing the Cfl-1 functions in vertebrates is shown in Figure 3.
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and regulating factors (red) refer to different signaling pathways, leading to Cfl-1 dephosphorylation
(activation) or phosphorylation (inactivation), respectively. p-Cfl-1: phospho-Cfl-1; SSH1: Slingshot
protein phosphatase 1; PP2A: Protein phosphatase 2A; LIMK1: LIM domain kinase 1.

Similarly to cofilins, twinfilins are also involved in the regulation of actin dynamics and can
participate in formation of cellular protrusions such as lamellipodia and filopodia in collaboration with
other actin binding proteins (Arp2/3, cortactin, etc.) [91]. In Drosophila twinfilin is required for cell
migration and endocytosis. In mammalian cells, TWF-1 is also involved in endocytosis and migration,
and participates in cell morphogenesis [50]. TWF-2a is shown to be involved in the morphogenesis of
neurons. TWF-2a knockout mice developed normally without any abnormalities, due to the fact that it
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is typically co-expressed in the same tissues with TWF-1 and has similar function [92]. The specific
role of TWF-2b, which is expressed exclusively in heart and skeletal muscles, is currently unclear.

Drebrin and Abp1 have been shown to regulate actin filament organization, especially during
development of neuronal cells. Drebrin E is highly abundant in the developing brain. This protein may
modulate actomyosin interaction within dendritic spines and alter spine shape [93]. Similarly, drebrin
(isoform E) is involved in the regulation of axonal growth through actin-myosin interactions [94].
Drebrin E regulates neuroblast migration in the postnatal mammalian brain [95]. Drebrin A
predominates in neurons of the adult forebrain. Neuronal drebrin (isoform A) inhibits cofilin-induced
severing of F-actin due to direct competition between these two proteins for F-actin binding [96].
Drebrin (E2 isoform) has been also found in various non-neuronal cells, including fibroblasts, stomach
and kidney epithelia [97], and keratinocytes [98], where it plays a role in, for example, adhering
junctions. Abp1 is shown to be implicated in endocytotic processes. It uses C-terminal SH3 domain to
bind various proteins including regulators of endocytosis. Particularly, it associates with dynamin, a
large GTPase essential for vesicle fission [99]. Due to its ability to interconnect the actin cytoskeleton
and participate in endocytosis, Abp1 regulates lymphocyte and leukocyte responses [38,50,100].

GMF does not bind actin, but binds Arp2/3 complex and suppress its activity which results in
stimulation of filament debranching and inhibition of actin nucleation [101]. Nakano et al. described
the blocking of the Arp2/3 complex by GMF1 protein as a reason for the modulatory effect of GMF1
on the yeast actin cytoskeleton [40]. GMF has been shown to regulate lamellipodial protrusion
dynamics and cell migration [102]. GMF-B including the human one is also not able to bind actin.
To date, it has been established that GMF-B induces synthesis of some proinflammatory cytokines,
as well as influences the differentiation and aging of various cells of the nervous system in normal
and pathological conditions (e.g., see [103,104] and UniProt P60983). In fibroblasts, GMF-B controls
branched actin content and lamellipodial dynamics [105]. The main function of GMF-G is still unclear.
This protein found predominantly in lung, heart, and placenta is capable of interacting with F-actin
and influencing cell motility [52,53].

Functions of coactosin and coactosin-like proteins are insufficiently understood. It has been shown
that coactosin inhibits barbed end capping of actin filament and is involved in actin polymerization.
The knockdown of coactosin has resulted in the disruption of actin polymerization and of neural crest
cell migration [106]. In chick embryos, coactosin was expressed during morphogenetic movement and
associated with actin stress fibers in cultured neural crest cells [107]. In vitro studies demonstrated that
coactosin-like protein can protect F-actin from cofilin-mediated depolymerization [54]. Additionally,
coactosin-like protein is known to support the activity of 5-lipoxygenase, an enzyme involved in
leukotriene biosynthesis. Coactosin-like protein binds 5-lipoxygenase and translocates it from cytosol
to the nucleus. In coactosin-like protein knockdown human monocytic cell line, the activity of
5-lipoxygenase is decreased, but not absent [108].

2.4. Regulaton

The activity of ADF/cofilin superfamily members is regulated by various mechanisms.
ADF/cofilins are shown to be regulated by pH, phosphatidylinositols, protein kinases, and
phosphatases, as well as some other proteins. Moreover, their activities can depend on cellular
redox status.

It is well known that F-actin binding and depolymerizing activity of cofilins depends on pH.
Yonezawa et al. reported that in vitro, in an F-actin containing model system, at pH < 7.3 the
concentration of monomeric actin (G-actin) was less than 1 µM, even with an excess of cofilin
added [109]. However, at pH > 7.3 the concentration of G-actin increased proportionally to the
concentration of cofilin added, until the complete depolymerization of F-actin. The authors formed the
conclusion that cofilin is capable of reversibly controlling actin polymerization and depolymerization
in a pH-sensitive manner. Later, pH was demonstrated to modulate cofilin activity in vivo [110].
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However, pH sensitivity is apparently not a common feature of all ADF/cofilins in all species. For
example, mouse Cfl-1 unlike human has been shown to be pH-independent, as well as mouse Cfl-2 [25].

Membrane phosphoinositides, particularly PIP2, are also known to regulate ADF/cofilin activity.
Cofilins can directly bind phosphatidilinositols, and PIP2-binding area on the surface of the cofilin
molecule overlaps with the actin-binding site [47]. Therefore, binding to PIP2 leads to inhibition of
ability to bind to actin. Changes in PIP2 density of the cellular membrane can regulate a balance
between membrane-bound and free active ADF/cofilins [111].

Phosphorylation of Cfl-1 on a serine residue (Ser3) inhibits its binding to F- and G-actin [112].
Similar data were obtained for Dstn [113]. Only dephosphorylated (active) cofilin can carry
out the functions associated with binding of actin and protein translocations to the nucleus
and mitochondrion. In contrast, phosphorylated cofilin is required to activate phospholipase
D1 [114]. The regulation of cofilins by phosphorylation/dephosphorylation is performed via
signaling pathways involving kinases and phosphatases in response to extracellular signals and
changes in microenvironment [14,17,115]. In mammals, Cfl-1 has been shown to be phosphorylated
and inactivated by LIM-kinases (LIMK1, LIMK2) and testicular protein kinases (TESK1, TESK2).
Conversely, cofilin is dephosphorylated and activated by slingshot protein phosphatases (SSH1,
SSH2, SSH3), protein phosphatases 1 and 2A (PP1, PP2A), and chronophin (CIN) (for a review,
see [75]). Reactions of the phosphorylation/dephosphorylation of cofilins have a significant
impact on modulation of actin dynamics, thus influencing cell motility and morphogenesis in
vertebrates [116,117]. For this reason, kinases and phosphatases of cofilins may play a crucial role
in the development. The overexpression of LIMK1 or inactivation of SSH1 results in abnormal
accumulation of F-actin and incorrect cytogenesis during mitosis [118]. Since LIMK1 inactivates
cofilin, it has been thought to downregulate lamellipodium formation and inhibit cell migration [119].
However, treatment of Jurkat T cells with LIMK1 inhibitor has been shown to block stromal cell-derived
factor (SDF) 1α-induced chemotaxis of T cells [120]. It has been assumed that LIMK1-catalyzed
phosphorylation of cofilin is essential for chemotactic response of T lymphocytes, but the results from
Condeelis’ group, who showed that non-phosphorylatable mutant cofilin provides the generation
of protrusions and determines the direction of cell migration, have contradicted the fact that
phosphorylation and inactivation of cofilin are crucial for cell motility [121]. Nevertheless, further
experiments confirmed the positive role of LIMK1 in migration of chemokine-stimulated Jurkat T
cells. The cell migration turned out to be suppressed by LIMK1 knockdown, whereas knockdown of
SSH1 causes the formation of lamellipodia around the periphery of the cell after cell stimulation [122].
Thus, it has been proposed that LIMK is required for generation of multiple lamellipodia in the initial
stages of the cell response, and SSH1 is needed to restrict lamellipodial protrusions for directional cell
migration [123]. In fact, although LIMK seems to be a positive regulator of cell migration, mechanisms
for this regulation are still not completely understood.

Apart from the kinases and phosphatases already described, the interaction of ADF/cofilins
with actin can be directly or indirectly regulated by a wide range of other proteins. The binding of
cofilin to cortactin is one of the mechanisms of cofilin inactivation which is typical for podosomes
and invadopodia, actin-based dynamic protrusions produced by invasive cancer cells, vascular
cells, and macrophages [124,125]. Actin-interacting protein 1 (AIP1) and cyclase-associated protein
1 (CAP1) promote the disassembly of cofilin-bound actin filaments [126,127]. Coronin provides
recruiting cofilin to filament sides and thus enhances actin filament severing [128]. The Rho GTPases
are important regulators of actin dynamics, including stress fiber formation, and are involved
in the regulation of ADF/cofilins via LIMK. RhoA activates Rho-associated coiled-coil forming
kinase (ROCK) which can phosphorylate and activate LIMK. Thus, RhoA stabilizes the stress
fibers and prevents depolymerization of actin filaments through the phosphorylation of cofilin, and
Rho–ROCK–LIMK–cofilin pathway modulates actin assembly in various cell types in response to
extracellular stimuli [76]. Epidermal growth factor (EGF) has been shown to influence cofilin through
the LIMK pathway or phospholipase C-mediated hydrolysis of PIP2 and release of cofilin from
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membrane sequestering [129]. The mechanisms which include activation of cofilin and generation
of free barbed ends for lamellipodial extension in response to EGF stimulation have been described
mainly for migrating malignant cells [129,130]. However, the increase of cofilin-dependent severing
activity after stimulation with EGF does not always correlate with the level of dephosphorylated
cofilin [131], indicating a more complex regulatory mechanism than previously thought.

The cellular redox state may play an important role in regulating ADF/cofilins. This
regulation is performed by oxidative post-translational modifications of Cys residues including
S-glutathionylation [132], disulfide bonds [133], and S-nitrosylation [134]. Redox-related modifications
influence cofilin activity and signaling pathways with its participation. Cofilin is found to be a target
of oxidation under oxidative stress in T cells. Cofilin oxidation leads to formation of intramolecular
disulfide bonds and to dephosphorylation at Ser3. Although dephosphorylated oxidized cofilin is
still able to bind to F-actin, it cannot perform actin depolymerizing function, and the F-actin level
increases [133]. Instead, oxidized cofilin acquires the ability to translocate actin to the mitochondria,
where it induces cytochrome c release by opening of the permeability transition pore. As a result,
mitochondrial damage and apoptosis are induced [84].

Thus, the cellular microenvironment (namely pH, phosphoinositides and proteins including
enzymes) can essentially influence cofilin functions. The other members of the ADF/cofilin superfamily
have been shown to share some of these aspects of regulation. However, there are few available data
addressing possible mechanisms of their regulation. Twinfilins have been demonstrated to promote
filament severing in a pH-dependent manner. As opposed to ADF/cofilins, TWF-1 severs actin
filaments in vitro at pH below 6.0 [135]. Twinfilins can bind PIP2 similarly to ADF/cofilins, and this
interaction down-regulates the actin binding, filament severing, and actin monomer sequestering
activities [91,92,135]. TWF-1 and TWF-2 bind to capping protein (CP), which has been shown to inhibit
directly the severing activity of TWF-1 [135]. The small GTPases Ras-related C3 botulinum toxin
substrate 1 (Rac1) and cell division control protein 42 homolog (Cdc42) induce the localization of
TWF-1 to membrane ruffles and cell-cell contacts, but do not affect the localization of TWF-2 [91].
Drebrin phosphorylation by cyclin-dependent kinase 5 (Cdk5) regulates cytoskeletal reorganization
associated with neuronal migration. Drebrin E can be phosphorylated on Ser142, and drebrin A on
Ser142 or Ser342 [136]. Localization of drebrin to the distal part of axonal filopodia and branching in
drebrin overexpressing neurons are negatively regulated by myosin II [137]. Likewise ADF/cofilins,
GMF-family proteins have been shown to be regulated by phosphorylation. GMF-G phosphorylation
at Tyr104 by Abelson tyrosine-protein kinase 1 leads to the dissociation of GMF-G from Arp2/3,
reduction of actin disassembly and facilitation of smooth muscle contraction [138]. The subfamily of
the Rho GTPases, Rac, is involved in regulation of coactosin activity. In response to Rac signaling,
coactosin is recruited to lamellipodia and filopodia, promoting actin polymerization and neural crest
cell migration [106].

As a whole, ADF/cofilin superfamily proteins play a multifaceted role in cells. Since they
are involved in proliferation and migration of mammalian cells, they can also be implicated in
various pathological processes, including tumor growth, invasion, and metastasis. The study of the
possible contribution of these proteins to malignant phenotype of cancer cells is an important task of
molecular oncology.

3. Members of the Actin-Depolymerizing Factor/Cofilin Superfamily in Human Malignant Cells

3.1. ADF/Cofilins

To our knowledge, the first report on detection of Cfl-1 protein in HMCs was published by
Stierum et al. [139]. Using proteomic technologies (two-dimensional electrophoresis (2-DE) and
mass-spectrometric identification) the authors revealed that Cfl-1 was involved in processes of cell
differentiation in colorectal adenocarcinoma (Caco-2) cell line. Later, Cfl-1 was identified in different
tumor cell lines and tissues including adenocarcinomas [15,140–143], osteosarcoma [144], lymphoid
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tissue neoplasms [145], astrocytoma [146], glioma [147], and neuroblastoma [148]. Accordingly, it is
possible to think that Cfl-1 is a common participant in various tumor phenotypes. In particular,
the results of identification of Cfl-1 in various HMCs are presented in the multi-level information
database “Proteomics of malignant cells” [21]. These results for Cfl-1 in several carcinomas and
sarcomas cell lines are shown in Figure 4. Cfl-1 is present on 2-DE gels in high quantity (since it
is detected by routine Comassie R-250 staining) and can be attributed to 200 of the most abundant
proteins of HMCs.
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Figure 4. Fragments of two-dimensional electrophoregramms of human malignant cells
(HMCs) derived from prostate adenocarcinoma (LNCaP, PC-3, Du-145), renal adenocarcinoma
(A498, 769-P, OKP-GS) and sarcoma (U-2 OS—osteosarcoma; RD—rhabdomyosarcoma;
SK-UT-1B—leiomyosarcoma) cells lines. The red arrow shows the identified Cfl-1 fraction,
and the brown dotted arrow shows the profilin fraction as a reference spot.

The increased mRNA and protein levels of Cfl-1 in comparison with control (nonmalignant)
cells have been shown in various HMCs including those from breast [140], lung [142], prostate [149]
etc. Overexpression of Cfl-1 has been mainly associated with tumor cell proliferation, invasion,
and metastasis [14,140,150,151]. It has also been suggested that dephosphorylated, active cofilin
is increased in HMCs [77,151]. However, there are a few opposing reports. For example, the
overexpression of Cfl-1 suppressed growth and invasion of non-small cell lung cancer [152], and
the phosphorylation of cofilin was elevated in bladder cancer samples compared with the normal
bladder tissues [153]. Many authors have considered Cfl-1 protein as a diagnostic/prognostic tumor
biomarker [145,154,155]. Zheng et al. found reliable increasing of Cfl-1 in blood samples obtained
from patients with lung adenocarcinoma compared to healthy control [156]. Cfl-1 can be a target
for chemotherapeutic treatment. It has been shown that docetaxel induces the apoptosis of prostate
cancer cells via suppression of the cofilin signaling pathways [157]. The increased level of Cfl-1 in
HMCs is often associated with poor prognosis which can be related with cofilin-dependent drug
resistance of cancer cells [142,150,158]. Cfl-1 has been upregulated in multidrug resistant malignant
cells compared with non-drug resistant malignant cells [142]. High Cfl-1 levels have been correlated
with cisplatin resistance in lung adenocarcinomas [158]. Cfl-1 may serve as a predictor of poor response
to platinum-based chemotherapy in human ovarian cancer cells [143] and in astrocytomas cells [146].
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The molecular mechanisms of Cfl-1 involvement in the formation of malignant phenotype of
cancer cells are still being investigated. In tumor cells, the actin dynamics and cell motility are
initiated in response to stimuli in the microenvironment. EGF, as well as transforming growth
factor-α (TGFα), stromal cell-derived factor 1 (SDF1) and heregulin have been demonstrated to be
involved in stimulation of cell migration and correlated with progression of various tumors [14].
Dephosphorylation and activation of Cfl-1 upon EGF stimulation increases F-actin-severing activity of
cofilin and generation of free barbed ends that are required for lamellipodial extension and chemotaxis
to EGF, leading to invasion and metastasis [129,159]. Thus, excess of dephosphorylated Cfl-1 may
be implicated in malignant phenotype of cells. This concept has been supported by a number of
authors [151,160,161]. Particularly, Nagai et al. showed that overexpression of non-phosphorylatable
cofilin mutant (cofilin-S3A) in astrocytoma cells resulted in more highly invasive phenotype than those
xenographs expressing wild-type cofilin [151].

Nuclear translocation of dephosphorylated Cfl-1 can also contribute to malignant phenotype
of cells. Dephosphorylated Cfl-1 provides transport of G-actin to the nucleus. Nuclear actin can be
involved in chromatin remodeling, transcription, RNA processing, intranuclear transport, nuclear
export, and maintenance of the nuclear architecture [162]. Correspondingly, the gene expression
changes during cancer progression can be mediated by Cfl-1 through actin transport. Another
mechanism contributing to malignant phenotype of cells and related with Cfl-1 dephosphorylation
and nuclear translocation was described by Samstag and colleagues [80,82]. In untransformed T
lymphocytes, cofilin is part of a costimulatory pathway that is important for the induction of T-cell
proliferation (i.e., for production of IL-2). In response to ligand attachment to accessory receptors
like CD-2, cofilin undergoes dephosphorylation and nuclear translocation. In malignant T lymphoma
cells, dephosphorylation and nuclear translocation of cofilin occur spontaneously through constitutive
activation of serine protein phosphatase. These events lead to T-cell proliferation and inhibition of
apoptosis [80,82].

Cofilin activation/inactivation are modulated by changes in balance of kinases, phosphatases and
other cofilin upstream regulatory proteins. These changes are responsible for initiation of the early
steps of cancer cell motility and metastasis [119]. SSH1 is the most well-studied cofilin phosphatase
which has been found to be upregulated in various invasive cancer cells. Wang et al. have revealed that
overexpression of slingshot-1L (SSH1L) in pancreatic cancer contributes to tumor cell migration [163].
This enzyme is activated by F-actin which is formed in high quantity during lamellipodial assembly in
malignant cells [164]. Phosphorylation and inhibition of SSH1L by protein kinase D (PDK) suppress
cancer cell migration [165]. The role of protein kinase LIMK1 in tumor invasion and metastasis is
still under discussion, similarly to its role in cell migration. According to various authors, LIMK1
caused either a decrease [119,159] or an increase [122,166,167] in invasion and metastasis. In metastatic
rat mammary adenocarcinoma cells, the expression of the kinase domain of LIMK1, resulting in
the near total phosphorylation of cofilin, completely inhibited the appearance of barbed ends and
lamellipodia protrusion in response to EGF stimulation [119]. Overexpression of LIMK1 suppressed
EGF-induced membrane protrusion and locomotion in rat mammary carcinoma cells [159]. In contrast,
the increased activity of LIMK1 led to human breast cancer progression [166]. The level and activity of
endogenous LIMK1 was increased in invasive breast and prostate cancer cell lines in comparison with
less invasive cells [167]. The knockdown of LIMK1 has suppressed chemokine-induced lamellipodium
formation and migration of Jurkat T cells [122]. These data about the positive role of LIMK1 in
tumor cell migration at first seem to contradict the mechanism of tumor progression related to Cfl-1
dephosphorylation. Thus, some researchers have suggested that LIMK1 may play a role in regulating
tumor progression via other mechanisms, independent of cofilin. For example, Bagheri-Yarmand et al.
proposed that LIMK1 increases tumor metastasis of human breast cancer cells through stimulation
of urokinase-type plasminogen activator system and degradation of the extracellular matrix by the
serine protease urokinase type plasminogen activator [168]. However, there is a body of evidence that
LIMK1 can influence the metastatic phenotype of tumor cells via regulation of cofilin activity, and
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the controversial effects of LIMK1 expression on migration and metastasis of cancer cells require an
explanation. Wang et al. suggested that LIMK1 expression alone does not determine the motility and
invasion status of carcinoma cells, and the collective activity and the output (barbed end production)
of the LIMK1/cofilin pathways should be estimated [159]. Besides that, the contradictory results from
different groups may be caused by different cell types used in these studies.

It has been shown that oncoproteins and tumor suppressor proteins have effect on invasive
and metastatic potential of tumors through cofilin-regulating pathways. One of the most known
oncoproteins, tyrosine-protein kinase transforming protein of Rous sarcoma virus (v-Src) can
disrupt the functioning of the Rho–ROCK–LIM kinase pathway resulting in dephosporylation of
Cfl-1 and increased level of active Cfl-1 [169]. The tumor suppressor protein phosphoinositide
phosphatase and tensin homolog (PTEN) may inactivate cofilin in cancer cells, while loss of PTEN and
activation of phosphoinositide 3-kinase (PI3K) caused differential activation of the cofilin regulators,
LIMK1 and SSH1L, and cofilin dephosphorylation, that promote microtentacles formation and
enhance metastatic risk [170]. In addition, it was shown that the tumor suppressor Ras association
domain-containing protein 1 (RASSF1A) blocks tumor growth by stimulating cofilin/PP2A-mediated
dephosphorylation [161].

Thus, the role of Cfl-1 as an important participant of various signaling pathways in HMCs
requires further investigation. The contributions of Cfl-1 to the malignant phenotype are schematically
presented in Figure 5. Obviously, the results of its study might be interesting in designing new
approaches to early diagnostics and to rational treatment.
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There are few publications about the presence of Cfl-2 in HMCs and cancer tissues. The muscle
isoform of Cfl-2 (Cfl-2b) is considered as a biomarker of muscle differentiation [171] and has been
identified in high quantity in well-differentiated leiomyosarcomas compared to undifferentiated
pleomorphic sarcomas [172]. The expression level of Cfl-2 has prognostic significance in primary
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leiomyosarcomas independent of the histopathological type of tumor, and its expression correlates
with improved disease-specific survival [172]. Cfl-2 has also been identified in HMCs of non-muscle
origin [173–176]. Cfl-2 has been overexpressed in aggressive breast cancer cell lines, and its
expression has been correlated with tumor grade in primary breast cancer tissue [175]. Significant
upregulation of Cfl-1 and downregulation of Cfl-2 has been observed in pancreatic adenocarcinomas
compared to non-cancerous tissues [173]. Dstn is the third traditional member of ADF/cofilins
family that has also been identified in HMCs, mainly in different adenocarcinomas [6,18,143,177].
Likewise Cfl-1, Dstn can be a potentional biomarker of resistance to platinum-based agents [143].
The structural and functional similarities of traditional cofilins (in particular, the ability to undergo
phosphorylation-dephosphorylation on Ser3) suggest that Cfl-1, Cfl-2 and Dstn may also be involved in
the same pathways. Overexpression of LIMK1, Cfl-1, and Cfl-2 has been associated with low expression
of mitogen-activated protein kinase MAPK1 (which is involved in cell growth and proliferation),
and with enhanced survival of the patients with glioblastoma multiforme [174]. Dstn like Cfl-1
promotes tumor cell migration and invasiveness, but in general the activities of Dstn and Cfl-1 are
non-overlapping [6,177].

3.2. Other Actin-Depolymerizing Factor/Cofilin Superfamily Proteins

Data on the expression of twinfilins in HMCs have been initially obtained using transcriptomics
approaches. It has been shown that twinfilin might be a key determinant of lymphoma progression
through regulation of actin dynamics. Moreover, twinfilin suppressed the action of the front-line
chemotherapeutic agent vincristine in Eµ-myc lymphoma cells [178]. In prostate cancer cells,
an osteoblast master transcription factor Runx2 is aberrantly expressed and promotes metastatic
phenotype of cells through up-regulation of twinfilin gene and other genes with cancer associated
functions [179]. TWF1 has been detected as a target for microRNA-206 (miR-206) which is referred to
microRNAs, fundamental post-transcriptional regulators inhibiting gene expression. Blocking TWF1
by miR-206 in human xenograft models of breast cancer can suppress tumor invasion and metastasis
by inhibiting the actin cytoskeleton dynamics [180].

Drebrins are considered as brain-specific intracellular regulators of morphogenesis [36,181].
The first report on drebrin detection in HMCs was published by Asada et al., who detected drebrin
(namely, drebrin E2) in cultured neuroblastoma cells [182]. Later, data on the presence of drebrins in
non-neuronal tumor tissues, especially in gliomas and malignant epithelial tumors, were published.
The level of this protein in glioma cell lines varies and is equivalent or higher in comparison with
the normal cells [183]. High expression level of this protein in glioma U87 cells transfected with
a drebrin expression construct induces increased invasiveness and provides cell motility. On the
contrary, knockdown of DBN1 in glioma cells by small interfering RNA (siRNA) leads to decrease
of cell migration and invasiveness [183]. It has been demonstrated that basal cell carcinomas are
rich in drebrin, while keratinocytes of normal epidermis contain almost no drebrin, and that drebrin
has potential value in diagnosis of basal cell carcinomas [98]. Drebrin has also been assumed as a
potential biomarker for bladder cancer [184]. This protein can be considered a prognostic marker
in patients with small lung cancer [185]. Proteomic analysis of colorectal cancer cell lines revealed
drebrin to be overexpressed during liver metastasis [186]. The exact role of drebrin in epithelial
tumor growth and formation of invasive and metastatic cell phenotype is still unclear. In urothelial
carcinoma cell lines, drebrin has been shown to be critical for progranulin-dependent activation of
the Akt and MAPK pathways and to modulate motility, invasion and anchorage-independent growth
of tumor [184]. The drebrin-like protein (synonyms: mAbp1, HIP-55) known as the mammalian
homologue of the yeast Abp1 has been poorly studied in HMCs, and the studies provide contradictory
results. It was found that mAbp1 was upregulated or downregulated in several types of tumor tissues,
and the highest expression was shown in lung cancer tissues. This protein increased the viability and
decreased the apoptosis of lung cancer A549 cells treated with the anticancer agent etoposide [187].
It has been also reported that mAbp1 interacts with transcription regulator FHL-2 (four and a half
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LIM domains protein 2) and participates in negative regulation of Rho signaling and breast cancer cell
invasion [188].

The GMF-B protein was initially characterized as a protein of neural tissue of vertebrates,
which is able to affect the growth of normal and malignant glial cells in vitro and in vivo [41,42,189].
The molecular effects of GMF-B on HMCs of neuronal origin are diverse and contribute to contradictory
results of studies. In particular, this protein was shown to stimulate DNA synthesis and proliferation
of glioma cells and hybrid cells derived from glioma and neuroblastoma (NG108-15) cells, but had
no effect on neuroblastoma cells [189]. In glioma cell lines of rodent and human origin, GMF-B
promoted the initial growth of cell lines, but limited the proliferation by contact inhibition at the next
steps [42]. In rat glioma cells, after transfection with GMF-B the enhanced expression of neurotrophic
factors including nuclear factor-κ B was detected [190]. These results suggest a cytoprotective role for
endogenous GMF in glial cells. In parallel, GMF-B was demonstrated to cause glioma progression
via promoting neovascularization [191]. Finally, it was found that induced overexpression of GMF-B
protein in neuroblastoma cells caused the cytotoxicity and loss viability via activation of glycogen
synthase kinase-3β and caspase-3 [192]. GMF-B has been also found in non-brain tumors. Screening
using retroviral expression libraries allowed detection of GMF-B encoding gene among genes involved
in ovarian carcinogenesis [193]. The GMF-B protein was significantly overexpressed in serous ovarian
carcinoma compared to normal epithelium, benign serous adenoma and borderline serous adenoma
tissues, and high expression of GMF-B was associated with poor disease-free survival and overall
survival [194]. There is only one report about identification of GMF-G in HMCs. Recently, Zuo et al.
showed that the high GMF-G expression correlates with poor prognosis and promotes cell migration
and invasion in epithelial ovarian cancer [195].

Human coactosin-like protein (COTL-1) has not been very actively studied in HMCs. The first
reports on identification of COTL-1 in HMCs were published by Nakatsura et al. [196]. COTL-1 was
detected by the serological expression cloning method (SEREX) in human pancreatic adenocarcinoma
cell lines among a number of other pancreatic cancer antigens. The authors assumed that peptides from
COTL-1 might be appropriate vaccine candidates for peptide-based immunotherapy of prostate cancer
patients [196]. Later, proteomic analysis of PaCa44 pancreatic adenocarcinoma cell line treated with
a chemoterapeutic agent, 5-aza-2′-deoxycytidine (DAC), revealed the 22-fold decreased expression
of COTL-1 along with silence of cofilin and profilin 1 [197]. After that, Oh et al. using 2-DE with
mass spectrometric identification revealed COTL-1 as a differentiation-related cytoskeleton protein in
neuroblastoma cells [198]. Hou et al. also reported detection of COTL-1 in N1E-115 neuroblastoma
cells [106]. Moreover, COTL-1 may also present in poorly differentiated cells, for example, in the case
of high aggressive small cell lung cancer [199]. The comparison of small cell lung cancer tissues with
normal bronchial epithelium showed more than 2-fold upregulation of this protein in cancer specimens.
COTL-1 was immunohistochemically detected in 93% of small cell lung cancer tissue specimens and
only in 16% of non-small cell lung cancer samples. On this basis authors assumed that COTL-1 may be
a biomarker or a therapeutic target for patients with small cell lung cancer [199].

To sum up, despite the definite role in tumors, the mechanisms involving twinfilins, drebrin
and drebrin-like protein, GMFs, and coactosin-like protein in malignant phenotype are still unclear.
Consequently, new studies are needed to clarify their roles in tumors.

4. Conclusions

Cofilin-1 is found in all vertebrates and in many other organisms and plays an essential role in
actin filament dynamics and reorganization through severing actin filaments. This function of Cfl-1
is regulated by several mechanisms including phosphorylation on Ser3. Active (dephosphorylated)
Cfl-1, in addition to the main function, is able to provide transport of G-actin and some other proteins
to the nucleus which is accompanied by changes in gene expression. Phospho-Cfl-1, considered
by many authors as inactive, has been found to have its own function, namely, direct activation of
phospholipase D1. Thus, Cfl-1 can be considered as a multifunctional protein which is involved
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in several signaling pathways regulating cell motility and development. HMCs of different origin
contain Cfl-1 as one of the most abundant proteins. The expression level of Cfl-1 is often increased
in HMCs, which underlines its contribution to malignant phenotype. There are several mechanisms
involving Cfl-1 in tumor proliferation, invasion, and metastasis that are realized mainly through
changes in the balance of kinases, phosphatases, and other proteins involved in cofilin-regulating
pathways. Cofilin phosphatase SSH1 has been found to be upregulated in various invasive cancer cells.
Cofilin kinase LIMK1 has also shown to play a pivotal role in cell motility. However, some studies
provide contradictory data concerning the influence of the expression level of LIMK1 on cell migration,
invasion, and metastasis.

The characteristic structural feature of Cfl-1 is the presence of special ADF-H domain in its
structure. The ADF-H domains have also been identified in a number of other proteins that can directly
or indirectly interact with actin cytoskeleton and provide its remodeling. These proteins, differing in
size and functionality, are currently referred to as ADF/cofilin superfamily. Almost all of these proteins
are direct or indirect regulators of cell motility. In addition, drebrin, drebrin-like protein, and glia
maturation factors are characterized as regulators of cellular differentiation. Therefore, all ADF/cofilin
superfamily members can contribute to malignant phenotypes of HMCs. However, available data on
the functions and presence of many ADF/cofilin superfamily proteins in HMCs are still limited and
conflicting. For instance, conflicting results were obtained concerning the role of mAbp1 and GMF-B
in invasion and metastasis.

The controversial data on the role of dephosphorylated Cfl-1, LIMK1, mAbp1, and GMF-B in cell
motility, invasion and metastasis may have several possible reasons including different cell types used
in the studies, intratumoral cell heterogeneity, distinct functions of studied proteins at different stages
of development or tumor progression, cellular background, etc. All these factors should be taken into
account, and the collective activity of cofilin-regulating pathways should be estimated for evaluation
of the invasive and metastatic potential of HMCs. With due consideration of these factors, further
studies of ADF/cofilin superfamily proteins in HMCs can be a very promising research direction,
which may extend the understanding of the molecular basis of tumor phenotypes and provide new
protein targets for molecular and clinical oncology.
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