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Abstract

Objective: Type 2 diabetes mellitus (DM) accelerates brain aging and cognitive decline. Complex interactions between
hyperglycemia, glycemic variability and brain aging remain unresolved. This study investigated the relationship between
glycemic variability at multiple time scales, brain volumes and cognition in type 2 DM.

Research Design and Methods: Forty-three older adults with and 26 without type 2 DM completed 72-hour continuous
glucose monitoring, cognitive tests and anatomical MRI. We described a new analysis of continuous glucose monitoring,
termed Multi-Scale glycemic variability (Multi-Scale GV), to examine glycemic variability at multiple time scales. Specifically,
Ensemble Empirical Mode Decomposition was used to identify five unique ultradian glycemic variability cycles (GVC1–5) that
modulate serum glucose with periods ranging from 0.5–12 hrs.

Results: Type 2 DM subjects demonstrated greater variability in GVC3–5 (period 2.0–12 hrs) than controls (P,0.0001), during
the day as well as during the night. Multi-Scale GV was related to conventional markers of glycemic variability (e.g. standard
deviation and mean glycemic excursions), but demonstrated greater sensitivity and specificity to conventional markers, and
was associated with worse long-term glycemic control (e.g. fasting glucose and HbA1c). Across all subjects, those with
greater glycemic variability within higher frequency cycles (GVC1–3; 0.5–2.0 hrs) had less gray matter within the limbic
system and temporo-parietal lobes (e.g. cingulum, insular, hippocampus), and exhibited worse cognitive performance.
Specifically within those with type 2 DM, greater glycemic variability in GVC2–3 was associated with worse learning and
memory scores. Greater variability in GVC5 was associated with longer DM duration and more depression. These
relationships were independent of HbA1c and hypoglycemic episodes.

Conclusions: Type 2 DM is associated with dysregulation of glycemic variability over multiple scales of time. These time-
scale-dependent glycemic fluctuations might contribute to brain atrophy and cognitive outcomes within this vulnerable
population.
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Introduction

Type 2 diabetes mellitus (type 2 DM) is among the leading

causes of morbidity, cognitive decline and dementia [1,2]. DM

accelerates signs of brain aging and manifests as regional

hypoperfusion, tissue atrophy and cognitive and functional

impairment [3,4]. Fluctuation of serum glucose between
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hyper- and hypoglycemic levels may exacerbate the risk for

dementia [2,5,6]. Recent clinical trials indicate that interactions

between chronic hyperglycemia and glycemic variability are

complex and that their effects on the brain and cardiovascular

autonomic system are not well understood [7,8].

Glucose metabolism is influenced by numerous intrinsic

rhythms and behaviors, including autonomic, hormonal and

cardiovascular responses to activity, meals and sleep [9–12]. These

regulatory processes often interact and are closely coupled with the

body clock system and central autonomic neural networks,

resulting in complex dynamics of glucose and insulin signaling

between the brain and peripheral organs. Glucose variability is

linked with several ultradian rhythms, e.g., insulin and cortisol

secretion [13–17], autonomic control of sleep cycle and nighttime

blood pressure reduction (i.e., nocturnal dipping) [12,18], meals

and sleep/wake cycles [12,19]. Therefore, serum glucose levels

fluctuate over multiple temporal scales, and alterations of these

regulatory processes may contribute to type 2 DM-related

complications [20,21]. Recent advances in signal processing

allowed to quantify multi-scale fluctuations from a discrete, non-

stationary time-series of serum glucose and therefore may provide

critical insight into the effects of glucose variability on functional

outcomes.

Our objective was to study the effects of glycemic variability at

distinct time scales on the brain and cognition in older diabetic

adults.

We hypothesized that: 1) Type 2 DM alters the regulation of

glucose over multiple scales of time. To test this hypothesis, we

have introduced a novel analytical approach termed Multi-Scale

glycemic variability (Multi-Scale GV), which is based upon the

Ensemble Empirical Mode Decomposition (EEMD) algorithm

[22–24]. This approach, which has no priori assumptions

regarding cycle length, signal linearity or stationarity, enables

identification of the degree of glycemic variability for multiple

unique oscillatory cycles with average periods ranging from

minutes to hours. We have compared Multi-Scale GV measures

to traditional measures of glycemic variability to validate this

approach. Further, we analyzed glycemic variability for entire

recording period, but also separately for day and night periods to

determine whether day-time behaviors affect glycemic variability

at specific time-scales. We further hypothesized that: 2) Increases

in glycemic variability at specific time-scales would be related to

structural changes in central autonomic network and worse

cognitive function. Therefore, we sought the relationships among

glycemic variability and gray matter volumes in central autonomic

network, and cognition. Finally, we hypothesized that: 3) In type 2

DM, observed relationships between glycemic variability, brain

structure and cognitive function would be independent of long-

term glycemic control, e.g., hemoglobin A1C (HbA1c) and the

prevalence of hypoglycemic episodes (,70 mg/dL). Hence, we

studied the relationship between glycemic variability, brain

structure and cognitive function in older adults with type 2 DM

and age-matched controls.

Research Design and Methods

Ethics Statement
Experiments were conducted in the Syncope and Falls in the

Elderly Laboratory at the Clinical Research Center and the

Center for Advance Magnetic Resonance Imaging (MRI) at Beth

Israel Deaconess Medical Center (BIDMC). Participants were

recruited consecutively and provided informed written consent as

approved by the Institutional Review Board (IRB, i.e., the

Committee on Clinical Investigations, Beth Israel Deaconess

Medical Center). The study has been approved by BIDMC IRB

and consent forms are available upon request.

Subjects
The cohort consisted of 43 volunteers with type 2 DM aged 50–

85 years, and 26 non-diabetic, age-, sex- and cardiovascular risk-

matched adults with normal fasting glucose and HbA1c.

Recruitment was completed via community advertisement.

Subjects in DM group were diagnosed with type 2 DM and

treated .5 years with oral agents and/or combinations with

insulin, either normotensive (BP,140/90 mm Hg and no medical

history of hypertension) or hypertensive (BP.140/90 mm Hg

and/or treated for hypertension). Control subjects were – normal

glucose, HBA1c, MMSE, with and without hypertension.

Type 2 DM subjects were treated with insulin (11), oral glucose-

control agents (sulfonylurea, second generation agents or their

combinations (34)), or diet (5), and for hypertension (7) and

hyperlipidemia (27). Controls were treated for hypertension (9)

and/or hyperlipidemia (11).

Exclusion criteria were: type 1 DM, history of stroke, subacute

myocardial infarction, significant cardiac diseases, arrhythmias

and nephropathy, kidney or liver transplant, congestive heart

failure, carotid artery stenosis, neurological or other systemic

disorders, dementia or sub-threshold Mini Mental Status Exam

(MMSE) scores ($3 points below the comparative normal value

for the subject’s age group and education level, or #24), current

recreational drug or alcohol abuse, morbid obesity (BMI$40),

claustrophobia, or 3T MRI-incompatible metal implants, pace-

makers or arterial stents.

Of 130 participants (including 74 type 2 DM subjects and 56

control subjects), 30 type 2 DM subjects and 26 control subjects

were excluded. Besides, 5 eligible subjects were also excluded from

the analysis due to incomplete continuous glucose monitoring

(CGM) recordings.

Protocol
CGM and 24-hour ambulatory blood pressure monitoring

(ABPM) [25] were assessed for three days prior to an overnight

admission to the BIDMC Clinical Research Center. A nurse set up

CGM and also trained participants to manually measure their BP

and glucose, four times daily (i.e., before meals and at bed time),

using arm cuff and finger stick methods. Participants were directed

to go to bed at 10pm, wake at 7am and maintain their typical

activities. They documented sleep/wake times, meals and medi-

cations in a diary. Upon admission, neurological and neuropsy-

chological assessments were performed. A fasting blood draw and

urinary sample were obtained the next morning for routine

glucose, lipid and renal panels. The MRI was then completed.

Continuous Glucose Monitoring
The iPro Professional CGM (Medtronic, Minneapolis MN)

enabled multi-day glucose measurements with a waist-level

subcutaneous sensor [26]. The sensor obtained interstitial glucose

levels every five minutes and was calibrated four times daily via

finger stick [27].

Neuropsychological Measures
Neuropsychological assessments included the Mini-Mental State

Examination (MMSE), Hopkins Verbal Learning Test–Revised

(HVLT, verbal learning and memory function, including a Total

Recall (total number of list items learned across trials), Delayed

Recall (total number of list items recalled after the delay),

Retention (percentage of items from Total Recall that are
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subsequently recalled on Delayed Recall), and Recognition

Discrimination Index (number of list items correctly identified

among non-list items)) [28], Rey-Osterreith Complex Figure Test

(ROCFT, a measure of visual-spatial ability and visual memory

function, including Immediate Recall and Delayed Recall), Trail

Making Test A and B (TMT, executive function), and Verbal

Fluency (a measure of executive function, dependent variables for

the fluency measures include number of items generated for each

of three phonemic trials (e.g., F, A, S) and the number of items

generated for the semantic task (e.g., animals)) [29]. The Geriatric

Depression Scale (GDS) and the Instrumental Activities of Daily

Living (IADL) Scale were also completed. The neuropsychological

test results were analyzed using age-adjusted standardized T

scores.

Composite cognitive performance for learning and memory

function (‘‘learning and memory T score’’) was calculated as an

average of HVLT and ROCFT T scores. Composite cognitive

performance for executive function (‘‘executive function T score’’)

was calculated as an average of Verbal Fluency and TMT T

scores. A total composite cognitive function (‘‘Composite T score’’)

was calculated as the average of all the T scores [30]. All the T

scores were adjusted for age, sex, race and educational levels.

Magnetic Resonance Imaging
Studies were performed on a 3-Tesla GE GHX MRI scanner

using a quadrature and eight-channel phase array head coils (GE

Medical Systems, Milwaukee, WI). Anatomical images were

acquired using 3-D magnetization prepared rapid gradient echo

(MP-RAGE) and fluid attenuated inversion recovery (FLAIR)

sequences. Images were analyzed using tools developed in

interactive data language (IDL, Research Systems, Boulder,

Colorado, USA) and MATLAB (MathWorks, Natick, Massachu-

setts, USA). Anatomical MR images (MP-RAGE and FLAIR)

were co-registered non-linearly to the MNI152 standard template

and segmented to calculate regional gray and white matter and

cerebrospinal fluid volumes in main anatomical lobes and their

sub-regions (SPM, University College London, UK) [31]. Sub-

regions were defined according to the LONI Probabilistic Brain

Atlas (LPBA40). Each lobe (e.g. frontal, temporal etc.) was divided

according to anatomical divisions and structures (e.g. middle

orbitofrontal gyrus, superior frontal gyrus, hippocampus, etc.).

Glycemic Variability Measurements
Glycemic variability was calculated from the entire 72-hour

CGM time-series. Traditional metrics included the standard

deviation (SD), mean glycemic excursions (MAGE) [32] and the

number and duration of hypoglycemic episodes defined as

glycemic levels ,70 mg/dL. MAGE was calculated as the

arithmetic mean of glucose increases or decreases (from glucose

nadirs to peaks or vice versa) when both ascending and descending

segments exceeded the value of one SD of mean glucose [32].

To study glycemic variability at multiple temporal scales, we

propose a new measurement called Multi-Scale Glycemic Vari-

ability (Multi-Scale GV). This technique decomposes the original

CGM time-series using EEMD. This adaptive data analysis

technique automatically identifies periodicities intrinsic to the

time-series, which underlie its fluctuations at different time-scales.

It does not assume linearity or stationarity of the series, thereby

offering advantages over traditional approaches such as Fast

Fourier Transform (FFT) or wavelet decomposition [33,34]. Each

CGM time-series was decomposed into multiple new time-series,

termed intrinsic mode functions (IMFs), characterized by a

dominant frequency band. We refer to each IMF as a glycemic

variability cycle (GVC). Thus, Multi-Scale GV enables the

identification and subsequent quantification of GVCs at multiple

time scales from minutes to hours without any priori assumptions

of cycle duration.

Multi-Scale Glycemic Variability Measurement based on
EEMD Algorithm

Computational Steps for Multi-Scale GV analyses are described

as follows:

Step 1. Decompose the raw CGM data (72 hours) of each subject into

IMFs, here referred as glycemic variability cycles (GVCs). Each GVC

consists of narrow-band frequency-amplitude modulations. The

GVCs were obtained via EEMD, which is a noise-assisted

improvement of the EMD method [22,23,35,36], briefly intro-

duced in Text S1.

Step 2. Calculate the average period (time-scale) of each GVC. As CGM

sampling frequency was 5 minutes and sampling duration was 72 hours, we

selected the GVCs with period less than 24 hours. GVCs are non-

stationary, with varying amplitude and frequency. The calculation

of the average period for each GVC is shown in Text S2.

Step 3. For each subject, quantify the glycemic variability at multiple cycles

(or time-scales) by calculating the standard deviation for each GVC obtained in

Step 2.

Statistical Analysis
All variables were summarized using descriptive statistics and

compared between groups using one-way ANOVA and non-

parametric tests.

To test our first hypothesis that type 2 DM alters the regulation

of glucose over multiple scales of time, we compared all markers of

glycemic variability between groups using one-way unadjusted

ANOVAs, and between day and night using two-way ANOVA.

To compare Multi-Scale GV to traditional glycemic measures

(SD and MAGE), we used least square models adjusted for age, sex

and group. Receiver operating curves (ROC) were used to

compare the sensitivity and specificity of Multi-Scale GV, SD

and MAGE.

To test our second hypothesis that increases in glycemic

variability at specific time-scales would be associated with brain

tissue atrophy and cognitive function, we first adjusted cognitive

test scores for age, sex and education. A correlation matrix was

initially used to determine associations among multiple variables

(age, sex, regional MR volumes and cognitive). Those correlations

with r2.0.1 and P,0.05 were included in the modeling approach.

Least squares models were then used to assess the relationships

between glycemic variability and outcome measures. Independent

variables were GVCs, SD and MAGE, and dependent variables

were regional brain volumes and cognitive functional measures.

These models were calculated for each parameter separately to

minimize repeated measures effects. In results section, we

presented r2 adjusted for co-variants. For the relationship between

Multi-Scale GV and brain volumes, we conservatively selected

only models with adjusted r2.0.25, and P,0.05 from models

adjusted for age, sex, group.

To test our third hypothesis that observed relationships between

glycemic variability, brain structure and cognitive function would

be independent of long-term glycemic control (i.e., fasting glucose,

HbA1c, DM duration, hypoglycemic episodes), least squares

models were first used to assess the relationships between HbA1c

(or hypoglycemic episodes), brain volumes and functional

outcomes, then used to assess the relationship between glycemic

variability, brain volumes and functional outcomes. Models were

adjusted for age, sex, group, glucose, HbA1c and hypoglycemic

episodes. We also examined the relationship between HbA1c, SD,

Glycemic Variability in Type 2 Diabetes
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MAGE and brain volumes, functional outcomes, using least

squares models adjusted for age, sex and group.

The effects of diabetes duration, medication classes, BP,

hypertension, HbA1c, body mass index and other confounders

were also evaluated.

All the relationships were assessed using least squares models

adjusted for age and sex (and group for all subjects), and we

presented r2 for the entire model and P values for the specific effect

of Multi-scale GV.

Results

Characteristics of the Study Cohort
Table 1 summarizes cohort demographics, cardiovascular and

metabolic outcomes, cognition and global brain volumes. There

were no between-group differences in age, sex, education, 24 hour

systolic and diastolic BP, reduction of diastolic BP during sleep,

average number or duration of hypoglycemic events, depression,

Trail Making Test, MMSE score, or global CSF. As compared to

controls, the type 2 DM group had lower body mass index, HbA1c

and fasting glucose. This group also exhibited worse composite

Table 1. Characteristics of the study cohort.

Diabetes (n = 43) Control (n = 26) P-value

Demographics

Age (years) 65.5268.73 65.21610.23 0.89

Sex (male, female) 20, 23 14, 12 0.56

Body mass index (kg/m2) 29.9264.90 25.2064.63 ,0.0001

Race (W, AA, Latino, other) 28, 12, 2, 1 25,1, 0, 0 0.032

Education (years) 15.1763.62 15.9263.02 0.33

Cardiovascular and Metabolic Outcomes

Hypertension (yes/no) 35/43 7/26 ,0.0001

24 hour systolic BP (mmHg) 131.2169.47 126.9268.50 0.08

24 hour diastolic BP (mmHg) 67.7367.31 67.4068.81 0.89

Microalbumin, urine (ug/mL) 11.94616.35 19.16633.22 0.56

Cholesterol-to-HDL ratio 3.8062.64 3.1861.03 0.34

Triglycerides (mg/dL) 139.23687.01 105.30659.02 0.03

Total number of Hypoglycemic Events 1.8062.80 4.0065.80 0.29

Average duration of Hypoglycemic Events (min) 46.45630.75 53.69633.76 0.52

Diabetes duration (years) 13.3366.81 - -

Hematocrit (%) 39.8068.23 40.1663.62 0.06

Hemoglobin A1C (%) 7.1661.17 5.6660.29 ,0.0001

Hemoglobin A1C (mmol/mol) 54.7612.8 38.263.2 ,0.0001

Fasting Glucose (mg/dL) 125.67647.32 89.83610.09 0.0002

Cognitive Outcomes

Composite ‘‘Learning and Memory T score’’ 43.4469.40 51.3569.18 0.0004

- Hopkins Verbal Learning (T Score) 44.1669.44 52.6567.93 ,0.0001

- Rey-Osterrieth Complex Figure Test (T score) 42.26611.22 48.39613.43 0.03

Composite ‘‘Executive function T score’’ 40.8467.60 49.7567.70 ,0.0001

- Verbal Fluency (T score) 37.2267.72 51.6169.26 ,0.0001

- Trail Making Test (T score) 44.5669.93 47.7869.07 0.15

Overall ‘‘Composite T score’’ 42.2067.06 51.4367.27 ,0.0001

MMSE Scores (range: 25–30) 28.4661.54 29.0061.52 0.17

Instrumental Activities of Daily Living 26.1961.31 26.0063.04 0.74

Geriatric Depression Scale 7.1261.14 4.8361.39 0.21

Global Brain Volumes (cm3)

Gray matter 622.16672.96 666.62674.83 0.02

White matter 422.63657.44 461.43657.81 0.01

Cerebrospinal Fluid 611.786206.53 647.516211.05 0.51

Data are presented as mean 6 standard deviation (SD). P values were obtained by One-Way ANOVA to compare group means and using Wilcoxon Test for not normally
distributed variables. The variables analyzed using Wilcoxon Test are Age, Sex, Race, Education, Hypertension, Microalbumin (urine), Cholesterol-to-HDL ratio,
Triglycerides, Total number of Hypoglycemic Events, Average duration of Hypoglycemic Events, and Hematocrit, and other variables were analyzed using One-Way
ANOVA. MMSE: Mini-Mental State Examination.
doi:10.1371/journal.pone.0086284.t001
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cognitive function T scores, lower HVLT and ROCFT perfor-

mance (indicating impaired learning and memory).

Multi-Scale Glycemic Variability (Multi-Scale GV)
Multi-Scale GV identified serum glucose fluctuations at five

unique frequencies in type 2 DM subjects and controls: GVC1

(,0.5 hour), GVC2 (,1 hour), GVC3 (,2 hours), GVC4 (4–

5 hours), GVC5 (9–12 hours) (Table 2). The period of GVC4 (type

2 DM: 4.7561.14 hours; controls: 3.8461.05 hours) coincides

with meal cycles as reported in home diaries (type 2 DM:

4.4161.17 hours; controls: 3.9961.35 hours) and the period of

GVC5 (9–12 hours) may reflect sleep/wake cycle. Fig. 1 provides

an example of this technique as applied to the data of a

representative control subject alone (Fig. 1A), as well as in

comparison with an age-matched patient with type 2 DM (Fig. 1B).

As compared to controls, the type 2 DM group had greater

variability in GVC3–5 (P,0.0001) and longer cycle durations in

GVC4 (P = 0.004) and GVC5 (P,0.0001). We also separately

analyzed the effects of sleep/wake behavior on glycemic variability

(Fig. 2). GVC1–5 was identified during both day and night in both

groups, but the variability was greater in the DM group. Type 2

DM subjects had greater variability than controls both during the

day (GVC2–5, P = 0.00001–0.031) and night (GVC3–5, P,0.0001).

In the type 2 DM group, variability was less at night as compared

to day (GVC2, P = 0.002; GVC3–4, P,0.0001). In controls,

variability was less at night as compared to day only in GVC3

(P = 0.028).

Relationships between Multi-Scale GV, Conventional
Markers of Glycemic Variability and Long-Term Glycemic
Control

All conventional markers of glycemic variability were greater in

diabetic subjects as compared to controls (Table 2) (e.g. SD,

MAGE of CGM data, and mean, SD of glucose values obtained

from subject-recorded finger sticks) (P,0.0001).

The degree of variability within each GVC correlated with

SD of CGM (r2 = 0.46–0.89, P,0.005) (Fig. 3A), MAGE

(r2 = 0.50–0.90, P,0.0004) (Fig. 3B) and both the average and

SD of glucose values measured by finger sticks during home

monitoring (r2 = 0.32–0.62, P,0.01). However, using an area

under the curve (ROC) analysis, GVC4–5 performed better at

classifying diabetic and control subjects (larger area and higher

sensitivity and specificity) than either SD or MAGE (Fig. 3C).

Across all subjects, greater variability within one or more GVCs

was also associated with worse glycemic control, including higher

fasting glucose (r2 = 0.31–0.34, GVC1–5 P = 0.0006–0.036), higher

HbA1c (r2 = 0.45–0.50, P,0.05) (Fig. 3D). In the type 2 DM

group, greater variability within GVC5 was associated with longer

type 2 DM duration (r2 = 0.26, P = 0.033), however, no measure of

glycemic variability correlated with the number or duration of

hypoglycemic episodes (defined as glycemic levels ,70 mg/dL).

Relationship between Multi-Scale GV and Brain Volumes
As compared to controls, subjects with type 2 DM had lower

global gray matter (GM, P = 0.02) and white matter (WM,

P = 0.01) volumes, but not cerebrospinal fluid (CSF) volume

(Table 1). Regionally, diabetic subjects exhibited reduced GM

within the hippocampus, insular cortex, superior parietal gyri and

supramarginal gyri (P,0.05) (Fig. 4, and Fig. 5).

The presented relationships between Multi-Scale GV and

regional brain volumes were got from least squares models for

the entire cohort, as well as within each group separately.

Across all subjects, greater glycemic variability within higher

frequency cycles (GVC1–2, 0.5–1 hours) was associated with lower

GM volumes (r2 = 0.26–0.74, P = 0.001–0.048) and more CSF

volume (r2 = 0.25–0.50, P,0.05) in multiple regions within the

limbic system, as well as several temporal and parietal regions

linked to learning and memory, e.g. bilaterally within the cingulate

gyrus, hippocampus, middle temporal gyrus, inferior temporal

gyrus and insular cortex, as well as within the left superior parietal

gyrus and right fusiform gyrus (Fig. 4, Fig. 5 and Fig. 6).

In the type 2 DM group only, greater variability in GVC2 was

correlated with lower GM volumes within the cingulate gyrus

(r2 = 0.40, P = 0.02) and insular cortex (r2 = 0.33, P = 0.032).

Table 2. Comparisons of glycemic measures and glycemic variability measures between diabetic and control groups y.

Glycemic variability (mg/dL) Diabetics (n = 43) Controls (n = 26) P-value

Home monitoring-finger stick glucose 148.06634.92 102.18610.04 ,0.0001

SD of glucose finger stick measurements 44.99628.84 14.6665.48 ,0.0001

Mean CGM glucose value 150.14632.52 107.97616.91 ,0.0001

SD (Standard deviation) 38.39621.73 17.4468.12 ,0.0001

MAGE (Mean Glycemic Excursions) 95.22655.39 39.45616.49 ,0.0001

Multi-Scale GV GVC1 period (hour) 0.6360.03 0.6260.07 0.51

Variability 2.6261.63 1.9961.01 0.08

GVC2 period (hour) 0.8660.12 0.9060.07 0.1

Variability 4.5362.3 3.5261.62 0.055

GVC3 period (hour) 1.9260.41 1.9260.17 0.99

Variability 8.5663.04 4.8362.45 ,0.0001

GVC4 period (hour) 4.7561.14 3.8461.05 0.004

Variability 14.7667.68 5.7263.03 ,0.0001

GVC5 period (hour) 11.3062.38 8.5462.73 ,0.0001

Variability 19.48612.56 6.6863.66 ,0.0001

Data are presented as mean 6 SD and were calculated from 72 hour recordings. P values were obtained by One-Way ANOVA. SD: standard deviation; CGM: continuous
glucose monitoring; Multi-Scale GV: Multi-Scale glycemic variability; GVC: glycemic variability cycle.
doi:10.1371/journal.pone.0086284.t002
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Figure 1. The Multi-Scale Glycemic Variability method applied to 3-day continuous glucose monitoring (CGM). The decomposition is
based on the EEMD (Ensemble Empirical Mode Decomposition) technique. (A) The original CGM time-series from a representative control subject
(male, 72 years old, HbA1c = 5.2%, SD (standard deviation) = 10.44, MAGE (mean average glycemic excursions) = 31.61) is decomposed into five
glycemic variability cycles (GVCs) that are each characterized by fluctuations within a specific frequency band. The bold black lines along the X-axis
denote sleep periods defined by actigraphy and patient records. (B) Comparison of raw CGM signals and selected GVCs between the control subject
in (A) and a representative patient with type2 DM (male, 62 years old, HbA1c = 9.4%, SD = 71.36, MAGE = 161.85). The shading areas denote sleep for
the type 2 DM patient, while the bold black lines along the X-axis denote sleep for the control subject.
doi:10.1371/journal.pone.0086284.g001
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However, we also found that higher glycemic variability of GVC3

associated with greater GM in supramarginal gyrus and angular

gyrus (r2 = 0.41–0.45, P = 0.01–0.04).

In the control group only, the degree of variability within

GVC3–5 associated with more CSF within the hippocampal gyrus

(r2 = 0.40–0.48, P,0.02) and lingual gyrus (r2 = 0.44–0.47,

P = 0.02–0.04). Greater variability of GVC5 was associated with

larger GM volume of the subcortical motor nuclei (caudate

nucleus, r2 = 0.30–0.33, P,0.03). However, we also found that

higher glycemic variability of GVC3 associated with greater GM

in middle orbitofrontal gyrus (r2 = 0.29, P = 0.048).

HbA1c, fasting glucose, SD and MAGE were not independently

associated with brain volumes and functional outcomes after

controlling for GVC variability measures.

Relationship between Multi-Scale GV and Cognitive
Function

The presented relationships were for the entire cohort, as well as

for DM group and control group separately.

In the entire cohort, greater glycemic variability in GVC2,3,5

was associated with worse learning and memory function (i.e.

HVLT T score, ROCFT T score, and the composite ‘‘learning

and memory T score’’, r2 = 0.27–0.34, P = 0.011–0.036). Greater

glycemic variability in GVC2,5 was associated with worse overall

composite cognitive performance (i.e. ‘‘Composite T score’’,

r2 = 0.45–0.46, P,0.02). T scores related to executive function

measures, such as TMT T score, verbal fluency T score, and

‘‘executive function T score’’, were not significantly correlated

with Multi-Scale GV.

In type 2 DM group only, greater glycemic variability in

GVC2,3 was associated with worse learning and memory function

(i.e. ‘‘learning and memory T score’’, r2 = 0.28–0.37, P,0.03),

greater variability in GVC2 was also associated with worse overall

cognitive performance (i.e. ‘‘Composite T score’’, r2 = 0.44,

P = 0.02) and greater variability in GVC5 was associated with

more depression (i.e. GDS, r2 = 0.18, P = 0.014).

No significant relationships between Multi-Scale GV and

cognitive function were found in control group (r2,0.13, P.0.05).

We also analyzed nonparametric multivariate correlations

among glycemic variability, gray matter atrophy and cognition.

Across all subjects, greater variability of GVC2 was associated with

both lower GM volume in cingulate gyrus (r2 = 0.38–0.40,

P = 0.014–0.047) and worse cognitive performance (i.e. ‘‘Compos-

ite T score’’, r2 = 0.46, P = 0.018) (Fig. 6 C and D), and worse

scores on HVLT (r2 = 0.42–0.46, P = 0.002–0.006). Combined

effects of greater variability in GVC2, lower GM in cingulate gyrus

and longer DM duration were highly associated with more

depression (r2 = 0.69, P,0.02).

Discussion

This study evaluated the complex relationships between

glycemic variability, brain volumes and functional outcomes in

older adults with and without type 2 DM. It determined that time-

specific glycemic fluctuations may be independently associated to

brain atrophy and worse cognitive performance.

We applied a novel EEMD-based approach to quantify

glycemic variability at multiple time scales. The EEMD method

identifies dominant cycles without a priori assumptions about their

periods and is therefore suitable for nonlinear and non-stationary

signals such as continuous monitoring of glycemic levels monitor-

ing. Multi-Scale GV determined that glucose levels fluctuate at five

distinct frequencies (GVC1–5; period 0.5 to 12 hours) in both

diabetics and controls. The GVCs frequencies coincide with one

or more ultradian rhythms that modulate glucose levels. For

example, the periods of GVC1–3 (0.5–2 hrs) correspond to

established autonomic rhythms, cardiovascular and neuroendo-

crine rhythms (insulin and glucocorticoids) [13–17] and certain

aspects of the sleep cycle (i.e. rapid and non-rapid eye movement)

[12]. The period of GVC4 (4–5 hours)) coincides with meal cycles

as reported in home diaries and the period of GVC5 (9–12 hours)

may reflect sleep/wake cycle. Type 2 DM subjects had greater

glycemic variability as compared to controls in GVC3–5, as well as

longer cycles that tended to be even lengthier in type 2 DM

subjects with higher HbA1c levels.

To resolve the complex effects of glycemic variability on brain

volumes and cognitive function, we studied the relationship

between Multi-Scale GV, regional brain volumes and cognition.

We observed that GVCs at specific frequencies were related to

different regional brain volumes and functional outcomes, and that

these relationships were independent of HbA1c, hypoglycemic

episodes, age and sex.

Glucose metabolism is closely coupled with the autonomic

nervous system via oscillating neural networks and particularly

beta-adrenergic and cholinergic systems in the brain, controlling

regional perfusion during spontaneous brain activity, cognitive and

motor tasks. The complex interplay between glucose, neuroendo-

crine and autonomic rhythms is controlled by a system comprising

a central pattern generator (suprachiasmatic nucleus of the

hypothalamus, SCN) and central autonomic network through

complex feedback mechanisms insulin secretion, glucose absorp-

tion and energy expenditure [37,38].

Greater variability in GVC1–3 (0.5–2.0 hours) were strongly

associated with gray matter atrophy affecting the limbic system,

insular cortex, hippocampus and cognitive and visuospatial

orientation circuits within the temporal and parietal lobes. These

associations are clinically relevant because they indicate a link

between glycemic variability and altered central autonomic

Figure 2. Day and night Multi-Scale Glycemic Variability in
older adults with and without type 2 DM As compared to
controls, the type 2 DM group had greater variability during
the day in GVC2–5, and night GVC3–5. At night, glycemic variability
declined in type 2 DM in GVC2–4 and in controls in GVC3. ‘*’ (P = 0.002)
and ‘`’ (P,0.0001) indicate significant differences between diabetics/
day and controls/day; ‘II’ (P,0.0001) indicates significant differences
between diabetics/night and controls/night; ‘{’ (P = 0.003) and ‘1’
(P,0.0001) indicates significant differences between diabetics/day and
diabetics/night; ‘"’ (P = 0.028) indicates significant difference between
control/day and control/night. All the P values were obtained by
ANOVA. Results are presented as mean 6 SEM.
doi:10.1371/journal.pone.0086284.g002
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regulation that translates into adverse functional outcomes. These

regions belong to the limbic system and central autonomic

networks, also known as the ‘‘central command’’ to the

sympathetic and parasympathetic control of heart rate and blood

pressure, gastrointestinal system etc., as well as, selective attention

and emotional arousal processes, and mood. Greater variability in

GVC1–3 was associated with lower gray matter volume in circuits

for learning and controlling memory (cingulate gyrus, hippocam-

pus), visuospatial processing (superior parietal and fusiform gyrus)

motor function and gait (inferior temporal gyrus). In type 2 DM

group specially, greater glycemic variability in GVC2–3 was

associated with worse learning and memory. In contrast, positive

relationships between gray matter and glycemic variability in

controls may suggest regional compensatory activity needed to

maintain glycemic variability in a dynamic stable range.

There is also evidence that brain atrophy is accelerated by type

2 DM [3,4]. Such atrophy manifests preferentially within fronto-

temporo-parietal regions and is associated with cognition and gait

abnormalities [39]. We report that glycemic fluctuations at specific

frequencies, yet not hypoglycemic episodes, have distinct effects on

gray matter volumes in specific regions. Traditional measures such

as hypoglycemic episodes, HbA1c, SD and MAGE did not

correlate with brain atrophy. In addition, separating day and night

time, the associations between Multi-Scale GV and brain volumes

were stronger at night than during day.

The low frequency GVC4 coincided with food intake (,4–

5 hours) as confirmed by home diaries. Yet, GVC4 fluctuations

were also present during the night, suggesting an underlying

intrinsic regulation of eating patterns. Variability in GVC4

increased with higher HbA1c and correlated with SD and MAGE

calculated from CGM. Sleep/wake behavior is reflected in GVC5

mode (,9–12 hours). Notably in diabetics, greater variability in

GVC5 was associated with longer DM duration and more

depression. Multi-Scale GV was more sensitive and specific than

SD and MAGE, indicating that these traditional measures may

not capture the complex impacts of variability that occurs at

specific time scales. An observational study suggested that

reduction in SD and MAGE was associated with better glycemic

control without increase in hypoglycemic events [40]. In the

present study, hypoglycemic episodes, which are commonly

viewed as a barrier to successful glycemic control, were not

associated with specific GVCs, brain atrophy or functional

abnormalities.

Our findings suggest that Multi-Scale GV in type 2 DM is

associated with worse learning and memory functions but not with

executive functions. These results are consistent with population

based studies that identified type 2 DM affects specific cognitive

abilities, namely processing speed and specific types of memory

[41,42]. Type 2 DM associated with slower processing speed and

impaired semantic memory, but not with episodic or working

memory [41], suggesting cognition may reflect a vascular process

combined with insulin resistance in the brain. Our composite

measure of memory reflects verbal and visual-spatial memory.

Hyperglycemia-induced insulin resistance and small vessel disease

Figure 3. Relationships between the fourth glycemic variability cycle (GVC4) and conventional measures of glycemic control. The
degree of glycemic variability within GVC4 was highly correlated with SD (A) and MAGE (B), but the areas under the curves of GVC4 and GVC5 were
greater than SD and MAGE (C). The degree of glycemic variability within GVC4 was highly correlated several markers of glucose control including
HbA1c (D). As with GVC4 (the cycle linked with meal intake), the example in this figure, similar relationships were observed for all other GVC cycles.
The r2 and P values represent the least square model fit.
doi:10.1371/journal.pone.0086284.g003
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is a common pathway for abnormal blood brain barrier (function,

neurovascular coupling, regional vasoreactivity and hypoperfusion

[43–45] and neurotoxicity [46] and neuron-astrocyte signaling),

which are key processes involved in memory formation.

However, the exact mechanisms by which type 2 DM leads to

cognitive decline requires further investigation, notably because a

strict glycemic control did not improve cognitive function

(ACCORD-MIND) in a population study. Indeed, type 2 DM is

associated with an increased risk of both vascular dementia and

Alzheimer’s disease [47], although there is evidence suggesting

that the association may be stronger for Alzheimer’s disease with

cerebrovascular disease.

There was no association between cognitive performance and

glycemic variability in control group, while in the type 2 DM

Figure 4. The brain regions associated with Multi-Scale GV. Higher glycemic variability of GVC1–3 (period 0.5–2 hours) were associated with
lower gray matter (GM) volume (red color; both hemispheres in the cingulate gyrus, hippocampal gyrus, middle and inferior temporal gyrus, insular
cortex, the left superior parietal gyrus and right fusiform gyrus), greater GM volume (blue color; the bilateral supramarginal gyrus, left angular gyrus
and left middle orbitofrontal gyrus), and greater cerebrospinal fluid (CSF) in the right lingual gyrus (green color).
doi:10.1371/journal.pone.0086284.g004

Figure 5. Group differences of regional GM volumes in left hemisphere and their relationship with Multi-Scale GV. ‘*’ indicates
significant differences between the type 2 DM group (white) and controls (grey) in GM volumes (One-Way ANOVA); regional GM volumes in left
hemisphere were correlated with Multi-Scale GV for diabetics and/or controls, blue indicates positive correlation, red indicates negative correlation
with each GVC, G’ = gyrus, ‘#’ indicates we found similar relationship between Multi-Scale GV and GM volumes in the right hemisphere (r2 = 0.26–074,
P,0.05). The bar graphs are presented as mean 6 SEM.
doi:10.1371/journal.pone.0086284.g005
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group there was an association. This might be because of the

differences in cognitive function of the two groups. The lower

cognitive function of those with diabetes might be suggestive of

incipient dementia. The stronger association between cognition

and glycemic variability may be due to subjects with type 2 DM

having a greater variety of pathologies in addition to the neural

differences. For example, cardiovascular diseases are more

prevalent in persons with diabetes. Glycemic variability was

associated with memory but not with executive functions, which

has been consistently associated with cerebrovascular disease.

Multi-Scale GV allows us to overcome limitations of traditional

measures and to study effects of glycemic variability at specific

frequencies, and to thus better understand this phenomenon.

Multi-Scale GV provides information about physiological rhythms

that modulate serum glucose at specific time scales and affect

signaling among multiple organ systems. Our current observations

suggest that GVCs at multiple time-scales may be related to

intrinsic rhythms, generated by central pattern generator(s), and

also modulated by behavior factors (meals and/or sleep). Diabetes

alters the cycle length and amplitude of these oscillations, as well as

their relationship to physiological rhythms. These long-term

alterations in brain structural networks appear to manifest as

functional decline. Therefore, this novel approach has indicated

that variability associated with several ultradian rhythms is linked

to regional brain atrophy and worse functional measures,

independent of HbA1c levels and hypoglycemic episodes. This

study thus provides support for the use of Multi-Scale GV to

understand, monitor and develop diagnostics and therapeutics for

treating glycemic variability independently of average glycemic

indices. Glucose metabolism is influenced by numerous intrinsic

rhythms and behaviors. There are likely many other elements in

this complex multi-scale dynamic system of interactions as well,

which highlight the importance of using analyses of variability in

blood glucose levels across multiple temporal scales without the

assumptions of linearity and stationarity. However, making casual

inferences about the direction of influence between the elements in

this complex system is difficult. Diabetes-related disruption of this

complex system may manifests in multi-scale temporal glycemic

variability and specific structural changes in the brain through

complex dynamics not fully accounted for in the current

investigation (one of many possibilities being mutli-scale temporal

variability in circulating insulin levels).

Figure 6. Examples of least squares models indicating negative relationships between Multi-Scale GV and regional GM volumes as
well as cognitive performance. (A) relationship between GVC2 and GM volume in the left insular cortex; (B) relationship between GVC1 and GM
volume in the right fusiform gyrus; (C) relationship between GVC2 and GM volume in the left cingulate gyrus; (D) relationship between GVC2 and
overall cognitive performance (composite T score) (diabetics: triangles; controls: circles). We presented r2 for the entire model adjusted for age and
sex and group, and P values for the specific effect of Multi-scale GV.
doi:10.1371/journal.pone.0086284.g006
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There are several potential limitations of this study. This was

a cross-sectional, observational study of a small yet well-

characterized cohort. A larger validation study is therefore needed

to determine prospectively whether reducing glycemic variability

might improve outcomes and prevent cardiovascular adverse

events associated with intensive glycemic levels lowering. As CGM

sampling frequency was 5 minutes, we were also unable to study

glycemic fluctuations with periods shorter than 30 minutes. In

addition, the glycemic variability measures are derived from only 3

days of CGM data. To eliminate the influence of edge effect in

EEMD technique and guarantee the accuracy of cycle length for

each GVC, we only selected the GVCs with period less than

24 hours.

In summary, our results indicated that the relationships between

glycemic variability and brain structure and function are time-

scale dependent. The degree of glycemic variability within higher-

frequency rhythms was associated with gray matter atrophy within

the limbic system and temporo-parietal lobes (e.g. cingulum,

insula, and hippocampus) and with worse cognitive performance.

In diabetics, glycemic variability in lower frequency cycles were

associated with worse learning and memory, more depression and

longer DM duration. Implications are that diabetes management

needs to target glycemic ultradian rhythms at specific frequencies

in order to prevent brain atrophy and functional loss in older

diabetic adults. Larger prospective studies are needed to determine

whether time-scale dependent glycemic variability may serve as a

new marker of diabetic complications, and in particular a marker

of DM-related brain damage and subsequent loss of cognitive

function.
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