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Abstract
The health of radiation workers has always been our focus. Epidemiological investigation shows that long-term exposure to low-
dose ionizing radiation can affect human health, especially cancer and cardiovascular disease, and there are many studies on it.
However, up to now, there have been few reports on the research of blood and biological samples from radiation workers. In
this study, radiation workers and healthy control groups were strictly screened, and the transcriptome of mRNA and circRNA
was sequenced by extracting their peripheral venous blood. At the same time, appropriate data sets were selected in the GEO
database for bioinformatics analysis, and circRNA-miRNA-mRNA network was constructed. We identified 9 different circular
ribonucleic acids, 3 tiny ribonucleic acids, and 2 central genes (NOD 2 and IRF 7). These differentially expressed genes and non-
coding RNA are closely related to ionizing radiation damage, and play an important role as biological markers. In conclusion, this
study may provide new insights into the role of the circRNA-miRNA-mRNA regulatory network in the health of radiation
workers, and provides a new strategy for the future study of radiation biology.
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Introduction

The peripheral blood examination of radiation workers is an
indispensable examination in the current occupational health
examination. By analyzing a series of indicators such as blood
routine, blood biochemical changes, chromosome aberration,
and micronucleus rate (quoted), it can be judged whether the
workers suffer from radiation diseases and whether they are
suitable for the current radiation posts.1,2 However, in most
cases, long-term exposure to low-dose ionizing radiation may
be within normal range of peripheral blood examination, which
may lead to neglect of potential disease risk.3 The risks of
disease caused by long-term low-dose ionizing radiation
usually have a long incubation period. If the changes of pe-
ripheral blood transcriptomics are used to judge the exposure
level of workers, the possibility of continuing to engage in
radioactive work and the possibility of suffering from certain
diseases, it will be better tomonitor the health status of radiation
work.3,4 In recent years, with the development of transcriptome

technology, it is possible to detect non-coding RNA andmRNA
in blood samples.5 Therefore, in order to better protect the
health of radiation workers, it is necessary to systematically
analyze the changes of transcriptome of blood samples of ra-
diation workers, hoping to find possible potential markers and
better determine their health status.
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CircRNA is a specific endogenous non-coding RNA, which
has evolved and preserved in eukaryotic species and is widely
expressed in high abundance human cells. The closed-loop
structure makes the cyclic ribonucleic acids more stable and
protects them from degradation by ribonuclease.6 With the in-
creasingly extensive application of high-throughput sequencing
and microarray technology, noncoding-RNA have been proved to
be related to ionizing radiation is increasingly.7-9 It was found that
circRNA could be used as microRNA sponge, protein bait and
transporter to regulate gene expression.10 Existing evidence shows
that both cyclic ribonucleic acid and micro ribonucleic acid are
involved in the pathogenesis and progress of ionizing radiation
damage, and play an important role in them.11-13

At present, there are few studies on the characteristics of
regulatory network of circRNA-miRNA-mRNA in blood samples
of radiation workers. Therefore, this study was designed to in-
vestigate the potential circRNA-miRNA-mRNA regulatory net-
work in the peripheral blood of radiation workers. Genome-wide
cyclic ribonucleic acid and gene microarray analysis was per-
formed to screen out differentially expressed cyclic ribonucleic acid
and genes. Through the ionizing radiation mined in GEO database
and the change of micro ribonucleic acid in peripheral blood, the
differentially expressed micro ribonucleic acid can be obtained.
Prediction and construction of regulatory network of circRNA-
miRNA-mRNA. Gene function enrichment analysis of differential
geneswas conducted to identify their potential function.Our results
provide new information on the role of the regulatory network of
circRNA-miRNA-mRNA in the health examination of radiation
workers and provide a theoretical basis for the interaction
mechanism of circRNA, miRNA, and mRNA as biological dose
markers and possible disease effects for radiation workers.

Methods

Study Objects

According to the questionnaire scheme in Specification of survey
technique for radiation epidemiology, select the appropriate
control group and radiation group in the designated hospitals
where the industrial radiation workers have occupational health
check.14 With the informed consent form signed, 5 mL of pe-
ripheral blood was extracted from the enrolled personnel for
subsequent transcriptomic sequencing and RT-qPCR.

Preparation and Sequence of RNA Library

According to the instructions, ribosomal RNA (rRNA) was
removed from samples by using Nebner Extranadplenion Kit
(New England Bioabs, Inc., Massachusetts, USA). The se-
quencing library was constructed by using Nebnex-
tremailididential RNAi Podkit (New England BioABS, Inc.,
Massachusetts, USA. The library was controlled and quan-
tified by the bioanalyzer 2100 system (Agilent Technologies,
USA), and 150 bp double-ended sequencing was carried out
by Illumina HiSeq instrument.

Differentially Expressed CircRNAs and Differentially
Expressed Genes Data Analysis

Sequencing was carried out by an IlluminaHiSeq 4000 sequencer,
and two-terminal readings were obtained. Q30 was used for
quality control, and the cut adapt software (v1.9.3) was used to
disconnect and disconnect low quality readings to obtain high
quality readings. (1). circRNA: High-quality reads were compared
to the reference genome/transcriptome using STAR software
(v2.5.1b), and circRNA was detected and identified using DCC
software (v0.4.4). The identified circRNAwas also annotated with
the circBase database(http://circbase.org/) and Circ2Traits.15

EdgeR software (v3.16.5) was used for data standardization
and differential expression. The circRNA passing through fold
change>2 and P < .05 was selected as the differentially expressed
circRNAs (DECs). (2). mRNA: hisat2 software (v2.0.4) was used
to compare high-quality reads to the human reference genome
(UCSC HG19). Then, under the guidance of gtf gene annotation
file, the FPKM value of mRNA at gene level was obtained as the
expression spectrum of mRNA using cuffdiff software (v2.2.1,
part of the cufflinks software suite). Fold change >2 and P < .05
were calculated between the 2/group samples to screen for dif-
ferentially expressed genes (DEGs).

Gene Function Analysis

In order to further understand the function and main functional
pathways of mRNA, all the differential functional pathways of
mRNA are annotated and analyzed. The mRNA obtained from
the above screening was put into David database (https://
david.cifcrf.gov/) and the species was selected as “Homo
sapiens.” The threshold P < .05 was set for GO enrichment
and KEGG pathway annotation analysis, and the enrichment
analysis results were visualized.

DEMs in Peripheral Blood After Ionizing Radiation

Microarray data sets of miRNA expression profiles in peripheral
blood following ionizing radiation were obtained from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/), GSE55954. The
miRNA expression profiles of human peripheral blood mono-
nuclear cells in the experimental design at 20 h after exposure to
60 Gy of Cs-137γ-ray were selected. The experiment was carried
out independently for 4 times, and the system error was elim-
inated. The data were analyzed to extract differentially expressed
miRNA using the GEO2R program provided by the GEO da-
tabase. The miRNAs with fold change >2 and P < .05 were
selected as differentially expressed miRNAs (DEMs).

Predicting the Target miRNA of DECs and Predicting
the Target Genes of DEMs

Using circMir2.0 and mirTargets2.0 software (Nanjing
medical university). The software included Starbase (https://
starbase.sysu.edu.cn), MIRREDB (http://mirdb.org/cgi-bin),
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and Target (http://www.targetscan.org) databases to predict
circRNA-miRNA and miRNA-mRNA interactions and se-
lected predicted results with an interaction score greater than
80 and a P < .05 for final validation.

Construction of circRNA-miRNA-mRNA Network in
Peripheral Blood of Radiation Workers

We extracted the circRNA/miRNA/mRNA competition
constraint. The circRNA-miRNA and miRNA-mRNA with
potential binding were selected from the predicted differential
genes, and the selected DECs, DEMIRs, and DEGs were
mapped to construct a circRNA-miRNA-mRNA interaction
network, which was visualized using Cytoscape3.8.2
software.16

RNA Extraction and RT-qPCR

Use HI SCRIPT II first strand cDNA synthesis kit (+GDNA
Wiper) kit (Vazyme) to reverse transcribe circrNA and
mRNA, and the HI SCRIPT II 1st strand cDNA Synthesis Kit
(+GDNA Wiper) kit (Vazyme) were used in reverse tran-
scribed. Use the miRNA first strand cDNA synthesis kit
(Bystem-loop) p (Vazyme) to synthesize miRNA reverse
transcription kit cDNA. RT-qPCR was used to evaluate the
expression of circrNA, miRNA and mRNA, and verified by
Chamq universal sybr qpcr master mix kit with PCR in-
strument (ViiA 7, Life Technologies). GAPDH was used as
the internal control for circRNAs and mRNAs, and U6 was
used as the internal control for miRNAs. Primers for
circRNA and miRNAwere designed by CircInteract (https://
circinteractome.nia.nih.gov/) and miRNA Design V1 (Va-
zyme), respectively, and primers for mRNA were found in
PrimerBank. The cycle threshold (2-ΔΔct) was compared for
calculation. The primers applied are displayed in Table S1.

Statistical Analysis

All statistical analyses were conducted with SPSS 20.0. In-
dependent t test was used to compare continuous variables
with normal distribution, Mann–Whitney U test was used to
compare continuous variables with skewed distribution, and
chi-square test was used to test the ratio. All statistical tests are
bidirectional.

Result

Basic Information of People Involved in
Gene Sequencing

Transcriptome sequencing: ten normal staff who came to the
hospital for physical examination and 12 exposed people were
selected. The average total dose of these 12 people at work
was 63.3 mSv, and the average working life was 9 years. All
the 22 men were male. Except for salt intake, age, smoking

history, eating habits and other influencing factors had no
statistical difference (P < .05). There were 10 people in the
control group and 10 people in the radiotherapy group, male
and female were equally divided. The radiation group received
an average external radiation dose of 21.4 mSv, and the av-
erage working life was 5 years. There was no statistical
difference in baseline. The above radiation workers are all
involved in X-ray operation. The details are shown in Table 1.

RNA and Library Quality Control

The RNA concentration of each sample was measured using a
NanoDrop ND-1000 instrument (Thermo Fisher Scientific,
Waltham, MA, USA). The OD 260/OD 280 value was used as
the RNA purity index. RNA purity was acceptable when the
OD 260/OD 280 value ranged from 1.8 to 2.1; Degenerated
agarose gel electrophoresis was used to measure RNA in-
tegrity and gDNA contamination, as shown in Figure 1. The
quality of the library was measured by Agilent 2100 Bio-
analyzer (Table 2).

Differential Transcriptome Results

According to the criteria of foldchange>2 and P <.05 between
samples, the differential results were screened. Compared with
the control group, there were 1149 differentially expressed
circRNAs in the radiation group in this study, of which 639
were up-regulated and 510 were down-regulated. A total of
873 differentially expressed genes were identified, of which
68 were up-regulated and 805 were down-regulated. Com-
pared with the control group, in the GSE55954 dataset se-
lected from GEO database, there were 229 differentially
expressed miRNA in peripheral blood after irradiation, of
which 117 were up-regulated and 112 were down-regulated
(Figure 2).

Functional Enrichment Analysis

To understand the biological action and potential function of
873 differential genes, GO analysis was performed, including
biological process (BP), cellular component (CC) and mo-
lecular function (MF), and KEGG signaling pathway enrich-
ment analysis. GO analysis showed that in terms of BP, these
overlapping genes were mainly enriched in the positive reg-
ulation of cellular metabolic process, apoptotic process in-
volving in patterning of blood vessels. positive regulation of
ERN protein response, cell-substrate junction assembly, posi-
tive regulation of cyto-me signaling pathway. For CC, the
overlapping genes were mainly enriched in pore complex,
MOZ/MORF histone acetyltransferase complex, actomyosin,
cyclin-dependent protein kinase holoenzyme complex, and
stress fiber. In the case of MF, these overlapping genes were
mainly enriched in N-acyl-s phospholipase D activity, phos-
pholipase D activity, G-quadruplex DNA binding,3-chloroallyl
aldehyde dehydrogenase activity, and vinculin binding.

Gao et al. 3

http://www.targetscan.org
https://circinteractome.nia.nih.gov/
https://circinteractome.nia.nih.gov/
https://journals.sagepub.com/doi/suppl/10.1177/15593258221088745


Table 1. Baseline Survey Results.

Type

Data for Transcriptome Sequencing Data for RT-qPCR

Control Radiation P Control Radiation P

Age 48.60 ± 4.79 50.50 ± 5.67 .411 29.95 ± 1.78 30.18 ± 2.45 .819
Smoke 50.00% 91.70% .056 40.00% 50.00% .653
Alcohol 50.00% 58.60% .696 40.00% 50.00% .653
Tea 70.00% 91.70% .293 20.00% 20.00% .999
Rice 10.00% 0 .455 40.00% 30.00% .639
Vegetable 40.00% 66.70% .436 40.00% 30.00% .639
Oil 70.00% 58.30% .064 60.00% 50.00% .653
Sugar 20.00% 41.70% .424 50.00% 40.00% .653
Chili 20.00% 41.70% .485 60.00% 50.00% .653
Salted 50.00% 75.00% .44 60.00% 80.00% .329
Fruit 30.00% 66.70% .128 50.00% 50.00% .999
Salt 60.00% 33.30% .033 70.00% 60.00% .639
Meat 40.00% 66.70% .431 60.00% 70.00% .639

Figure 1. Agarose gel electrophoresis of total RNA.

Table 2. RNA Library Quality Control.

Sample ID Sample Name OD260/280 Ratio Conc. (ng/gl) Volume (gl) Quantity (gg)

1 A1 2.04 149.26 9 1.34
2 A2 1.86 139.39 9 1.25
3 A3 1.80 182.05 9 1.64
4 A4 1.83 180.54 9 1.62
5 A5 1.86 122.99 9 1.11
6 A6 1.84 224.62 9 2.02
7 A7 1.83 167.14 9 1.50
8 A8 1.88 278.76 9 2.51
9 A9 1.89 184.34 9 1.66
10 A10 2.07 204.26 9 1.84
11 B2 1.86 120.01 9 1.08
12 B3 1.87 210.60 9 1.90
13 B4 1.90 204.18 9 1.84
14 B5 1.89 152.58 9 1.37
15 B7 1.84 106.18 9 .96
16 B9 1.84 250.71 9 2.26
17 B10 1.85 116.05 9 1.04
18 B11 1.87 142.57 9 1.28
19 B12 1.87 113.77 9 1.02
20 B13 1.86 113.03 9 1.02
21 B14 1.86 121.76 9 1.10
22 B15 1.81 144.55 9 1.30
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Enrichment analysis of KEGG signaling pathway revealed that
DEGs was mainly enriched in their types of O-glycan bio-
synthesis, Pertussis, Leishmaniasis, Staphylococcus aureus
infection, and Propanoate metabolism (Figure 3).

Construction of circRNA-miRNA–mRNA Regulatory
Network

We obtained the first 20 hub genes using the cytohHubba plug-
in of Cytoscape3.8.2 software (Figure 4B), and screened the
functional module with the MCODE plug-in to select the first
module with the highest score (Figure 4C), and selected a total
of 9 genes screened by 2 methods to construct a CIRC RNA–
miRNA–mRNA regulatory network (Figure 4D). Finally, we
obtained a circRNA-miRNA-mRNA regulatory network

consisting of 9 DECs, 3 overlapping miRNAs and 2 target
mRNA (Figure 4E). For further details see Table S2.

According to the results of RT-qPCR, when compared with
the control group, only hsa_circ_0093865 and hsa_-
circ_0005940 showed no statistical differences in expression
levels, and other results were consistent with the results of
transcriptomics (Figure 5).

Discussion

Occupational health examination of radiation workers is very
important for finding out whether there are defects in their
health status in time. For classical examination items such as
chromosome micronucleus and chromosome aberration, it can
be observed whether the dose is still suitable for the current

Figure 2. Summary of variance expression data. (A): circRNA volcanic map of differential expression between the control and radiology staff
blood samples. (B): Volcano map of differentially expressed mRNA between blood samples of radiation workers in the control group and.
(C): Volcano diagram showing differential expression of miRNA in peripheral blood after CS-137 γ-ray compared with that in the control
group. (D): Summary of up and down regulated genes.
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post.17 However, it is not clear whether the occupational
health of radiation workers will be affected. Epidemiological
results show that long-term low-dose ionizing radiation may
affect the health of radiation workers, such as cancer, car-
diovascular, and cerebrovascular diseases, etc.18,19 Therefore,
it is very important to find key molecules and markers. At
present, the general peripheral blood examination focuses
more on judging the health status of the subjects through the
changes of blood cells and blood biochemistry, while the
potential genetic changes and changes of non-coding RNA are
rarely involved.More and more researchers are involved in the
research of non-coding RNA, because these non-coding RNA
are involved in the regulation of many diseases, including the
research of radioactive diseases and radioactive
biodosimeters.

Researchers found that circRNAwas associated with many
biomarkers of ionizing radiation injury, such as mouse brain
and primary neuron injury, mouse bone marrow injury, and
radiation-related esophageal injury.20,21,11 In addition, it is
also found that circRNA is related to a variety of radiation

diseases, such as hsa_circ_0001649 participating in the fol-
lowing regulation of migration and proliferation of chol-
angiocarcinoma cells after radiotherapy, and hsa_circRNA_
100367 regulating radiosensitivity of esophageal cancer
through Wnt pathway.22,23 The miRNA is an evolutionary
conservative small molecule with a length of 18–25 nucleo-
tides. In recent years, there are many studies related to miRNA
ionizing radiation, such as miR-29 participating in ionizing
radiation-induced fibrosis through the overexpression of in-
hibitory type I collagen, miR-92b participating in the regu-
lation of susceptibility of liver cancer to ionizing radiation
therapy, miR-375-3 p as a marker of acute radiation syndrome,
and miR-34 a as a biomarker of ionizing radiation.24-27 These
studies show that the research of non-coding ribonucleic acid
is very important for ionizing radiation damage and health
concerns of radiation workers.

Through literature search, we explored the latest research
progress and discovery of NOD2, IRF7, miR-671-5p, and
miR-654-5p in circRNA-miRNA-miRNA network that was
finally discovered. Nucleotide-binding oligomerisation

Figure 3. Summary of gene function enrichment. (A): Biological process analysis. (B): Cellular component analysis. (C): Molecular function
analysis. (D): KEGG pathway analysis.
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Figure 4. Regulation process of constructing circRNA/miRNA/mRNA network. (A): Analysis of differential gene protein interaction
network. (B): top20 hub genes of cytohHubba. (C): Screening first module of MCODE. (D): Total circRNA/miRNA/mRNA network
regulation. (E): Regulation of circRNA/miRNA/mRNA network acquired by up-and down-regulation of binding genes. Validation of
correlation network regulation in blood samples of radiation workers.

Figure 5. RT-qPCR results. (A): the expression level of circRNAs. (B): expression level of miRNAs. (C): mRNA expression level. * means P <
.05, and ns means P > .05.
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domain protein 2 (NOD2) participates in studies of ionizing
radiation by influencing the regeneration of intestinal epi-
thelial cells damaged by radiation. At the same time, NOD2
alleviates radiation-induced damage through the agonist of
ATR-mediated DNA damage response pathway, Mor-
abutanol, and also inhibits oxidative stress and apoptosis by
blocking the participation of wow/ROCK-mediated TAK1/
NOD2 in NF-κB pathway.28-30 Meanwhile, NOD2 also plays
an important role in Parkinson’s disease and intestinal
disease.31,32 Interferon regulatory factor 7 (IRF7) is highly
expressed in the apoptosis of melanoma cell after ultraviolet
irradiation, and it is used as a reactive molecular indicator of
radiation-induced injury of human umbilical vein endothelial
cells.33,34 Of course, IRF7 has been proved to play a role in
virus-induced cellular gene transcription activation, and its
encoded protein plays an important role in the innate immune
response against deoxyribonucleic acid and ribonucleic acid
virus.35 The miR-671-5p can be used as a biomarker to detect
the therapeutic effect of radiotherapy on colorectal cancer,36

furthermore, the invention can also be used as a new bio-
marker for early breast cancer detection and a target for
breast cancer treatment; It also inhibits the progression of
glioblastoma in circ_0001946/miR-671-5p/CDR1 network
regulation.37,38 miR-654-5p can target and regulate EPSTI1
to slow the progression of breast cancer; in addition, it can
inhibit the MYC, WNT, and AKT pathways from affecting
the development of ovarian cancer.39,40 In our study, all
circRNAs and miR-3616-3p were both reported for the first
time, and we hope to find out their functions through further
experiments at the later stage.

In conclusion, we have constructed a circRNA-miRNA-
mRNA network by comparing the expression of circRNAs
and mRNAs in peripheral blood of radiation workers and
healthy control, and the ionizing radiation-related miRNAs
obtained from the GEO database. Subsequently, I constructed
a circRNA-miRNA-miRNA network consisting of 9 circR-
NAs (And the expression levels of the 7 circRNAs were
consistent with transcriptomics), 4 miRNAs and 2 hub genes
using a variety of different bioinformatics methods. This
research can provide some help for the development of bio-
logical dosimeters for future dose estimation of radiation
workers and the possible mechanism of radiation-related
diseases. Of course, this needs further experimental verifi-
cation in the later period.
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