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Abstract: The review discusses the theoretical, experimental and toxicological aspects of the prospective
biomedical application of functionalized magnetic nanoparticles (MNPs) activated by a low frequency
non-heating alternating magnetic field (AMF). In this approach, known as nano-magnetomechanical
activation (NMMA), the MNPs are used as mediators that localize and apply force to such tar-
get biomolecular structures as enzyme molecules, transport vesicles, cell organelles, etc., without
significant heating. It is shown that NMMA can become a biophysical platform for a family of
therapy methods including the addressed delivery and controlled release of therapeutic agents from
transport nanomodules, as well as selective molecular nanoscale localized drugless nanomechanical
impacts. It is characterized by low system biochemical and electromagnetic toxicity. A technique of
3D scanning of the NMMA region with the size of several mm to several cm over object internals has
been described.

Keywords: magnetic nanoparticles; non-heating low frequency magnetic field; nano-magneto-
mechanical activation; controlled release; apoptosis; impact localization; toxicity

1. Introduction

All conservative therapy methods can be grouped into three types according to the
main approach used in them—chemical, biological/biochemical and physical [1]. Chemical
methods are quite effective in many cases, but they are usually the most toxic and prone to
inducing significant side effects. Biological and biochemical methods are more selective
and are usually less toxic. The least toxic and safest methods are based on physiotherapy
using magnetic fields (MF), but they are usually less effective, have insufficient physical
background, and lack selectivity and locality.

Bionanotechnology opens new approaches that allow drastic increases in selectivity
and simultaneous increases in the effects of localization up to the nanoscale and molecular
levels [2–7], which also reduce the risk of organism intoxication. One of the advanced
strategies is based upon functionalized magnetic nanoparticles (MNPs) that are controlled
by an external alternating magnetic field (AMF) [8–20].

MNPs are already used to increase contrast in magnetic resonance imaging and in
addressed drug delivery, including controlled drug release from the transport of nanoscale
modules. Magnetic hyperthermia (MHT), which is a drugless therapy method that utilizes
MNPs heated by AMF in the 100–800 kHz range, has already been developed for more
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than half a century [21–32]. The MNPs’ introduction to a living organism shifts the critical
frequency by dividing the heating and non-heating AMF from the megahertz range to the
kilohertz range. There are various combinations of MHT with thermally induced drug
release from the transport of nanoscale modules [33–40].

It was reported in a number of papers that the stimulation of biomolecular systems
through MHT produces more significant effects than the heating of the sample to the
same macroscopic temperature in a water bath. For instance, in [38], the release rate of
doxorubicin from micellar containers of 70 nm diameter, filled with magnetite MNPs coated
with a hydrophobic oleylamine layer of 11 nm in diameter, was reported to be three times
higher during MHT in a 330 kHz AMF than during heating to the same 45 ◦C temperature
in a water bath. This suggests the presence of an additional factor, which, in our opinion, is
related to nanomechanical magnetic activation (NMMA).

NMMA represents the other category of techniques that employ the nanoscale de-
formation of molecular structures by means of MNPs that are activated by non-heating
low-frequency (LF) (f < 1 kHz) AMF, and these techniques have been developed during
the last two decades [41–57]. NMMA utilizes the sensitivity of tissue, cells, vesicles and
micelles to applied forces and induced deformations [58–62]. The biochemical responses
to the force applied to various molecular structures in living cells are the most studied,
with apoptosis receiving particular attention [63–65]. This type of phenomena is generally
referred to as mechanotransduction [66–69]. The use of mechanotransduction opens up a
wide perspective in the development of new approaches and techniques in the treatment
of oncological [53,70,71] and neurodegenerative diseases [72–74], as well as in regenerative
medicine [41,58] and other biomedical fields [52–55]. “The dark side of the force” should
also be mentioned. The impact of force could possibly stimulate tumor growth due to
the transmission of force from more rigid malignant cells to surrounding healthy softer
ones [75].

Over several decades of magnetobiological studies, a significant amount of contra-
dictory information and erroneous conclusions about the nature of the recorded effects
has been accumulated. We will briefly discuss the most important and the most frequently
occurring problems in the identification of the possible mechanisms of the impact of MF
on biological objects, including those containing MNPs.

There are some sources of evidence that weak MF can produce biophysical effects in
living organisms, tissues and cells, and that, in some cases, this can occur even without any
MNPs [76–80]. These effects are hard to predict because of unclear physical mechanisms
of field action. Furthermore, the reported information concerning such effects is all too
often controversial and incomplete insofar as it relates to experimental conditions and
the construction of reproducible independent experiments. Insights regarding the general
status of the scope of magnetobiology can be gained even by examining the titles of some
papers published by prominent scientists: “Why magnetic and electromagnetic effects in
biology are irreproducible and contradictory?”; “Are biochemical reactions affected by
weak magnetic fields?” [81,82].

A separate, yet unresolved, problem is the plausibility of the impact of the Earth’s
MF [83] with BEarth = 30–50 µT, and its fluctuations reaching 2–4 orders of magnitude lower
intensity even during magnetic storms [84], on various components of the Earth biosphere.
Summarizing the above, it can be argued that there is no evidence and there are no gener-
ally accepted judgments about the possible mechanisms—and simple plausibility—of the
effect of a weak MF on biological objects. The response of biological objects following the
application of AMF depends upon a large set of spatial, temporal, amplitude and frequency
characteristics of MF, including the field exposition mode, which can be continuous, inter-
mittent or pulsed, as well as MNPs’ nature and composition, frequency windows of higher
and lower sensitivity, electric and magnetic properties of the object itself, its individual
peculiarities, geometry and prehistory, among other characteristics. This significantly
increases the complexity of the problem.
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All of these specifics distinguish the impact of vector AMF from the impacts of
scalar thermodynamic parameters such as temperature, pressure, concentration, and so
on. Unlike the AMF, the influence of the latter on biological objects is studied much more
effectively at various scale levels, and is in good agreement with relatively simple common
models and mechanisms.

Meanwhile, several magnetobiological effects are known with certainty and can
be reproduced reliably. The most evident and straightforward ones, considering the
underlying physical mechanism, are the induction heating of soft tissues caused by radio
frequency (RF) AMF (typically 5–30 MHz in physiotherapy), and neuron stimulation
caused by an eddy electric field generated by AMF pulses, with an intensity of ~1 T and a
duration of ~1 ms, which is used in transcranial magnetic simulation in particular.

Many physicists question the ability of steady MF or LF non-heating AMF, with
an intensity 0.1–1 T, to affect cells, tissues or living organisms, since it is hard to find a
clear physical basis and molecular targets for such influence. Therefore, they consider the
noticeable influence of the much weaker Earth MF (BEarth = 30–50 µT) to be even more
unreasonable. The main objection is the lack of energy that MF could provide for any
particles in the organism. As long as magnetically ordered regions are extremely rare
or even non-existent in warm-blooded organisms, MF interacts only with objects that
have magnetic momentum in the order of Bohr magneton µB = 927.4·10−26 J/T, such as
electrons, radicals, ions, atoms, etc. In any reasonable field with B~1 T their magnetic
energy Um~µBB is well below thermal energy UT~kBTR, where TR ≈ 300 K is ambient
temperature and kB = 1.380649·10−23 J/K is the Boltzmann constant. Magnetic fields with
Um << UT are usually referred to as thermodynamically weak, which means that they
cannot significantly affect the behavior of thermodynamic systems in equilibrium. This
raises questions concerning the specific non-equilibrium processes in charge of the effect
and appropriate targets that are susceptible to MFs that are so weak.

Despite the absence of commonly accepted answers to these questions, physicians, bi-
ologists, hygienists and work safety officers generally agree that hazards and risks related to
the impact of AMF on the biosphere diminish with the lowering of the AMF frequency [84].
National and international guidelines and sanitary regulations [85–88] support the above
relation: the lower the AMF frequency, the higher the maximal allowed field intensity both
for citizens and for work staff who are maintaining electromagnetic equipment (Figure 1).
Failure to understand the mechanisms of magnetic sensitivity leads to a broken dependence
of the maximum permissible MF intensity on its frequency. There is no reasonable substan-
tiation of the breaks of the curve. Let us note that several certified medical technologies
significantly exceed the limit, albeit for a short periods of time (Figure 1). The AMF, when
used in some medical technologies, particularly Magnetic Resonance Imaging (MRI) [89],
exceeds even the empirical Brezovich threshold H·f = 4.85·108 Am−1s−1, defined as a
point where a human starts to feel discomfort when the AMF is switched on [90]. Here,
H = B/µ0 is the magnetic field strength and µ0 = 4π·10−7 H/m is the vacuum permeability.
Both International Commission on Non-Ionizing Radiation Protection (ICNIRP) limits
and the Brezovich threshold take into account damage from magnetically induced electric
fields, but not the hazards from direct exposure to magnetic fields, since the latter are not
sufficiently justified.

Meanwhile, it is an established fact that a reduction in MF intensity significantly below
the Earth’s MF, known as a hypomagnetic condition, can, in many cases, result in verifiable
changes in the functioning of biomolecular structures [91].

The authors of several comprehensive papers propose a number of mechanisms of
weak MF that affect biological processes, which include the formation of short living
radicals and radical reactions that take place far from thermodynamic equilibrium [92–99].
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Figure 1. Magnetic field map with allowable intensity limits for a wide frequency range. Red broken
lines indicate the maximum allowable fields according to the recommendation of the International
Commission on Non-Ionizing Radiation Protection (ICNIRP) [87]: the upper line corresponds to
industrial conditions and the lower line corresponds to accommodation. The dashed line corresponds
to Brezovich’s condition H·f = 4.85·108 Am−1s−1, which restricts the application of an AMF for
medical purposes according to [90]. The green circle at the MF axis indicates the intensity of the
Earth’s magnetic field. The techniques indicated by asterisks require the preliminary introduction
of MNPs.

These and other related papers show that the kinetics and the yield of fast radical
reactions can be affected by MF even if radical magnetic energy Um << UT. The mechanisms
of MF that affect processes that encompass non-equilibrium paramagnetic centers were
substantiated theoretically [92–94]. A short explanation is as follows: the spin subsystem
in dynamic processes may have insufficient time for thermalization; therefore, it can be
considered as isolated from the atomic-molecular one for a period of time that is determined
by the relaxation time τT. A weak MF could affect the spinning of paramagnetic particles
during that time span, so that short living radical pairs can go from singlet to triplet state,
thereby preventing its recombination. However, the kinetic restraints are quite strict for
such spin-dependent reactions. The lifetime of such τL pairs should be higher than spin
conversion time τC but lower than τT. It is unknown whether τC < τL < τT conditions could
be satisfied for biochemical reactions in living objects; but, for simple radical reactions in
model systems, this was already proven experimentally [97,98]. On the one hand, this
uncertainty prevents the development of accurate models of biological processes in weak
MFs and, consequently, reasonable and reliable methods of therapy; but, on the other hand,
it requires monitoring of the traces of the possible impact of MFs on biological systems in
each experiment, even with a sufficiently low MF intensity.

The above energy proportion can be changed drastically through the introduction of
MNPs into the system. The interaction energy of MF with MNPs, with diameters ranging
from several nanometers to several tens of nanometers, is thousands of times higher than
with individual electrons, thus resolving the problem of kBT as long as Um >> UT. Therefore,
the magnetic energy becomes thermodynamically non-negligible and the only remaining
question relates to the paths of further energy transfer into the biomolecular system. The
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above forms a foundation for methods of therapy that use MNPs, and it enables such
methods to be advantageous compared to pure magnetic therapy.

There are at least two distinctly differing approaches to the conversion of this energy
into biochemical effects. The first is its dissipation into the form of thermal energy, which
takes place in magnetic hyperthermia at f = 100–800 kHz. The second utilizes magnetic
forces more directly as local forces that induce deformation in biomolecules that are tethered
or merely adjacent to MNPs rotating in non-heating low-frequency (f < 1 kHz) AMF. This
approach is referred to as nanomechanical magnetic activation (NMMA).

Despite many attempts to provide theoretical and experimental evidence for heating
localization in the volume of one cell (“intracellular hyperthermia”) [100,101], or even in
the vesicle membrane [102], it was shown, both theoretically [52,54,103–107] and experi-
mentally [108], that for the MNPs and MFs used in real applications, the heating cannot be
localized in a region smaller than a few millimeters, and the individual MNP cannot be
overheated more than by 10−6 ◦C relative to the environment. The thermal energy gener-
ated inside the MNP and in the adjacent zone is very efficiently distributed over a large
area. The thermal diffusivity of any biological material differs by several times, but not by
more than an order of magnitude. Therefore, during a typical experiment with a duration
of ~100 s, the thermal conductivity levels out the temperature gradients in an area much
larger than the cell size. In other words, adiabatic heating is possible only over a period
of time that is 6–8 orders of magnitude less for a cell and 10–12 orders of magnitude less
for the size scale of MNPs. To obtain a noticeable effect, one should accordingly increase
the energy generation rate. An increase by many orders of magnitude in the MF intensity
or the rate of energy dissipation of MNPs seems absolutely implausible, especially when
taking into account all the limitations imposed by work with living organisms. We believe
that the local effects observed in [100–102] and some other similar works are due to the
rotational-vibrational motions of MNPs in the AFM. In contrast to magnetic hyperthermia,
NMMA acts on a region that is comparable in size to the diameter of MNP and may have
molecular selectivity [52,54,55]. This forces us to focus further discussion on the features of
the NMMA of biomolecular structures in the absence of their noticeable heating.

It is likely that the first application of the nanomechanical approach that used MNPs
for the generation of force was implemented by future Nobel Prize winner F. Crick in
1950 to measure intracellular microviscosity [109]. In [110], the team from Lomonosov
Moscow State University reported that the activity of the enzyme can be controlled by
deformation of the biomolecule. Macromolecules (MM) of trypsin and chymotrypsin were
immobilized on nylon fibers and other polymer matrices with covalent bonds. Mechanical
deformation of the matrix with immobilized MMs led to a decrease in the enzyme activity
and an increase in its thermal stability at a deformation of about 0.05 nm, normalized to
one enzyme MM. Later, this approach was developed into the field of mechanochemistry,
which is associated with the immobilization of catalyst molecules on various soft materials
and the control of their activity through macrodeformation of the material [56,111,112].

The first part of this mini review looks at the physical background, the second describes
recent field results, and the third discusses the toxicity and other risks associated with this
NMMA approach.

2. Theoretical Considerations

This paper does not aim at a detailed discussion of various mechanisms of en-
ergy transfer from MNPs to target objects—these can be found in papers [46–48] and
reviews [52,54,55]. Let us mention the most important theoretical aspects discussed here.

In the general case, to any body/particle with magnetic moment µ exposed to a
magnetic field B, a torque L = µxB and a force Fgr = (µ∇)B are exerted (Figure 2). In a
uniform MF, only a torque is applied to the body because all spatial derivatives of the
field are equal to zero. In contrast to solid-state magnetic elements, MNPs located in a
suspension or a tissue are surrounded by a liquid or viscoelastic media; therefore, under
the influence of AMF, they can vibrate in different modes. The nature and amplitude of a
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free MNP motion in AMF depend on its hydrodynamic radius and magnetic moment, the
viscoelastic properties of the environment, the MF intensity and frequency, the initial angle
between vectors µ and B, and other factors.
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Figure 2. Diagram of harmonic AMF (a), free (b) and immobilized functionalized MNP (c) with
magnetic moment µ in a uniform AMF B, and free MNP in non-uniform AMF (d). Rm, RAu and RHD

are MNP magnetic core, gold shell ad hydrodynamic radii accordingly. L—is the torque resulted
from MNP-AMF interaction. The torque L produces hydrodynamic force FHD in (b) and contact force
FMM in (c) applied to the macromolecule (MM) linked to MNP. Additional force Fgr is applied to
MNP in non-uniform AMF (d).

It should be noted that the above equations for L and F correspond to the maximum
induced values if µ is assumed constant. Actual values can be significantly lower due to
magnetic relaxation, i.e., the rotation of the magnetic moment vector of the MNP inside
MNP body as a result of its interaction with MF. The details of this process are determined
by many factors, including the radius of the MNP core and the magnetic properties of the
material, AMF frequency, media viscosity, and others.

While the specifics of magnetic relaxation are not very important for heating the MNP
in AMF, and energy dissipation is roughly proportional to the AMF frequency, for NMMA,
the difference between Neel and Brawn relaxation is crucial because Neel relaxation leads
to a rapid rotation of the vector µ without rotating the MNP itself. It reduces the torque
and other external manifestations of MNP–MF interaction. Some torque still also exerts
MNP in this case, but it is the result of a residual vector alignment mismatch, while the
large theoretical value applies only for a short part of the period, which is proportional to
the ratio of the Neel relaxation time to the AMF period. The most important parameter
separating the Neel and Brawn relaxation regions is the MNP magnetic core radius Rm,
which must be higher than a certain critical value, namely Rm*, to freeze out the Neel
relaxation. Rm* depends on the magnetic core material, the hydrodynamic radius of MNP,
and the viscosity of the environment. The most common material in biological applications
is magnetite, and, for a typical MNP geometry and environment, Rm* ≈ 6.5 nm.

The other important aspect of the interaction of MNP with surrounding molecules
is the mechanical constraints imposed on the movement of MNP. There are two typical
cases. One is the case of free MNPs suspended in the liquid (Figure 2b), and the other is
that of MNPs anchored to other bodies, including other MNPs, vesicles, cell membranes,
microfibers, etc. (Figure 2c). In addition to torque L and FMM, the force Fgr is arisen in
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non-uniform AMF (Figure 2d). It oscillates in phase with the AMF (Figure 2a) and causes
MNP reciprocal motion.

Free MNP cannot produce torque that is higher than the torque exerted by its viscous
friction during rotation. Force evaluation gives values of FHD—the hydrodynamic force ap-
plied to MM—of no more than 1 pN for realistic experimental conditions, but this value can
sometimes be sufficient for the acceleration of the gradual washout of the therapeutic agent,
from the polymer shell of the MNP, in order to implement controlled drug release [113]. In
the case of anchored MNP, the mechanical properties of the molecular tether, the location of
its joint points on the MNP and counterbody, and other link parameters, become important.
A detailed description of the dynamics of free and anchored MNPs in AMF can be found
in [48,52–55,114].

There are other important concerns when considering the optimal choice of AMF
frequency for NMMA. Inertial and hydrodynamic forces grow with the increasing of
f. The inertial force for MNP with a 10 nm radius is much less than the magnetic and
hydrodynamic forces at AFM frequencies of up to many megahertz; therefore, they can be
neglected in the implementation of NMMA.

To reduce energy loss due to heating and dissipation processes, the AMF frequency
f should meet the condition f < fc, where fc = µBk(12πηVHD)−1 is some characteristic
frequency determined by MF intensity B, medium microviscosity η, MNP form factor k~1
and its hydrodynamic volume VHD [46–48,52,54]. At this frequency, the maximum torque
resulting from the MF–MNP interaction becomes equal to the maximum possible torque of
the viscous forces that are applied to the rotating MNP by surrounding media. Thus, the
larger the hydrodynamic radius of the MNP, the lower the AMF frequency that should be
chosen. Anchored MNP can exert a maximum contact force FMM of up to F*MM = µB/RHD
on the binding macromolecule, and this can even be slightly higher with a special binding
geometry. If the AMF frequency approaches or exceeds fc, the FMM force diminishes
due to viscous friction forces. The behavior of rod-shaped MNPs in AMF is even more
complicated, which opens additional possibilities for controlling the effect of AMF. There
is some evidence that such MNPs may be more effective than spheroidal ones [115–118],
whereas rod-like MNPs do not require strong bonds to MM or other particles to induce
significant deformation. Thus, the MNP and AMF parameter requirements for MHT and
HMMA applications are exactly the opposite (Figure 3).

The next stage in the development of this technology is the choice of MNP and
AMF parameters in order to produce the desired NMMA response. There is a large
amount of experimental data on changes to the properties of individual macromolecules,
molecular structures and living cell responses to an application of force [36,49,60,119–123].
Usually, such information is obtained using single molecule force spectroscopy (SMFS),
implemented by optical or magnetic tweezers, or atomic force microscopy in contact mode.
It should be mentioned that it is impossible to determine precise values of critical force Fc
that are sufficient to cause any significant effect because molecular effects are of a statistical
nature and are characterized by large dispersions even in completely identical experimental
conditions. Furthermore, for any given process, the Fc value depends upon a large variety
of parameters including the load frequency, the application rate and duration, and the
previous history, as well as such environmental parameters as temperature, pH and others.
Therefore, they are usually presented as histograms or intervals of the most probable values.
Typical values of Fc for some molecular structures and processes are presented in Table 1.
As can be seen in this table, to control all of the processes of interest for biomedicine, at the
scale of individual molecules, molecular structures and cells, forces in the range between
tenths and several hundreds of piconewtons are needed, which are easily achievable with
reasonable MNPs and AMF. It follows from Table 1 that the dangerous cleavage of covalent
bonds requires forces of several thousands of piconewtons. This value is hardly reachable
in NMMA with the currently used MNPs and AMF.
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Figure 3. Frequency dependence of the heating ∆T and the range of angular oscillations of MNPs
with the magnetic radius of Rm = 10 nm and various hydrodynamic radii RHD in the media, with
various microviscosity values η, under the action of harmonic AMF B = BaSin2πft; Ba = 100 mT.

Table 1. Typical values of magnetic-field induction necessary for the activation of some processes in living cells (in the case
of MNPs with Rm = 10 and 15 nm).

No Process

Evaluation of Necessary
Magnetic-Field Induction B, mT

Typical Experimental
Threshold Force Measured
by SMFS Methods, F, pN

Reference on
Experimental

Measurement of ForceRm = 10 nm Rm = 15 nm

1. Activation of various ionic channels 1.35–67.5 0.6–30 0.2–10 [49,119,120]

2. Protein–protein interaction 6.75–67.5 3–30 1–10 [60,121]

3. Activation of membrane receptors 67.5–337.5 30–150 10–50 [36,49,119,120]

4.
Bond cleavage between
transmembrane protein

and membrane
202.5–337.5 90–150 30–50 [120,121]

5. Antigen–antibody interaction 67.5–675 30–300 10–100 [60,122]

6. Onset of unfolding of
protein macromolecule 135–675 60–300 20–100 [60,123]

7. Interaction of ligand with receptor 6750 3000 ~1000 [120,122]

8. Interaction of protein with lipid 337.5–675 150–300 50–100 [121,122]

9. Breaking of covalent bond 6750–33,750 3000–15,000 1000–5000 [60,120]

3. Some Experimental Results

In the physics of nanostructures, microelectronics and photonics, the approach that
uses controlled elastic deformation to manipulate material properties was, in recent years,
referred to as straintronics [124]. Though it is fundamentally important and used in real
applications, straintronics in the form described in [124] is hardly applicable to biomedical
problems as long as substrate deformation requires macroscopic loading units that are
incompatible with living organisms. The employment of MF-activated MNPs as a nanoscale
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deformation machine allows the implementation of various specific loading schemes for
any biomolecular structure, from individual bioactive MMs to cells [52–57]. They can,
through the use of mills, attritors, etc., provide nanoscale locality and a degree of selectivity
that is unreachable for traditional mechanochemistry, and can, unlike SMFS techniques
that deal with isolated single MM, also provide mass procession as a result of the large
number of MNPs in suspension.

In one series of experiments described in [56], the mechanochemical effect of MF
on the catalytic activity of chymotrypsin (ChT), which was immobilized on magnetite
nanoparticles and coated with gold and polyethylene glycol (PEG) ligands of 2–5 nm
length, was studied. Some part of the ChT MMs formed bridges that connected two
MNPs, thereby producing MNP dimers (Figure 4). The catalytic activity of immobilized
ChT and its change during exposure to MF were recorded using a spectrophotometer
that measured the rate of colored p-nitroaniline product formation during the catalytic
hydrolysis of the N-succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanine (SAAPFpNA)
substrate. The reaction rate, which was proportional to the slope of the kinetic curve, was
reduced threefold with the application of MF (Figure 4e, dependence 3). Both the heating
of MNP and the suspension volume in MF, with such low frequencies and intensities as
those used in the experiment, were below 0.1 K, as measured directly using the remote
infrared temperature gauge, and could, therefore, be neglected. Thus, the effect, due to its
sensitivity to the ChT concentration and LF AMF parameters, could only be ascribed to the
mechanical impact of the rotational oscillations of MNP, which were induced by AMF, on
the conformation and active centers of ChT MMs.

In the other set of experiments described in [56], ChT and trypsin inhibitor (TI)
molecules were immobilized on two separate MNP ensembles. Their mixing resulted
in the formation of a ChT-TI complex with low activity within the MNP-ChT-TI-MNP
dimer aggregate. To measure the activity of the ChT-TI complex, a SAAPFpNA hydrolysis
reaction and spectrophotometric monitoring of the formation of p-nitroanaline products
were used as described above. Enzyme activity increased during exposure to B = 88 mT,
f = 60 Hz MF, by a factor of 1.4 (Figure 4e, dependence 2). The absence of a noticeable
increase in temperature makes it reasonable to ascribe the increase in activity to the cleavage
of the ChT-TI bond in the MNP-ChT-TI-MNP complex and the unblocking of the enzyme
active center. It should be noted that the dependence of enzyme activity on MF intensity
reaches saturation at some point, depending on the character of the activated process.

A number of papers described the magnetomechanical activation of MNP through
the application of LF AMF with the empirical choice of experimental parameters [43–51].
Specifically, the authors of [51] mentioned the use of NMMA in regenerative medicine and
tissue engineering, and the controlled release of DNA and other bioactive molecules from
nanocontainers was pointed out in [44,125]. Changes in enzyme activity were reported
in [45,56]. A number of publications [43,53,126,127] reported the apoptosis or necrosis of
malignant cells induced by NMMA. The MF intensity and frequency dependences of this
effect were found to be complex and even non-monotonic, so thorough systematic studies of
the effects of the reactions of various biochemical systems on NMMA are necessary for the
future application of frequency-selective nanomechanical impacts on molecular structures
that are localized at the nanoscale. It should be noted that this is principally impossible for
MHT. Taking the above into account, and employing the described models, more physically
substantiated experiments were carried out [53,55,56,117,128]. The conditions for the most
effective NMMA application found in these papers were generally in agreement with our
theoretical considerations, which were presented in [46–48,115,129–131]. For example, the
MF-induced release—and change in the activity—of SOD1 enzyme MMs from MNPs coated
with poly(lysine)-poly(ethylene) glycol block copolymer carriers were studied in vitro, and
were found to depend on MF parameters in the intensity range of 8–125 kA/m and the
frequency range of 30–410 Hz in [128]. It was shown that SOD1 desorption depends upon
the duration, intensity and frequency of MF exposure and results in an increase in enzyme
activity. For instance, after suspension exposure in MF with H = 55 kA/m and f = 50 Hz for
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30 s, SOD1 activity increased by 15% due to enzyme desorption. The effect was found to
be reversible, and after the switching off of MF, SOD1 begun to sorb back onto the corona
of the MNPs polymer due to electrostatic interaction, and its activity was thus reduced.
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Figure 4. Effect of a LF MF (B = 88 mT, f = 60 Hz) on the catalytic activity of chymotrypsin macro-
molecules immobilized in the dimer complex of two MNP: (a) diagram of dimer complex without
MFs and (b) upon exposure to a MF; (c) diagram of the f-MNP-ChT-TI-MNP complex without a MF
and (d) upon exposure to a MF (E is enzyme, S is substrate, I is inhibitor, TI is Trypsin inhibitor, L is
the torque applied to MNPs in LF MF, and F are forces acting on macromolecules in LF MF); (e) the
kinetics of the light absorption growth by the product formation during the biocatalytic reaction
before the switching on of LF MF (the dependence (1)) and during exposure to the field (dependences
(2) and (3) referring to the complexes in (d) and (b), respectively).

Another experiment demonstrated the applicability of MNP, activated by non-heating
AMF at a frequency of 50–400 Hz, to the controlled release of the desired agent from lipo-
somes, by means of the alteration of the microviscosity of the lipid membrane. Liposome-
MNP complexes were formed due to the electrostatic interaction between dopamine bound
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to MNPs and lipid anionic units (mostly phosphates). A 5 min exposure to AMF at a
frequency of 50–150 Hz resulted in the release of the cargo of low molecular weight com-
pounds, as reported in [117], for sodium chloride. The effects depended upon the frequency
and intensity of AMF (see Table 2). As shown by infrared (IR) spectroscopy, the oscillation
of MNP in AMF results in the loosening of the liposome membrane, which resembles phase
transition [117].

Table 2. Comparison of different methods of producing magnetic effects on biochemical systems.

Method Advantages Drawbacks Typical MF Parameters

Magnetic hyperthermia Versatility, ease of implementation

Need to introduce MNPs, difficulty in
controlling temperature and dosage,
low locality, non-specificity, risk of

damage to healthy tissues

f = 100–800 kHz
B = 5–30 mT

UHF physiotherapy Ease of implementation,
noninvasiveness

Unsafe field frequencies,
non-specificity

f = 26–40 MHz
B < 0.1 mT

Transcranial magnetic stimulation Noninvasiveness Non-specificity,
insufficient localization

f = 1–10 kHz
B = 1–3 T

Nano-magnetomechanical actuation Molecular locality, high specificity,
safe frequencies, multimodality Need to introduce MNPs f < 1 kHz

B = 10–500 mT

Spin-dependent chemistry No mediators needed Difficulty of control, ability to regulate
only some reactions

f = 0–100 Hz
B < 10 mT

NMMA has the potential to modulate the functioning of nerve tissues [73]. For
example, MNPs activated by ~50 Hz AMF were employed to stimulate ionic channels and
stem cell differentiation. This is of great interest in terms of the non-invasive treatment of
various neurodegenerative diseases [132–135].

The other prospective application of MNPs in biomedicine is neuron regeneration
and growth engineering [73,136,137]. As shown in [136], the introduction of MNPs into
neurons allows the control of the direction of axon growth by means of gradient MF. A
similar effect, accompanied by the acceleration of cell differentiation as a result of growth
hormone receptor stimulation, was reported in [137]. There are other approaches to neural
modulation by means of the mediation of AMF by MNPs [74].

The NMMA approach has many advantages compared to such widespread meth-
ods as chemotherapy, radiotherapy, photothermal therapy, photodynamic therapy, and
ultrasound, as well as other methods that use MNPs and AMF, as summarized in Table 2.

The main advantages of NMMA over technologies that use heating radiofrequency
AMF with the frequency above hundreds or thousands of kHz, such as MRI or MHT,
include its higher flexibility and generality, its ability to reach molecular level locality and
selectivity, as well as its use of safer non-heating LF AMF. In addition to use by itself,
NMMA can fit in with traditional therapy (addressed drug/gene delivery, controlled drug
release, changing of cell behavior [19,41–45,49,53,56,73,117,128]) easily. Furthermore, LF
MF is much safer than heating radiofrequency MF; thus, sanitary regulations and norms,
and international regulations and recommendations, allow much higher intensities of
the former in the environment. The primary mechanism of the non-heating effect of
LF AMF is the mechanical activation of individual MMs, transmembrane proteins, ionic
channels, and cell membrane receptors. This requires an intelligent choice of MF parameters
and specific MNP functionalization, thus allowing the deformation of conjugated and
adjacent bioactive MMs, and thereby changing its conformation, relative position and the
functioning induced by the rotational oscillations of MNP in AMF. It is the option of linking
the specific biomolecules that can target other very specific molecules in biological systems
to MNP that makes it possible to reach very accurate targeting of the effect of AMF in
NMMA at the nanoscale level, unlike that of MHT, which cannot be localized at better than
~1 cm3 volume due to the high thermal conductivity of the tissue, and has no biochemical
selectivity. As shown experimentally, due to the high sensitivity of biological molecules
to applied force and strain, NMMA can change enzyme activity, and loosen vesicle and
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cell membranes, thereby increasing their permeability, as well as affecting cell metabolism,
fighting with malignant cells and ignoring healthy ones. Moreover, all these effects do
not require any heating, ionizing radiation or very toxic therapeutic agents, the impact of
which cannot be localized at a molecular or cell level, which leads to various dangerous
side effects.

There are just a few papers reporting studies NMMA in vivo (see the review [50]),
while in vitro studies are more numerous. Experiments on cells and cell cultures showed
the effectiveness of NMMA as a means of inducing apoptosis in cancer cells [36,37,41,42].
In addition, there is indirect evidence of the possible participation of drugs containing
iron ions, or natural iron-containing proteins-ferritins, in the mechanisms of MF action
in vivo [138–141]. Of course, for a reliable proof of the magnetomechanical origin of the
effects observed in vivo, it is necessary to conduct targeted experiments with the introduc-
tion of optimally designed MNPs, with known magnetic characteristics and functional
shells, into the body, as well as physically substantiated parameters of the activating AMF.
This will bring greater certainty to the situation and will help both to better understand the
mechanisms of action of AMF and the means of increasing its effectiveness in vivo.

4. Toxicological Aspects

There are three subjects in magnetic therapy that use MNPs as a mediators and
concentrators of AMF action: MNPs, AMF and the results of their interaction. As for
MNPs, they have, by now, been widely used in MRI diagnostics, iron-deficient anemia
treatment, addressed drug delivery, cell sorting and other biomedical applications for a
long time [8–15,18–20].

A number of studies claimed that MNPs are nontoxic or even useful [142–144].
However, there are even more papers declaring some indication of MNPs’ cytotoxicity
in vitro and in vivo [145–150]. There are several Food and Drug Administration and Eu-
ropean Medicines Agency (FDA/EMA)-approved iron oxide nanomaterials (FerrlecitVR,
VenoferVR, INFedVR, DexferrumVR, FerahemeVR, Feridex I.VVR, ResovitVR, Gastro-
markTM, and Ferumoxtran-10) that are employed to treat iron deficiency in chronic kidney
disease, imaging of liver lesions, and lymph node metastasis imaging [151]. Some of them,
however, were discontinued because of side effects and toxic effects shown in vivo.

A number of reviews, in recent years, were devoted to the analysis of various factors
affecting the toxicity of magnetic nanoparticles [10,152–157].

These reviews summarize the information on the toxicity of MNPs. There are no
doubts that some kinds of nanoparticles have demonstrated such toxic effects as inflamma-
tion, ulceration, decreases in growth rate, declines in viability and triggering of neurobe-
havioral alterations in model animals (see [152]). The toxic effects of MNPs in vivo were
discussed in detail in several reviews [145,152,154,156]. Organ-specific toxic effects and
routes of introduction were discussed. Magnetite MNPs coated with polymers containing
polyethylene oxide showed no toxicity on different organs in mice even after 14 days [154].

It is, therefore, important to understand the toxicity of MNPs, as it depends on
such factors as size, charge, shape, structure, surface modification, concentration, dosage,
biodistribution, bio-availability, solubility, immunogenicity and pharmacokinetics. As
shown in many reports, iron oxide-based materials such as magnetite and maghemite are
considered safe and are also currently in clinical use as MRI contrast agents [158].

Magnetite (Fe3O4) and maghemite (γ-Fe2O3) are considered the most suitable mate-
rials for the synthesis of MNPs. However, uncoated MNPs are quite toxic, as shown in
many studies [152,153]. To ensure stability, as well as to increase bioavailability, various
coatings are used: natural (carbohydrates, proteins) and synthetic polymers (polyethy-
lene glycol (PEG), polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), copolymer of
lactic and glycolic acid (PLGA), and noble metals (gold and silver) (see examples in recent
papers [56,159] and reviews [10,152]).
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Gold nanomaterials, assembled with magnetic iron oxides cores to provide gold–iron
oxide hybrid structure MNPs, offer benefits, including the easy chemical modification of gold
surfaces, which are suitable for drug delivery, spin dynamics and plasmonic applications.

PLGA and Polylactic acid (PLA) polymers are FDA-approved based on the simplicity
of their particle formulation and non-toxic biodegradation products. These polymers are
used to coat the unstable reactive surface area of MNPs to stabilize them for such in vivo
functions as drug delivery or gene delivery by adsorbing proteins or loading drugs [160].
The magnetic cores of these fabricated MNPs help in their accumulation at a desired site
and the unloading of the drug molecules at this site is controlled by an external magnetic
field [10,161,162].

Surface coating with PEG was shown to reduce the interaction of MNPs with plasma
proteins, decreasing the chances of internalization and clearance by macrophages [163,164].
γ-Fe2O3 nanoparticles coated with polymers containing polyethylene oxide (5 and 15 kDa)
were not toxic towards prostate cancer cell lines, human umbilical vein endothelial cells
(HUVECs), and human retinal pigment epithelial cells (HRPEs), even after the uptake of
MNP into such cells [165].

As was found for long exposure times (48 h), the cytotoxicity of iron oxide nanopar-
ticles can be ascribed to free radical production, but this toxic effect may be neutralized
through the use of polyethylene glycol modification [155].

Albumin nanoparticles’ coating was also shown to give a stable and biocompatible
shell that prevents cytotoxicity of the magnetite core [155]. The authors synthesized bovine
serum albumin-coated iron oxide nanoparticles with two different sizes, 80 and 40 nm,
and a polyethylene glycol derivative of the latter one. A number of in vitro toxicological
tests on human fibroblasts and U251 glioblastoma cells were performed. A simple survival
assay of both the cells and the lactate dehydrogenase (LDH) activity after 24 h of incuba-
tion showed no significant loss in the confluency area of the human fibroblast (HF) and
human glioblastoma U251 cells at all MNP concentrations. However, at 48 h, the highest
concentration of BSA-MNP-80 and BSA-MNP-40 showed some cytotoxic effect, which was
stronger in the case of BSA-MNP-40 in HF cells (no toxicity shown in U251 cells).

Superparamagnetism is an important feature in terms of avoiding agglomeration and
directing MNPs to site-specific locations inside the body. Superparamagnetism arises from
the magnetic material core of the MNPs and depends on the core size. As shown above,
MNPs of different sizes revealed different toxic effects [155]. Other studies confirmed that
the particle size may, indeed, have different effects on cells in vitro. For instance, 30-nm-
sized MNPs showed relatively higher toxic effects as compared to those of 0.5-µm-sized
particles. When incubated with the A549 alveolar epithelial cell line, a size-dependent and
dose-dependent influence on cell damage was observed [10]. For instance, 30-nm-sized
Fe3O4 particles caused higher oxidative DNA damage compared to 0.5-µm-sized particles
at 80 µg/mL concentration, while, at lower concentrations such as 40 µg/mL, none of these
particles were toxic [10]. Additionally, at 80 µg/mL concentration, both 30-nm- and 0.5-
µm-sized Fe3O4 particles showed mitochondrial depolarization, suggesting mitochondrial
damage with subsequent cell death.

The adsorption of plasma proteins (opsonins) onto the NPs surface (resulting in their
recognition by macrophages and systemic clearance) depends on the size of the particles.
For instance, it was shown that the quantity of plasma protein adsorbed was lower for the
smaller NPs (6% of protein adsorbed onto 80-nm-sized particles), whereas it was significant
for the NPs of relatively larger size (23% and 34% of protein adsorbed onto 171-nm- and
240-nm-sized particles) [10].

Summing up the above, one can assume that the most widely used MNPs, consisting
of a magnetite core, gold coating and polymer shell, are characterized by low toxicity both
in vitro and in vivo. Some of them are approved by the FDA, which allows their use as
a suitable instrument for the implementation of biomedical technology platforms based
on NMMA. Unlike MHT with steadily growing temperature, NMMA methods that use
non-heating AMF act by means of forces that are localized at comparable distances to
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the MNP radius and that are almost independent of exposition time and MNP concentra-
tion. Furthermore, NMMA requires a significantly lower MNP concentration than MHT.
Altogether, it greatly reduces the risk of overdose.

Risks of exposure to activating AMF by itself are assessed according to sanitary norms
and regulations. As mentioned above, the lower the AMF frequency, the lower the risks.
Mechanical activation employs fairly safe, very-low-frequency MF (usually 1–100 Hz) with
an intensity in the range of tens to hundreds of milliteslas.

To further lower the requirements for AMF, one can use MNPs made of material with
higher saturation magnetization than that of widely used magnetite [166]; however, their
toxicity is studied to much lesser extent than that of iron oxides.

A significant further reduction in the body burden imposed by NMMA treatment can
be achieved by employing an additional gradient, MF Bgr, with a field free point (FFP) [167].
The FFP can be localized anywhere within the object under AMF treatment (Figure 5).
Such a field can be generated by two or three pairs of Maxwell coils, which are Helmholtz
coils with opposite current directions, for FFP repositioning. Mechanoactivation in such
fields can take place only near the MF FFP gradient, where the Bgr intensity is lower than
that of the activating AMF. By adjusting the currents in the coils, one can control the size
of the processed area (typically from several mm to several cm), as well as its position.
This allows 3D scanning in the therapy process. This approach is already used for the 3D
visualization of the biodistribution of MNPs in the body, with a rate of up to several tens of
images per second [168–172]. The rate is thousands of times higher than that obtained in
MRI. The same principle of focusing the impact of AMF in a given region within the object
can also be employed in active therapy methods such as MHT [173] or NMMA [167].
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5. Conclusions

The paper discusses and summarizes research on the features related to the use of
MNPs as transducers of non-heating LF AMF energy into the deformation of bioactive
MMs, bionanostructures and cells linked to the MNPs. The forces and deformation of these
objects are numerically estimated for magnetite MNPs. It is shown that easily available LF
AMF, with frequencies in the range of several to hundreds of hertz and induction in the
range of several to hundreds of milliteslas, can force 10–30 nm functionalized magnetite
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MNPs to activate almost all important biochemical processes from the level of MMs to that
of cells. This approach provides a toolbox to change the techniques related to the remote
enzyme activity, addressed drug delivery, controlled release and drugless destruction of
malignant cells, which can provide a new foundation and a great perspective for next
generation therapies. The strategy described above allows the implementation of a large
set of diagnostic, therapeutic and monitoring functions within the same technological
platform, which is safer and causes less side effects than the disconnected set of existing
methods. To adopt this strategy in medical practice, one should further develop both the
theory and biochemical experiments, and advance from the laboratory to the clinic.

It should be noted that MF physiotherapy, the spin-dependent kinetics and yield of
biochemical reactions, magnetic hyperthermia and nano-magneto-mechanical activation
use quite different means of biostructure control. The terms “magnetobiology”, “magnetic
impact” and “magnetic effects” only cover these differences very formally, while the
underlying mechanisms of action of MF on biological objects differ greatly. The MF
itself, with usual laboratory intensities of up to several tesla and much lower typical
values such as 0.01–0.1 T, is a thermodynamically weak factor for biological systems. The
responses to exposure to such fields are hard to reliably reproduce, and can sometimes
be completely indistinguishable. However, the possibility of their reproduction makes
control experiments necessary in any case. The impact of MF on biological objects that
can be registered reliably is explained by the indirect effects of MF, comprising an eddy
electric field and heating in the vast majority of cases. Therefore, the effects specific
to magnetism are negligible or missing completely. The introduction of MNP allows
the condensing of MF energy in nanoscale volumes by many orders of magnitude and
enables new nanomechanical factors (forces and deformations). This factor has no magnetic
specifics, but unlike eddy electric fields and heating, it can be localized at a molecular or a
cell level. Nanomechanical actuation has much higher selectivity and can induce a much
wider variety of effects than temperature increases due to the sensitivity of the molecular
system to the force frequency, amplitude and application point, as well as the tensor
character of the induced deformations. Without detailed descriptions of experimental
conditions and a good understanding of the mechanisms of the impact of AMF, it is
impossible to optimize anticipated responses and build any therapeutic platform using
AMF as an energy source.
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