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Line tension of three-phase contact lines is an important physical quantity in understanding many physical
processes such as heterogeneous nucleation, soft lithography and behaviours in biomembrane, such as
budding, fission and fusion. Although the concept of line tension was proposed as the excess free energy in
three-phase coexistence regions a century ago, its microscopic origin is subtle and achieves long-term
concerns. In this paper, we correlate line tension with anisotropy of diagonal components of stress tensor
and give a general formula of line tension. By performing molecular dynamic simulations, we illustrate the
formula proposed in Lennard-Jones gas/liquid/liquid and gas/liquid/solid systems, and find that the spatial
distribution of line tension can be well revealed when the local distribution of stress tensor is considered.

L ine tension is an important parameter for the interpretation of heterogeneous nucleation1, soft litho-
graphy2,3, and behaviours of biomembranes like budding, fission and fusion4–6. Although line tension is
well-defined in thermodynamics by Gibbs long time ago, its existence, magnitude, sign, and some

substantial issues, such as what leads to line tension, have long been discussing and studying in theories,
simulations, and experiments7,8. The three-phase contact line (CL) is theoretically complicated because it
involves at least three bulk phases and three interfaces. Thus investigation on line tension inevitably needs to
discuss three-dimensional information such as the shape and structure of the three-phase contact zone9–11.
Theoretical estimate of line tension is usually based on mean field theory10,11, involving density function
theory (DFT)12, line tension can thus be related to intermolecular forces. A generally accepted theoretical
estimate of line tension is on the order of 10212 to 10210 J/m12–21, while experiments under various conditions
suggest a broader range varying from 10211 to 1025 J/m7,22–25. This mismatch cannot simply be ascribed to the
simplicity of theoretical models and poor experimental techniques, the very different systems performed in
these studies could also be a reason. As such more efforts are necessary in both theoretical/computational
and experimental sides to have a complete picture of line tension.

Molecular dynamic (MD) simulation has directly brought a novel theoretical view of line tension from
molecular interaction. Werder et al.21 brought the dependence of the contact angle on line tension with the
‘‘modified Young’s equation’’7,24 into the microscopic scale. They simulated water droplets of various sizes on
graphite surfaces, the contact angle of the droplets was then measured to obtain the line tension in the order of
10210 J/m. Another approach, ‘‘finite-size-scaling’’, was also performed to extract line tension from free
energy26,27,35. These methods usually require a series of simulations with various system sizes and data fitting.
Moreover, line tension needs to be extracted from the dependence of the contact angle or surface tension on the
size of system. On the other hand, surface tension can be easily related to molecular interactions. Kirkwood et
al.28,29 provided a generalmethod to study surface tension by amechanical route using virial and stress tensor. The
surface tensionwas calculated from the difference between the normal and tangential pressure of the surface, thus
can be directly obtained from a single molecular simulation. This approach has been widely adopted in the
calculation of surface tension30,31.

In this paper, following the similar spirit of relating surface tension to anisotropy of stress tensor28,29, we relate
the total excess free energy of contact lines and interfaces as the deviation of the transverse pressure to the parallel
pressure along the contact line. It is a direct approach to estimate line tension in a single simulation, and gives a
general formula relating line tension to microscopic interaction. Based on the Irving-Kirkwood’s definition of
local stress tensor, we clearly show that the origin of line tension is the anisotropy of local stress tensor in the three-
phase coexistence regions, similar to that of surface tension in interfaces.
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Theory
In a three-phase coexisting system, the differential of Helmholtz free
energy is

dA~{pbulkdVz
X
i

cidSiztdLtot : ð1Þ

Here pbulk is the pressure in the bulk region which is far away from
anymultiple-phase coexisting regions. It is defined as the free energy
change while varying the volume of system, V, but keeping areas of
interfaces, Si, and the total lengths of contact lines Ltot, i.e.,

pbulk~{
LA
LV

jSi,Ltot . Here ci is surface tension of interface, and t is

line tension.
We consider a system having three phases, three interfaces and

four contact lines as shown in Fig. 1, the contact lines are perpendic-
ular to the paper plane, such as along x-axis, and the interfaces might
be perpendicular to each other as shown in Fig. 1(a), or not, as Fig. 1
(b). If varying the size of the transverse section of the system, LyR Ly
1 dLy and Lz R Lz 1 dLz while retaining the shape, i.e. setting
dLy
Ly

~
dLz
Lz

, the area differential of any two-phase interface will be

proportional to its area,
dSi
Si

~
dLy
Ly

, and will be independent of the

curvature and the direction of normal vector of the interface. Thus, it
can be shown that,

pEV~pbulkV{
X
i

ciSi{tLtot , ð2Þ

Trp\V~2pbulkV{
X
i

ciSi: ð3Þ

Here pjj5 pxx, and Trp\~
1
2
(pyyzpzz). The diagonal component of

stress tensor is,

paa:{
La
V

(
LA
LLa

)T,N,La’=a
~rkBTz

1
V
h
XN
i

XN
jwi

Fa
ijr

a
iji ð4Þ

where a 5 x,y,z is a component of Cartesian coordinates. La is the
length of box in the a direction, and the volume V 5 LxLyLz for a

cuboid box. r~
N
V

is density of the system, kB is the Boltzmann

constant, and T temperature. Fa
ij and r

a
ij are the a component of force

Fij on the jth atom from the ith atom and distance vector rij5 rj2 ri,

respectively. Angular bracket refers to the canonical ensemble aver-
age. Here we already suppose the molecular interaction is a pair
additive force. The two terms31 are known as a kinetic term, arising
from the change in momentum due to particles crossing the bound-
aries of an elemental volume, and a configurational term, related to
the change in momentum due to intermolecular interactions
between particles and possible external forces. It is worth noticing
that the bulk pressure, pbulk, in multiple-phase coexistence systems
may be different from any diagonal component of stress tensor, thus
from both pH and pjj.
Equation (3) relates the total surface energy of the system to the

difference of the bulk pressure from the perpendicular pressure, and
is a generalized relation of surface tension in two-phase systems
presented by Kirkwood and co-workers28, where surface tension is
attributed to the difference between the normal and tangential pres-
sure. We also have,X

i

ciSiz2tLtot~V(Trp\{2pE), ð5Þ

which is approximately equal to the total excess free energy of the
multiple-phase coexisting regions, Aex 5 SiciSi 1 tLtot, if the total
line tension tLtot is much smaller than the total surface energy. Here
Ltot 5 4Lx is the total length of contact lines. It is worthy to mention
that the trace of the perpendicular stress TrpH can be calculated from
any two orthogonal transverse directions in the plane.
From equation (2) and equation (3), we have one of primary

results of this paper,

tLtot~V(Trp\{pE{pbulk), ð6Þ
the line tension is attributed to the anisotropy of stress tensor, i.e., the
difference of the transverse stress from the tangential stress and bulk
pressure.
To better understand the relation between line tension and aniso-

tropy of stress, we define local stress tensor31,32 Pab(r) at spatial posi-
tion r, which is written as

Pab(r)~r(r)kBTdabz
1
V
v

X
i

X
jwi

raijF
b
ijjab(r,ri,rj)w , ð7Þ

under the condition
ð
drjab(r,ri,rj)~1. Here r(r) is local density,

dab is Kronecker delta symbol. jab (r,ri,rj) is the fraction of the
intermolecular virial between a given pair of molecules at ri and rj
to be assigned to position r. It is easy to know the normal stress
tensor pab is the average of the local quantities in the whole system.

Figure 1 | Two kind of three-phase coexisting system. (a) Virtual walls are built in perpendicular to z-direction, gas/liquid phase-separation occurs along
y-direction, there are four contact lines at three-phase zones, which are parallel with x-axis. The flat gas/liquid surface is built to simplify our

calculation, the contact angle is about 90 degrees by selecting parameters of adsorption potential of the walls. (b) A common gas/liquid/liquid three-phase

coexisting system.
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Irving-Kirkwood29 (IK) used

jaa(r
a,rai ,r

a
j )~

1
jraijj

½H(ra{rai ){H(ra{raj )� : ð8Þ

to get the local stress in their calculation of surface tension. HereH(x)
is the Heaviside function. Another selection of the j function is also
possible and not sensitive to the obtained local stress. In the paper,
we follow IK’s selection, perform equation (7) and equation (8) to

attribute the virial of atom pairs into their spatial positions for the
local stress.
In the calculation of line tension based on equation (6), we need to

estimate the bulk pressure. There aremanymethods to do so.While r
is far away from the interfaces and the contact lines, Paa(r) for any a
gives the value of pbulk. In the interface regions, we may estimate the
bulk pressure as TrPH(r) 2 Pjj(r). In this paper, we calculate the
average value of bulk pressure as

pbulk~
1
Vc

ð
Vc

½TrP\(r){PE(r)�d3r , ð9Þ

where Vc refers to bulk or interface regions far away from the three-
phase coexisting zones. Thus we could calculate the spatial distri-
bution of line tension,

S(r)~TrP\(r){PE(r){pbulk: ð10Þ
S(r) should be nonzero only in the three-phase contact regions, but
zero in both interfacial regions and bulk regions. Thus, the total line
tension can be integrated by limiting the integral region only in the
three-phase contact regions without changing results. Similarly, we
could have the local surface tension,

C(r)~2pbulk{TrP\(r), ð11Þ
which is equivalent to the well-known formula C(r)5 Pn(r)2 Pt(r)
in interfacial regions28,29, since Pn(r) < pbulk, and TrPH < pn 1 pt.
Here the index n and t mean the normal and tangential direction of
interface, respectively.
It is worthy to point, while interfaces are not flat but curved, both

equation (3) and equation (6) are correct, but the bulk pressuremight
be spatial inhomogeneous. Due to the Young-Laplace equation, the

Figure 2 | Spatial distribution of density and line tension in gas/liquid/wall model. The line tension distribution is generated by setting bin size as

0.2 nm. Interpolation is applied to generate smooth 3D graph. (a) the density distribution. (b) the line tension distribution contour plot. (c) the 3D

plotting of the line tension distribution on (y,z) plane.

Figure 3 | Temperature dependence of line tension. Two different sizes of
simulation box are applied to detect the possible finite-size effects.
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inner and outer pressure of a droplet are not equal. In that case, the
bulk pressure shown in equation (3) and equation (6) is its average
value over the whole system, which could be estimated by equation
(9). In estimating the spatial distribution of line tension and surface
tension from equation (10) and equation (11), the inhomogeneity of
bulk pressure should be taken into account by using its local value to
replace the average value in the two equations. In comparison with
the spatial varying of line tension and surface tension, the inhomo-
geneity of bulk pressure is usually smaller and can be treated as
background, thus the line tension and surface tension signal can be
obtained. More details will be discussed below.

Simulation details
We build two three-phase systems, one is a gas/liquid/solid system
with a right contact angle between gas/liquid surface and solid wall to
avoid curved interface, as shown in Fig. 1(a), and the other is a gas/
liquid1/liquid2 system with curved interfaces and non-right contact
angle, as shown in Fig. 1(b). The gas/liquid/wall system is equili-
brated with, at most, 78109 argon atoms for 1 ns and run extra
4 ns for data collection. The argon is described by Lennard-Jones

model with diameter s 5 0.336 nm, and the energy parameter e is
0.9927 KJ?mol21 corresponding to kBTwithT5119.4 K . Two struc-
tureless walls are applied to represent the solid phase, the interaction
between the wall and argon atoms is set as the similar Lennard-Jones
function, the parameters are adjusted tomake the gas/liquid interface
be flat. Lennard-Jones potential of argon atoms is truncated and
shifted spherically with cutoff radius rc5 1.2 nm. Periodic boundary
conditions (PBC) are applied in only (x,y) while two parallel struc-
tureless solid walls are induced in z-direction. In the gas/liquid1/
liquid2 system, liquid1 is argon and liquid2 is another Lennard-
Jones fluid with s2 5 0.3851 nm < 1.15s, and e2 5 1.3188 KJ?
mol21< 1.33e, the interact parameter between two kinds of particles
is set as s125 1.07s, and e125 0.57e. This gas/liquid1/liquid2 system
exhibits a more general phase contact zone. The simulations are
performed at constant temperature T and volume V. A subcritical
temperature is set to stabilize two planar gas/liquid interfaces. MD
simulations are performed by using GROMACS version 4.5.5 to
generate the molecular trajectories with a time step of 2 fs. The
temperature is kept constant by using Berendsen thermostat34 with
a time constant 0.2 ps.

Figure 4 | Spatial distribution of Pyy(r) 1 Pzz(r) 2 Pxx(r) in gas/liquid1/liquid2 model. It corresponds to line tension but containing bulk pressure as

background. The anisotropy of stress is rescaled with the average stress pyy 1 pzz 2 pxx < 5.1 bar as unit.

Figure 5 | Spatial distribution of 2(Pyy(r) 1 Pzz(r)) in gas/liquid1/liquid2 model. It corresponds to surface tension but containing bulk pressure as

background. The unit of stress in the figure is 2(pyy 1 pzz) < 12.1 bar.

www.nature.com/scientificreports
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Results and Discussion
We first focus on the gas/liquid/solid three-phase system shown
in Fig. 1(a). By equation (10), the spatial distribution of line tension
in the system can be estimated, the result at T 5 100 K is shown in
Fig. 2, which clearly shows line tension only comes from the four
three-phase contact zones. Here, we estimate the bulk pressure pbulk
5 4.6 bar by equation (9) where the integration zone is set as 1/3 of
the simulation box side length away from the four contact line
regions. Indeed, Fig. 2(b) shows a background signal of the line
tension around zero with fluctuation less than one colour scalebar
(10 bar). There is no substantial difference between bulk fluid and the
gas/liquid, gas/solid, and liquid/solid interfaces, even though the
spatial distribution of particle density in Fig. 2(a) shows obviously
the existence of these interfaces. The 3D plot in Fig. 2(c) present a
direct view of the spatial distribution of the line tension density.
Negative peaks of line tension density at contact lines are observed,
their values are almost same and also at least five times larger than the
background fluctuation. This phenomenon can be clearly elucidated
with equation (6). In the homogeneous fluid zone, the line tension is
zero, due to pbulk 5 Pxx(r)5 Pyy(r)5 Pzz(r). While in the gas/liquid
interface, since pbulk5 Pyy(r), Pxx(r)5 Pzz(r), line tension is still zero.
Similarly, In all the other interfaces, the line tension is also zero,
except in the three-phase coexisting zones of the system. The result
shows 4t52153 bar?nm2, the line tension in this system is23.833
10212 J/m, which is in agreement with previous results in both DFT
calculation of Lennard-Jones system12 and experiments18,22.
We further study the temperature dependence of line tension, the

result is plotted in Fig. 3. In this system, when temperature is lower
than the critical temperature Tc < 1.17e/kB, the value of line tension
is negative. Its absolute value is about 63 10212 J/m at T5 0.67e/kB,
approximately linear change to zero as temperature rises to Tc. That
is, when temperature approaches Tc, the gas/liquid interface disap-
pears and so does the line tension. To detect the possible finite-size
effects, we simulate two systems of different sizes, the obtained line
tensions are equal within statistical errors.
A negative line tension is usually thought to make nucleation

easier, as it decreases free energy barrier of nucleation. However,
our obtained absolute value of line tension is relatively small, in
the order of 10212 to 10211 J/m. This may only have influence in

systems with molecular dimensions, while larger line tension could
influence processes in the micrometer scale, such as the usual het-
erogeneous nucleation. Some other studies12,17–19,22,25 also show the
same order of magnitude of line tension in similar systems. These
results seem to imply that line tension is less likely to be crucial in
nucleation at least in the present system.
To study more general cases, instead of using virtual wall, we

perform simulations in a gas/liquid/liquid system, seeing Fig. 1(b).
The details of local stress component in the x, y and z-direction are
shown in Supplementary, Fig. S1–S6. Pxx(r) decreases on gas/liquid1,
gas/liquid2 and liquid1/liquid2 surfaces because all these surfaces are
parallel to the x-axis. Pyy(r) has substantial decrease on gas/liquid1
and gas/liquid2 surfaces, but not on liquid1/liquid2 surfaces since
liquid1/liquid2 is almost perpendicular to the y-axis. With the same
reason, the Pzz(r) has obvious decrease on liquid1/liquid2 surfaces.
All stress components have slightly larger values in liquid1 than in gas
phase. The gas pressure is around 5 bar, while liquid1 11 bar. This
could be explained with the well-known Young-Laplace equation

Dp~c(
1
R1

z
1
R2

), with the obtained gas/liquid surface tension c ,

80 bar?nm, and the two principle curvature radius R1 < 15 nm, and
1
R2

?0. The pressure in liquid2 is smaller than that in gas, due to the

negative curvature of the liquid1/liquid2 and gas/liquid2 interfaces. In
addition, in the interface between two liquids, the tangential compo-
nents of local stress show a double-layer structure (seeing Fig. S1, S2
and S6), indicates a complicate coexisting structure in the atomic
scale. In the system, we can still estimate the average bulk pressure by
using equation (9) and calculate the line tension from equation (6).
But we can not simply use the average bulk pressure to extract the
spatial distribution of line tension density, since the bulk pressure in
gas and liquids differs at this scale.We plot Pyy(r)1 Pzz(r)2Pxx(r) in
Fig. 4 (using its average value in the whole space, pyy 1 pzz 2 pxx ,
5.09 bar as unit). The bulk pressure, although different in gas, liquid1
and liquid2 phases, is actually a smooth function of spatial position r,
this corresponds to the background of the signal. Thus the line ten-
sion density distribution is nonzero only in the three-phase contact
regions. We also calculate the surface tension density distribution by
using equation (3). We similarly plot 2(Pyy(r) 1 Pzz(r)) in Fig. 5
(with2(pyy1 pzz), 12.12 bar as unit). In this case, the bulk pressure
as background is almost ignorable in comparison with the surface
tension signal.
With equation (5), we are aware of the total excess free energy due

to themultiple-phase coexistenceAex5SiciSi1 t Ltot approximately
equalsV(TrpH2 2pjj) since tLtot is sufficiently small. Thus, the value
of free energy per unit volume is about 22 bar. As shown in Fig. 6, its
spatial distribution in (y,z) plane is quite similar with surface tension
density distribution in Fig. 5. In the figure, even times by two, the line
tension is still inconspicuous in the distribution map. The surface
tension density on interfaces is significant, and can be read directly.
They are approximately 130 bar, 100 bar and 80 bar for gas/liquid2,
liquid1/liquid2 and gas/liquid1 interface respectively. The line tension
density is mingled with surface tension influence in this figure, its
effect is relatively inconspicuous in this system when compared with
surface tension. After all, the bulk zone of gas, liquid1 and liquid2
neither contributes to surface tension, nor to line tension. It is spe-
cially worthy to mention, we found that the interfaces between two
liquids show a slight double-layer structure, corresponding more
complicate liquid-liquid interfaces in atomic scale than liquid-gas
interfaces. More details about the double-layer interfaces are shown
in Supplementary. The atom-scale layering between two concen-
trated phases usually exists, such as in our gas/liquid/wall system
(data not shown). In the cases, MD simulations could provide
detailed pictures about the anisotropy of local stress tensor. More
analyses, such as possible comparison with DFT are very interesting,
and will be performed in future works.

Figure 6 | Spatial distribution of Pyy(r)1 Pzz(r)2 2Pxx(r) in gas/liquid1/
liquid2 model. It approximately gives the total excess free energy

distribution due to themultiple-phase coexistence. The unit of stress in the

figure is pyy 1 pzz 2 2pxx < 22.3 bar.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 9491 | DOI: 10.1038/srep09491 5

36



Conclusion
As a summary, this present paper contains a relatively systematic
account of the investigations of three-phase contact line tension. A
statistical mechanics formula is developed to estimate line tension by
a single MD simulation. Similar to the widely accepted method for
the calculation of surface tension, where the difference between nor-
mal and tangential pressure components is used to extract surface
tension, the line tension is calculated from the difference of the
normal pressure to the tangential pressure and to the bulk pressure.
We verified this method in two three-phase coexisting systems.
Neither interfaces, nor bulk regions contribute to the line tension,
only the anisotropy of local stress tensor in the three-phase contact
regions leads to line tension. The general relation between line ten-
sion and anisotropy of stress tensor is in agreement with the result in
a recent work12, where DFT was applied and the anisotropy of
attractive force in the coexistence regions was found to mainly con-
tribute to line tension. The obtained sign (negative) and magnitude
(10211, 10212 J/m) of line tension implicates that line tensionmight
affect nucleation only when the size of nucleus is at molecular scale.
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8. Schimmele, L., Napiórkowski, M. & Dietrich, S. Conceptual aspects of line
tensions. J. Chem. Phys. 16, 164715 (2007).

9. Jerison, E., Xu, Y.,Wilen, L. &Dufresne, E. Deformation of an elastic substrate by a
three-phase contact line. Phys. Rev. Lett. 106, 186103 (2011).

10. Widom, B. Line Tension and the shape of a sessile drop. J. Phys. Chem. 99,
2803–2806 (1995).

11. Indekeu, J. O., Koga, K. &Widom, B. Howmuch does the core structure of a three-
phase contact line contribute to the line tension near a wetting transition? J. Phys.
Cond. Matt. 23, 194101 (2011).

12. Weijs, J. H., Marchand, A., Andreotti, B., Lohse, D. & Snoeijer, J. H. Origin of line
tension for a Lennard-Jones nanodroplet. Phys. Fluids 23, 022001 (2011).

13. Getta, T. & Dietrich, S. Line tension between fluid phases and a substrate. Phys.
Rev. E 57, 655 (1998).

14. Solomentsev, Y. & White, L. Microscopic drop profiles and the origins of line
tension. J. Colloid Interface Sci. 218, 122 (1999).

15. Derjaguin, B. V. & Gutop, Y. V. Disjoining pressure and equilibrium of free films.
Colloid J. USSR 27, 574 (1965).

16. Winter, D., Virnau, P. & Binder, K. Monte carlo test of the classical theory for
heterogeneous nucleation barriers. Phys. Rev. Lett. 103, 225703 (2009).
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