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Atrial fibrillation (AF) is increasingly common, though often undiagnosed, leaving many people untreated and at elevated
risk of ischaemic stroke. Current European guidelines do not recommend systematic screening for AF, even though a
number of studies have shown that periods of serial or continuous rhythm monitoring in older people in the general
population increase detection of AF and the prescription of oral anticoagulation. This article discusses the conflicting
results of two contemporary landmark trials, STROKESTOP and the LOOP, which provided the first evidence on
whether screening for AF confers a benefit for people in terms of clinical outcomes. The benefit and efficiency of
systematic screening for AF in the general population could be optimized by targeting screening to only those at
higher risk of developing AF. For this purpose, evidence is emerging that prediction models developed using artificial
intelligence in routinely collected electronic health records can provide strong discriminative performance for AF and
increase detection rates when combined with rhythm monitoring in a clinical study. We consider future directions for
investigation in this field and how this could be best aligned to the current evidence base to target screening in people
at elevated risk of stroke.
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Introduction
Atrial fibrillation (AF) is the most common cardiac arrhythmia
worldwide and is associated with a five-fold increased risk of
stroke.1,2 Contemporary estimates suggest that 15% of people with
AF are undiagnosed, of whom over half are at moderate to high
risk of stroke.3 However, current European guidelines advocate op-
portunistic screening with pulse palpation in individuals aged over
65 years instead of a more systematic intensive approach.2 In this
focused review, we critically appraise the current evidence base for
systematic screening for AF and consider how to make systematic
screening more efficient by defining a population at higher risk of
incident AF, including through the use of artificial intelligence.
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What is the evidence base for
screening for atrial fibrillation?
Screening for AF has received enthusiastic support from several
sources.4 Diagnosis can be challenging due to its often asymptomatic
and paroxysmal nature. Asymptomatic or subclinical AF (SCAF) de-
tected by cardiac implanted devices in the ASSERT study was asso-
ciated with a 2.5-fold increase in the risk of stroke compared with
no AF,5 and treatment of asymptomatic AF with oral anticoagula-
tion has been associated with a reduced risk of stroke and death
compared with no antithrombotic therapy.6,7 Several studies have
shown that serial (STROKESTOP II and REHEARSE-AF) or continu-
ous (mSToPS and SCREEN-AF) rhythm monitoring in older people
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with vascular risk factors or elevated N-terminal pro B-type natri-
utretic peptide (NT-proBNP) leads to a significantly higher detec-
tion rate of previously undiagnosed AF and more frequent initiation
of oral anticoagulation compared with routine standard of care.8–11

However, a paucity of studies reporting on hard clinical endpoints
has led to hesitancy to recommend systematic screening for AF in
international guidelines.2,12

This year two studies, STROKESTOP and the LOOP, advanced
the evidence base by assessing the net benefits of systematic screen-
ing on clinical outcomes.13,14 The STROKESTOP study was a ran-
domized controlled trial (RCT) performed in two regions of Swe-
den. People aged 75 and 76 years, with no exclusions applied, were
randomized 1:1 to an invitation to screening or routine care. Those
who participated in screening were instructed on using a handheld
single-lead electrocardiogram (ECG) to record ECGs twice daily for
2 weeks. Of 28 768 participants randomly assigned, 13 979 were
invited to screening, of whom 7165 (51.3%) participated in screen-
ing and 13 996 made up the control group, with a median follow-up
of 6.9 years. The LOOP study was an RCT conducted in four cen-
tres in Denmark. Individuals without known AF aged 70–90 years,
with at least one additional stroke risk factor, were randomly as-
signed 1:3 to implantable loop recorder (ILR) monitoring or routine
care. Of 6004 individuals randomly assigned, 1501 had ILR moni-
toring and 4503 made up the control group, with a median follow-
up of 5.4 years. Treatment with oral anticoagulation was offered if
AF was detected, as appropriate to the CHA2DS-VASC risk profile
of these groups. In STROKESTOP, a small benefit in a composite
outcome of ischaemic or haemorrhagic stroke, systemic embolism,
bleeding leading to hospitalization, and all-cause death was demon-
strated in the intervention group (4456 of 13 979; 5.45 events per
100 years) compared with the control group [4616 of 13 996; 5.68
events per 100 years; hazard ratio 0.96 (95% confidence interval,
CI, 0.92–1.00)]. In contrast, the LOOP study found no significant
reduction in the risk of stroke or systemic embolism between the
ILR group [67 of 1501 (4.5%)] and the control group [251 of 4503
(5.6%); HR 0.80, 95% CI 0.61–1.05; P = 0.11].
Why do the results of the two RCTs differ? In the first instance,

the sample size and the number of events were much smaller in the
LOOP study, reflected in the wide confidence intervals for effect
size, which may have left the study underpowered. Furthermore, in
the LOOP study, an episode of 6 min of AF on continuous monitor-
ing was sufficient for diagnosis and consideration of anticoagulation.
In the ASSERT study, individuals with a duration of SCAF greater
than 24 h were found to be at increased risk of stroke compared
with those without AF but those with SCAF under 24 h in dura-
tion were not found to be at increased risk.5,15 It is possible that
the AF episodes diagnosed in STROKESTOP were more likely to
be of longer duration and hence conferred elevated stroke risk and
thus had a greater benefit from oral anticoagulation. The threshold
of SCAF duration detected on continuous monitoring that would
benefit from oral anticoagulation is under evaluation in the ongo-
ing ARTESiA (NCT01938248) double-blind RCT that includes par-
ticipants with stroke risk factors and an episode of SCAF of at
least 6 min duration. Enrolled patients are randomized 1:1 to as-
pirin or apixaban, with a composite primary outcome of stroke and
systemic embolism and a safety outcome of clinically overt major
bleeding.

........................................................................................................................................................................

Indeed, STROKESTOP and the LOOP suggest that a more sys-
tematic screening approach does not cause harm in terms of a sig-
nificant increase in bleeding events. Nevertheless, health anxiety to
the individual elicited by additional investigations or side effects from
treatments started due to an AF diagnosis were not investigated.
A cost-effectiveness analysis of STROKESTOP, presented at the
European Society of Cardiology (ESC) Congress 2021, suggested
that a systematic approach may be cost effective within 3 years.16

Even so, the efficiency of systematic AF screening could be max-
imized by targeting individuals at higher risk of incident AF.17 By
way of example, single-time-point screening of a general popula-
tion of age at least 65 years detects undiagnosed AF in 1.4%,18 but
in STROKESTOP a higher age bracket of 75 and 76-years allied to
twice daily ECG recordings over 2 weeks increased the detection
rate to 3.0%,19 and further restricting this group to only those with
at least one additional stroke risk factor increased the detection rate
to 7.4%.20

Could prediction models for
incident atrial fibrillation provide
more efficient screening?
In many countries, a large proportion of the general population
is registered in primary care,21,22 which provides an ideal setting
for screening with nursing support and a direct link with a prac-
titioner capable of prescribing oral anticoagulation.4 People regis-
tered in primary care have a corresponding routinely collected pri-
mary care electronic health record (EHR), from which they can be
selected for screening. A prediction model utilizing this informa-
tion could more accurately discriminate people into a higher risk
category than screening based on age alone. Several models have
been developed or validated for the prediction of incident AF in
community-based EHRs using traditional regression techniques,23

but provide only moderate discriminative performance,24–26 com-
monly use variables that may be missing in routinely collected
community-based records (such as measures of height, weight, and
blood pressure),22 or give risk prediction over 5 or 10 years, which is
difficult to translate into an investigational priority in the immediate
future.22,26

Machine learning for prediction
of incident atrial fibrillation
Over recent years, interest has grown in the use of machine learn-
ing (ML) on routinely collected data for the prediction of incident
AF.27 Powerful models have been created using this methodology
on ECGs in sinus rhythm and data on hospital outpatient clin-
ics,28,29 but these are less useful for community-based screening
programmes. Three studies have derived prediction models in
community-based EHRs using supervised ML methods.30–32 Ran-
dom forests were used in all three studies,30–32 and neural networks
in two.30,32 The random forest model is ensemble learning that
combines multiple decision trees where each tree structure, using
computationally selected parameters, can differentiate features step
by step by creating appropriate splits.31,32 In neural networks, layers
of neurons share weighted directed connections with each neuron
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Figure 1 A schematic representation of a ‘shallow’ neural network (A) and a random forest (B) model processing an electronic health record
to provide risk prediction for incident atrial fibrillation. In (A), the data are passed between layers by weighted directed connections, with each
neuron responsible for combining inputs via a propagation function and generating outputs. In (B), the data are sequentially classified in decision
trees through a flowchart-like structure. Random forests construct an ensemble output from many decision trees.

being responsible for combining inputs via a propagation function
and generating outputs to be passed to the next layer (Figure 1).27

These ML methods incorporated a large number of variables, of
a variety of data types, and demonstrated strong discriminative
performance in the derivation data sets, though there has been
limited external validation (Table 1).23,33

The PULsE-AI study, presented at the ESC Congress in 2021, ex-
tended AF risk prediction using ML methods into the clinical setting.
The investigators implemented a neural network ML model, which
had been derived and validated in the UK-based Clinical Practice
Research Datalink (CPRD) and Discover EHR data sets, in routinely
collected primary care EHRs. Individuals defined by the model at
higher risk for developing AF were invited for serial rhythmmonitor-
ing.34 A total of 23 745 participants from six general practices were
randomized, with 1880 participants defined as higher risk. Among
higher risk participants, 906 were in the intervention arm, of whom
255 (28.1%) consented to diagnostic testing, with 974 in the control
group. In the intention-to-treat analysis, AF or related arrhythmias
were diagnosed in 5.63% (51/906) and 4.97% (48/974) of the par-
ticipants in the intervention and control arms, respectively [odds
ratio (OR) 1.15; 95% CI 0.77–1.73; P = 0.486]. In a subgroup anal-

..............................................................

ysis of higher risk participants who accepted the diagnostic testing
(‘treatment received’), twice as many were diagnosed with AF or
related arrhythmias compared with higher risk participants in the
control arm [9.41% (24/255) vs. 4.93% (48/973), respectively; OR
2.23, 95% CI 1.31–3.73, P = 0.003]. Thus, risk stratification by ML
embedded in community-based EHRs allied to serial rhythm moni-
toring can lead to an increased rate of AF detection compared with
routine care.
However, questions remain about whether the implementation

of this model would lead to a change in clinical outcomes. First,
how rates of prescription of anticoagulation were affected was not
sought in the protocol. One must consider that the model was cre-
ated using data on people as young as 30 years of age,30 a large
proportion of whom may not have stroke risk factors. Second, a
complete data set of height, weight, body mass index, and systolic
and diastolic blood pressure is required for the model to stratify an
individual’s risk of undiagnosed AF. A complete data set for these
values is only recorded in a minority of primary care EHRs,22,35,36

therefore potentially limiting the population to whom the model can
be applied. Third, the response rate to invitation for diagnostic test-
ing was much lower than that of STROKESTOP (28.1% vs. 53.8%),
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Table 1 Examples of the use of random forests and neural networks in community-based electronic health
records for prediction of incident atrial fibrillation

Study aim
EHR cohort
(country)

Number
of variables Data type used AUROC

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Neural networks

Derivation CPRD (UK) 100 Demographics, diagnoses, medications,
observations

0.827

External validation DISCOVER (UK) 100 Demographics, diagnoses, medications,
observations

0.870

Derivation NHIS-NSC (KR) 22 Demographics, diagnoses, medications,
observations, laboratory measurements,
socioeconomic status

0.813

Random forests

Derivation CPRD (UK) 24 Demographics, diagnoses, medications,
observations

0.812

Derivation NHIRD (TW) 19 Demographics, diagnoses, follow-up duration
(years), mean CHA2DS2-VASC score

0.948

Derivation NHIS-NSC (KR) 22 Demographics, diagnoses, medications,
observations, laboratory measurements,
socioeconomic status

0.838

AUROC, area under receiver operating characteristic; CHA2DS2-VASc, congestive heart failure, hypertension, age >75 (2 points), stroke/transient ischaemic
attack/thromboembolism (2 points), vascular disease, age 65–74, sex category; CPRD, Clinical Practice Research Datalink; EHR, electronic health record; KR, Republic of
Korea; NHIRD, National Health Insurance Research Database; NHIS-NSC, National Health Insurance Service-based National Sample Cohort; TW, Taiwan; and UK, United
Kingdom.

even though people had been identified as higher risk of developing
AF.19 This may reflect the younger cohort that was analysed by the
prediction model and invited to screening, who may have a lower
risk profile for sequelae from AF and a weaker mandate for antico-
agulation, and thus perceive a lower incentive to attend for screening
(especially if they are asymptomatic).

Deep neural networks
for disease prediction
Deep learning is a subset of ML methods using multilayered neural
networks (deep neural networks, DNNs) to model increasingly
complex relationships by adding many ‘hidden’ layers before the
output layer (Figure 2).37 As information passes through the lay-
ers of neurons (represented by the nodes in the network), the
activation of individual neurons in the network is computed as a
weighted sum (with added bias value) of its input neurons from
the previous layer and passed through a non-linear activation
function.38 Before becoming operational, the weights and bias
values of the DNN must be adjusted to give optimal performance
on a training data set of example inputs and outputs. During
training, the DNN is repeatedly shown examples of the data
and correct answers (supervised learning) with backpropagation
underpinning efficient learning.39 The DNN computes the discrep-
ancy between the output produced for each patient EHR and the
correct answer (also known as loss function) and back propagates
it through the network to compute and adjust all weights to
reduce this discrepancy. The adjustment is made following the
gradient of loss function, i.e. along the direction that reduces the
discrepancy by an amount proportional to the magnitude of this
discrepancy.39

...........................................................................................

Several DNN architectures have demonstrated exceptional
discriminative performance for disease prediction in the UK-based
routinely collected primary care database provided by the CPRD
(Table 2),40,41 which is broadly representative of the UK popu-
lation by age, sex, and ethnicity.21 Interestingly, the transformer
architecture, a recently proposed multilayer network in which the
computation in each layer is more involved than for the regular
networks outlined above,42 achieved an area under the receiver
operating characteristic (AUROC) of 0.901 for prediction of
incident AF diagnosis in the next 6 months in a supplementary
analysis in Li et al.40 This is superior to the performance achieved
by the shallow neural network ML model used in the PULsE-AI
study when developed in the same database (0.827) (Table 1).30

DNNs possess a number of advantageous characteristics for
clinical disease prediction in EHRs. First, they can use as much
information as available in an EHR data set to generate abstract
concept and patient representations (unsupervised learning), which
may then be used for prediction.43 Accordingly, they can uncover
novel associations and are more scalable than regression and other
ML techniques, which require domain and expert knowledge to
manually engineer features.40 Second, different variants of DNNs—
convolutional neural networks (CNNs), multilayer recurrent neural
networks (RNNs), and transformers—are well suited to capture
information on the sequential order of visits and intervisit dura-
tion,40,41 which may better model the temporality of EHR data, a
person’s evolving health status, and disease pathogenesis. Third, the
data types used by the aforementioned DNN models in studies
thus far—diagnoses, medications, and demographics—are available
with high completeness in EHR (as opposed to say observations
and laboratory measurements), meaning these models could be
implemented on a greater proportion of patient records. One
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Figure 2 A schematic representation of a deep neural network processing an electronic health record to provide risk prediction for incident
atrial fibrillation. The data pass through multiple interconnected layers of neurons allowing the modelling of complex relationships.

Table 2 Deep learning architectures that have been applied in the Clinical Practice Research Datalink data set
for disease prediction tasks

Deep learning architecture Model Data type used AUROC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Heart failure diagnosis in next 6 months

Autoencoder eNRBM Demographics, diagnoses, medications 0.920
Stacked denoising autoencoder Deep Patient Demographics, diagnoses, medications 0.947
Convolutional neural network Deepr Demographics, diagnoses, medications 0.949
Recurrent neural network RETAIN Demographics, diagnoses, medications 0.950
Diagnoses at next visit

Transformer BEHRT Demographics, diagnoses 0.954

AUROC, area under receiver operating characteristic.

drawback of DNNs is that they are commonly a ‘black box’ model
where due to their multilayer non-linear structure their predictions
are not traceable by humans.44 The random forest method can
show the importance of variables used in its predictions and so
may be more likely to be ‘trusted’ by healthcare professionals and
explainable to people when implemented at scale within a screening
programme.45

.......................

Improving the applicability of
prediction models for screening
for atrial fibrillation
The excellent discriminative performance of DNNs and ML mod-
els for prediction of incident AF has been demonstrated in data
sets containing all people greater than 16 years of age,41 18 years
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of age,31,32 or 30 years of age.30,33 This is very different from the
population that derived benefit from systematic screening for AF
in STROKESTOP, participants of age 75 or 76 years.14 To increase
the efficiency of systematic screening, prediction models for inci-
dent AF should be developed within the cohort of people who have
been proven to derive benefit from screening, especially as targeting
screening by age alone is relatively profligate—∼67 people aged at
least 75 years will need to be screened to identify one new case of
AF.46

Having said this, channelling a prediction model to differentiate
risk of incident AF just for screening in individuals aged at least
75 years may be overly narrow and deny the possibility of an es-
sential diagnosis to younger cohorts with vascular morbidities that
increase their risk of developing both AF and stroke. A balance could
be struck in developing a prediction model that provides risk strat-
ification in a population similar to the STROKESTOP population,
while not inadvertently displaying ‘reverse ageism’, i.e. a prediction
model that can differentiate risk of incident AF among people with an
elevated risk of stroke, irrespective of age.
In either case, limiting prediction model development to a smaller

and more homogeneous population increases the risk of overfitting
(as the number of outcome events compared with the number of
candidate predictor parameters to be assessed is relatively smaller)
and failure, especially for ML models that are notoriously ‘data hun-
gry’.47 Nonetheless, achieving this challenge will likely provide the
most incremental benefit by targeting screening within a population
that is most likely to derive benefit.

Conclusions
The evidence base for systematic screening for AF continues to
evolve, amid widespread enthusiasm and with some conflicting find-
ings.4 The growth in consumer-facing devices that can detect AF
coupled with the strong desire to avoid stroke will continue to fuel
the discourse on screening for AF.48 Undeniably, the STROKESTOP,
the LOOP, and the PULsE-AI studies have moved the needle for-
ward. Novel innovation may hold the key to unlocking the maximum
benefit of AF screening and make the arguments for translation from
trials to clinical practice more convincing.
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