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Friedreich’s ataxia (FRDA) is a multisystem, autosomal reces-
sive disorder caused by mutations in the frataxin (FXN) gene.
As FRDA is considered an FXN deficiency disorder,
numerous therapeutic approaches in development or clinical
trials aim to supplement FXN or restore endogenous FXN
expression. These include gene therapy, protein supplementa-
tion, genome editing or upregulation of FXN transcription.
To evaluate efficacy of these therapies, potency assays capable
of quantitative determination of FXN biological activity are
needed. Herein, we evaluate the suitability of mouse embry-
onic fibroblasts derived from Fxn G127V knockin mice
(MUT MEFs) as a candidate for cell-based potency assays.
We demonstrate that these cells, when immortalized, continue
to express minute amounts of Fxn and exhibit a broad range
of phenotypes that result from severe Fxn deficiency. Exoge-
nous FXN supplementation reverses these phenotypes. Thus,
immortalized MUT MEFs are an excellent tool for developing
potency assays to validate novel FRDA therapies. Care needs
to be exercised while utilizing these cell lines, as extended
passaging results in molecular changes that spontaneously
reverse FRDA-like phenotypes without increasing Fxn expres-
sion. Based on transcriptome analyses, we identified the War-
burg effect as the mechanism allowing cells expressing a min-
imal level of Fxn to thrive under standard cell culture
conditions.

INTRODUCTION

Friedreich’s ataxia (FRDA) is the most common hereditary ataxia.
Symptoms typically appear in childhood or adolescence and include
ataxia, loss of deep tendon reflexes, and hypertrophic cardiomyopa-
thy. FRDA is a relentlessly progressive, life-shortening disorder
caused by mutations in the frataxin (FXN) gene that significantly
decrease FXN levels.'” Most FRDA patients carry homozygous ex-
pansions of GAA repeats in intron 1 of FXN, while ~4% are com-
pound heterozygous and carry a GAA expansion on one allele and
a point mutation on the second FXN allele.*” Frataxin is a small mito-
chondrial protein important for the biosynthesis of iron-sulfur (Fe-S)
clusters, thus its deficit results in pleiotropic consequences for cellular

metabolism ranging from lowered energy production to deficient
DNA repair.’

There are two general strategies for FRDA therapy: directly targeting
FXN deficiency or targeting cellular consequences of low FXN levels.
Recently, the NRF2 agonist omaveloxolone (Skyclarys) was approved
as a treatment to slow FRDA symptom progression.7’g The poten-
tially most impactful approaches being developed aim to increase
the level of FXN. Gene therapy, protein replacement strategies, ap-
proaches to reactivate endogenous FXN transcription, stabilize FXN
mRNA, boost FXN translation or remove expanded GAA repeats
all hold promise of targeting the very core of the disease.'”'* Success
of the above-mentioned strategies depends on developing two seem-
ingly simple assays: first, to reliably and quantitatively measure FXN
levels in peripheral tissues and, second, to demonstrate the biological
activity and efficacy of the therapy leading to FXN increase.
Measuring biological activity of FXN increase is connected to the
development of a robust potency assay. This is a necessary step during
design, validation, production, and storage of practically any gene
therapy or protein supplementation product.'>'® The development
of a quantitative method to measure potency allows comparison of
the drug to a reference standard and is used to verify that only product
lots with attributes that meet appropriate quality control standards
are employed during drug clinical development and following market
approval. Potency is defined as the quantitative measure of biological
activity related to a relevant biological function of a product.>'®
Thus, for FRDA, the targeted biological activity should be related to
any of the pleiotropic functions of FXN. For example, pathological
downregulation of FXN leads to deficient Fe-S cluster biogenesis,
which in turn manifests in decreased oxidative phosphorylation,
decreased activity of tricarboxylic acid (TCA) cycle enzymes relying
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on Fe-S cofactors, decreased overall energy output, and increased

. 17-21
oxidative stress.”’

Potency assays can be developed using in vivo animal models, cell-
based systems, or in vitro assays.”*> Cellular disease models offer
an economical advantage but may suffer from issues related to vari-
ability and to changes in cell lines over time due to acquired muta-
tions or genetic drift. Commonly utilized cellular models of FRDA
are patient-derived, immortalized lymphoblastoid cell lines, primary
skin fibroblasts, and induced pluripotent stem cell (iPSC)-differenti-
ated cells, such as neurons or cardiomyocytes.”> >” While all of these
cell types demonstrate molecular features of FRDA (GAA repeat
expansion, decreased FXN expression, chromatin changes at the
FXN locus), their cellular phenotype is not very robust or reproduc-
ible.**" Other frequently used FRDA cellular models rely on
GAA-independent FXN depletion mediated by small interfering/
short hairpin RNAs. While associated with severe phenotypes, these
cell lines do not fully recapitulate FRDA pathology likely due to the

sudden and dramatic decrease of FXN.”* >

Here, we developed new cellular potency assays using FRDA mouse
model cells that harbor homozygous missense point mutations in
the Fxn gene. We derived mouse embryonic fibroblasts (MEFs)
from Fxn G127V mutant mice established by our group.”® The
G127V mutation in Fxn corresponds to the human FXN G130V mu-
tation, the most frequent point mutation found in FRDA patients.
The G127V MEFs (termed MUT hereafter) express extremely low
levels of G127V Fxn (~1% of wild-type [WT] levels) and exhibit
robust cellular phenotypes: decreased growth rate, decreased intracel-
lular ATP levels, and elevated reactive oxygen species (ROS) levels
when compared with WT MEFs.”®”” These strong phenotypes result
in a very limited proliferation capacity of MUT MEFs (3-5 passages),
making their direct use impossible without constant derivation of new
cells from G127V MUT animals. Therefore, we immortalized MUT
MEFs using retrovirally encoded Simian virus 40 large T antigen
(SV40 T,z) and demonstrated that early passages of immortalized
MUT MEFs hold promise as a valuable cellular model for conducting
potency assays in the process of FRDA drug development and
production.

RESULTS

SV40 T antigen-mediated immortalization of MUT MEFs does
not affect Fxn expression

To develop a potency assay for FRDA supplementation therapies, we
utilized MEFs derived from Fxn G127V mice. These primary cells, ex-
pressing an extremely low level (~1%) of Fxn compared with WT
MEFs, showed dramatically decreased proliferation and increased
cellular senescence.”® As MUT MEFs ceased to proliferate after ~4
passages in normoxic conditions, we immortalized these cells using
overexpression of SV40 T,,. The gene encoding T,; was delivered
to both WT and MUT cells using retroviral transduction, under pu-
romycin selection. MEF lines independently derived from two WT
embryos and two MUT embryos were selected for immortalization
(Figure 1A). As random integration of the SV40 transgene can result
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Figure 1. Immortalization of MUT MEFs with SV40 T antigen does not affect
Fxn expression

(A) Expression of Fxn and SV40 T, in immortalized WT and MUT MEFs (pop-
ulations) as shown by western blot. Hprt and Ponceau S staining serve as loading
controls. SV40 transformation was conducted on two independently derived WT
MEF lines (B7, A12) and two independently derived MUT MEF lines (B1, A4). Non-
transduced cell lines are shown for reference. (B) Expression of Fxn, SV40 T,g, and
Hprt in the selected single-cell derived clones shown by western blot. (C) Quanti-
tation of Fxn expression in selected clones (#3 WT and #4 MUT), which were used
for further experiments. Gapdh was used as a loading control. A representative
western blot is shown. Western blots were performed three independent times.
Results are plotted as mean values with standard deviations; (****p < 0.0001).

in variable T antigen expression levels, we decided to isolate individ-
ual, single-cell-derived clones from each of the immortalized MEF
lines. SV40 T,; and Fxn protein levels in clones from one WT line

2 Molecular Therapy: Methods & Clinical Development Vol. 32 December 2024



www.moleculartherapy.org

8%105+
404
6x10°-
. 30
K
€
2 4x10% £
= = 204
3 g
54
2x10 10
0 T T T T T 1 o
0 24 48 72 96 120 144
Time (h)
6x10°
1.64
3 s
4x105+ g
f‘ £ 1.04
§ 2
>
g
E 2
5 =3
3 210 S 0.5
'3
0.0-

T T T 1
20000 30000 40000 50000

Cell number

T
0 10000

4.0 o wr
*k = MUT
—
i il i
- 3.0 L]
*
3 . Fkk
c
§ .
o L]
173
2
<
T 0-" T T T T T 1
Wr - MUt 0 20000 40000 60000 80000 100000
Cell number
5x10%
- WT
b MuT *
= . 4x10%
=) *%
w
[
8 3x10%
[
@
o
% L]
|4
3 2x10 3 2 (]
™ / [
1x10% .
T T T T 1
wr Wt 0 10000 20000 30000 40000 50000
Cell number

Figure 2. Immortalized WT and MUT MEFs cells are phenotypically different
(A) Immortalized WT and MUT MEFs were seeded at the same density and counted every 24 h over a 6-day period. The experiment was conducted independently three
times. (B) The PDTs of WT and MUT MEFs were calculated from the growth curves (A) as described in the materials and methods section. Results are plotted as mean values
with standard deviations. (C) Cell proliferation assays were independently performed three times. (D) WT and MUT MEFs were plated at densities indicated by the x axis and
analyzed for intracellular ATP content 48 h later by luminescence detection (y axis). Three independent experiments were performed. (E) Determination of mitochondrial DNA
copy number by gPCR in WT and MUT MEFs. Experiments were done on six independently cultured samples. Results are plotted as mean values with standard deviations.
(F) The level of ROS in immortalized WT and MUT MEFs plated at the indicated densities (x axis) was measured by staining the cells with the fluorescent ROS indicator
CM-H,DCFDA. The experiments were independently performed three times. Symbols denote statistical significance as follows: **p < 0.001, **p < 0.0001.

(A12) and one MUT line (A4) are shown in Figure 1B. Interestingly,
most MUT clones showed higher expression of the SV40 T,g
compared with WT clones. Importantly, expression of SV40 T,
did not increase endogenous Fxn protein expression in MUT cells
(Figures 1B and 1C). Further experiments were conducted using clon-
ally derived WT and MUT SV40-transformed MEFs.

Immortalized MUT and WT MEFs are phenotypically different

We next examined the cellular growth rate of WT (clone # 3) and
MUT (clone #4) MEF cells (Figure 1B). We found that the rate of
cell growth was significantly slower in MUT cells (Figure 2A). The
population doubling time (PDT) time was approximately 26-28 h
and 33-36 h for WT and MUT cells, respectively (Figure 2B). This
difference in growth was also apparent in cell proliferation assays
(Figure 2C). Deficiency of FXN has been shown to affect intracellular
ATP levels.®*® A luminescent assay for intracellular ATP levels
showed a significantly lower level of ATP in MUT compared with
the WT MEFs (Figure 2D), without affecting mitochondrial DNA
copy number (Figure 2E). Next, to determine the level of oxidative
stress in the MUT MEFs, we measured accumulation of ROS in live
cells using the fluorescent indicator CM-H,DCFDA. We found that
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the intracellular level of ROS was significantly higher in MUT cells
than in WT MEFs (Figure 2F). This is consistent with previous studies
that have shown that FXN deficiency can increase oxidative
stress.”®** We confirmed these results in a second, independently iso-
lated pair of MUT and WT clones (Figure S1). In summary, our re-
sults suggest that immortalized MUT MEFs have a lower proliferation
rate, decreased amount of ATP, and a higher oxidative stress level
than WT MEFs. This indicates that the expression of SV40 T,, did
not change the characteristics of primary, non-immortalized MEFs.*®

Partial reversal of abnormal phenotype in MUT cells via
exogenous FXN expression

The human FXN coding sequence, including a fragment of the FXN 5’
UTR and truncated intron 1 (miniFXN7)*' was cloned into a lenti-
virus expression vector (Figure 3A). Subsequently, SV40-immortal-
ized MUT cells were transduced with lentivirus expressing FXN at
an early passage (p6) and selected with Hygromycin B. Western
blot analyses demonstrated that the level of exogenous FXN expres-
sion in MUT MEFs is similar to the amount of Fxn detected in WT
MEFs (Figures 3B and 3C). Next, we determined the growth rate of
WT, MUT, and MUT+FXN MEFs (Figure 4). As expected, exogenous
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expression of FXN led to increased proliferation rate of MUT MEFs
when compared with parental cells (Figure 4A). The PDT for MUT+
FXN cells was ~29-31 h, significantly shorter than MUT cells (~41-
42 h) but longer than WT MEFs (~23-26 h; Figure 4B). Similarly, the
cell proliferation assay showed that the proliferation rate of MUT+
FXN cells was intermediate between WT and MUT MEFs (Figure 4C).
In addition, exogenous FXN expression in the MUT+FXN MEFs was
sufficient to increase the ATP level and significantly lower oxidative
stress to the levels observed in WT cells (Figures 4D and 4E). In sum-
mary, these results suggest that supplementation with exogenous
FXN can partially rescue the FRDA-like phenotypes in immortalized
MUT MEFs.

Extended passaging alters phenotypes of immortalized MUT
MEFs

Surprisingly, we noted a significant acceleration of growth rate after
continuous passaging of SV40 immortalized MUT MEFs (p19-p26;
long-term [-LT]). Indeed, the PDT for early-passage MUT MEFs
decreased over time to the PDT observed for WT MEFs of similar
passage (~23-26 h, Figures 5A and 5B). Likewise, no statistical differ-
ences were observed between late-passage MUT-LT and WT cells for
proliferation, as measured by cell proliferation assays (Figure 5C), nor
for ATP and cellular ROS levels (Figures 5D and 5E). Importantly,
this phenotypic shift occurred without any alteration in Fxn levels
in MUT-LT MEFs compared with early-passage MUT cells (Fig-
ure 5F). These results were validated in an additional pair of MUT
and WT clonal MEF lines (Figure S2). Collectively, these data suggest
that immortalized MUT cells can adapt to the expression of extremely
low levels of Fxn and change their phenotype to resemble WT cells
expressing higher levels of Fxn.

Differential gene expression analysis reveals gross
transcriptome differences between early and late passage of
MUT MEFs

To decipher molecular mechanisms underlying the phenotypic
changes observed in MUT-LT MEFs, we conducted a comparative

N
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Figure 3. Stable expression of exogenous human
FXN in MUT MEFs

(A) A schematic of the lentivirus vector pLenti hygro FXN
encoding a human miniFXN gene. The miniFXN gene used
in experiments contains fragments of the endogenous
FXN 5'UTR, promoter and intron 1, and all five exons of the
gene. (B) Representative western blot demonstrating
expression of exogenous FXN. The miniFXN encodes a
C-terminal HA tag that results in a slightly greater
molecular weight, as detected by western blot. (C)
Quantitation of endogenous Fxn (*) and exogenous FXN
by western blot. Gapdh was used as a normalization
control.  MUT+FXN  designates cells  expressing
exogenous, human FXN. The experiment was performed
three independent times. Results are plotted as mean
values with standard deviations; (*p < 0.001,
***p < 0.0001).

wWT MUT  MUT+FXN

transcriptome analysis of WT, MUT, and MUT-LT cells (Figure 6A).
RNA sequencing (RNA-seq) revealed that 1,937 genes (834 downre-
gulated and 1,103 upregulated) displayed differential expression
(DE) between early-passage WT and MUT MEFs. This represents
a significantly higher number of DE genes than observed between
early-passage WT and MUT-LT cells (455 DE genes; 212 downregu-
lated and 243 upregulated; Figure 6B). Principal-component anal-
ysis (PCA) underscored the significant deviation of MUT-LT
MEFs from their early-passage characteristics, yet they still did
not perfectly group with WT MEFs (Figure 6C). Utilizing the
DAVID functional annotation tool, we explored Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways altered in early-
passage MUT MEFs compared with WT. We found that ribosomal
biosynthesis, tRNA metabolism, and several other translation-
related pathways were significantly downregulated in early-passage
MUT cells (Table S1). Numerous ribosomal protein L and S (Rpl and
Rps) genes were expressed at lower levels in early-passage MUT
MEFs than in WT and MUT-LT MEFs (Figure S3). Furthermore,
we did not observe any changes in the protein translation-related
pathways between MUT-LT and WT cells (Table S2). Increased
expression of genes associated with translation would explain the
increased proliferative capacity of MUT-LT cells. SV40 T, expres-
sion can affect cellular metabolism, especially pathways responsible
for energy production. Therefore, we examined expression of major
genes associated with glucose metabolism, the primary carbon
source of cultured MEFs. Interestingly, we identified upregulated
expression of several genes involved in aerobic glycolysis (also
known as the Warburg effect) in MUT-LT MEFs when compared
with early-passage cells (Figure 7). These included glucose trans-
porter solute carrier family 2, member 1 (Slc2al) and lactate dehy-
drogenase A (Ldha), proteins critically involved in glucose utiliza-
tion. In summary, RNA-seq analysis revealed that MUT-LT MEFs
alter their transcriptome during prolonged time in culture, likely
affecting intracellular metabolism. This suggests that these cells
may be transitioning from an MUT to WT growth phenotype,
even while maintaining low levels of Fxn.
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Figure 4. Exogenous FXN expression ameliorated aberrant phenotypes of MUT MEFs

(A) Immortalized WT, MUT, and MUT+FXN MEFs were seeded at the same density and counted every 24 h over a 6-day period. The experiment was conducted inde-
pendently three times. (B) The PDTs of WT, MUT, and MUT+FXN were calculated from the growth curves (A). Results are plotted as mean values with standard deviations.
(C) Proliferation of WT, MUT, and MUT+FXN MEFs was assessed using cell proliferation assays. Cells were plated at the indicated densities independently for three separate
experiments. (D) WT, MUT, and MUT+FXN MEFs were plated at the densities indicated by the x axis and analyzed for intracellular ATP content 48 h later by luminescence
detection (y axis). Three independent experiments were performed. (E) The level of ROS in WT, MUT, and MUT+FXN MEFs was determined using CM-H,DCFDA labeling.
Symbols denote statistical significance as follows: * * &b < 0.05, ™ ## &5 < 0,001, ™ #*# &&&; - 0,0001. *WT vs. MUT, *MUT vs. MUT+FXN, #WT vs. MUT+FXN.

Molecular Therapy: Methods & Clinical Development Vol. 32 December 2024 5


http://www.moleculartherapy.org

1%106 &
- WT-LT
- MUTLT M
8x105
5 6x105
E-
€
3
2
8 ax1054
2x1054
. T T 1
0 24 48 72 96 120 144
Time (h)
3.0+
- WTLT
% MUT-LT
B}
-
3 z
8
2 g
] £
€
H
3
0. T T T T 1
0 10000 20000 30000 40000 50000
Cell number
1.6%10%
- WT-LT
- MUT-LT
4
5 1.0x10% g
& o=
Y A 2
8 3
H * 3
g E
i 6.0x10% &
0. T j J T T 1
0 10000 20000 30000 40000 50000
Cell number

Figure 5. Prolonged culturing partially alleviates MUT MEF phenotypes
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(A) Immortalized late-passage WT (WT-LT, p26) and MUT (MUT-LT, p26) MEFs were seeded at the same density and counted every 24 h over a 6-day period. The experiment
was performed independently three times. (B) The PDTs of WT-LT and MUT-LT MEFs were calculated from the growth curves (A). Results are plotted as mean values with
standard deviations. (C) Proliferation of immortalized WT-LT and MUT-LT was compared using cell proliferation assays. Cells were plated at the indicated densities (x axis)
independently for three separate experiments. (D) WT-LT and MUT-LT MEFs were plated at the densities indicated by the x axis and analyzed for intracellular ATP content
48 h later by luminescence detection (y axis). The experiment was performed independently three times. (E) The level of ROS in WT-LT and MUT-LT MEFs was measured by
fluorescent detection (y axis) after staining the cells with CM-H,DCFDA. Cells were plated at the indicated densities (x axis) independently for three separate experiments
(*p < 0.001, **p < 0.0001). (F) FXN protein levels were measured by western blot in WT, WT-LT, MUT, and MUT-LT MEFs. Gapdh was used as a loading control and

normalizer.

DISCUSSION

The goal of this study was to develop a reliable potency assay for
FRDA gene or protein replacement therapies. We utilized MEFs
derived from Fxn G127V mice because they express minimal levels
of Fxn (~1% in MEFs) and demonstrate robust, measurable pheno-
types.”>”” In fact, while homozygous Fxn G127V/G127V mice are

6

viable, hemizygous G127V/null animals are not, indicating that
further decrease of Fxn by 50% is incompatible with life. Such low
levels of Fxn as detected in MUT cells have never been observed in
any other currently available cellular models of the disease (lympho-
blasts, fibroblasts, iPSCs, and their differentiated progeny, or
cells derived from other FRDA mouse models). Furthermore,
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Figure 6. Changes of transcriptome associated with
prolonged culture of MUT MEFs

(A) Heatmap illustrating expression of 2017 DE genes in
WT, MUT-LT, and MUT early-passage MEFs. p indicates
passage number. (B) Numbers of significantly DE genes
separated by direction of change (all, upregulated,
downregulated) and organized by group comparison
(p < 0.05). Early indicates early-passage MUT cells (p6
and p9); Late indicates late-passage MUT cells (p19 and
p26). (C) Principal-component analysis (PCA) of early-
passage WT and early-passage MUT MEF samples and
MUT-LT MEF samples.
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immortalized MUT MEFs increases with contin-
uous passage. RNA-seq analyses of early-passage
WT, and early- and late-passage MUT MEFs re-
vealed dramatic changes in the transcriptome of
MUT-LT cells compared with the early-passage
cells. As expected, rapid proliferation was associ-
ated with increased synthesis of ribosomal RNA
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immortalization of MUT cells via SV40 T, expression did not change
their fundamental characteristics during initial passages. Importantly,
exogenous expression of physiological levels of human FXN in the
immortalized MUT MEFs partially corrected phenotypes, demon-
strating that these cells could serve as an appropriate cellular model
for FRDA potency assays. Incomplete rescue could be explained by
several factors; the relatively short period of time between FXN
expression and phenotype measurement, the presence of a C-terminal
HA epitope tag or the modest expression level of FXN elicited by our
expression method. These possibilities are not mutually exclusive, but
do not preclude the conclusion that exogenous FXN expression was
sufficient to mitigate the established cellular phenotypes. The min-
iFXN gene encoding the endogenous human FXN promoter along
with a fragment of intron 1 and the remaining FXN coding sequence
was selected to ensure moderate FXN expression. However, the MUT
cells also could be utilized for testing various FXN promoters and po-
tential cellular consequences of FXN overexpression.

While untransformed MUT MEFs rapidly senesce after a few pas-
sages, SV40-transduced cells are capable of continuous proliferation
despite unchanged (low) levels of Fxn. However, the growth rate of
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and tRNA synthesis genes*> ** as necessary to
increase production of cellular proteins. In addi-
tion, we detected changes in the expression of
genes important for energy production and
glucose utilization in MUT-LT cells, suggesting
metabolic reprogramming of the early-passage
MUT MEFs over time. We found that several
genes associated with aerobic glycolysis, also
referred to as the Warburg effect, are upregu-
lated in MUT-LT cells. Aerobic glycolysis is
the conversion of glucose to lactate that occurs
in an oxygen-rich environment. It is a process
frequently used by cancer cells, along with intact
oxidative phosphorylation, to increase cellular energy produc-
tion.*™* Beyond ATP production, aerobic glycolysis yields a rich
pool of carbon intermediates that are used for nucleotide, lipid, and
protein biosynthesis to promote cell survival and proliferation.””"’
Finally, aerobic glycolysis decreases ROS production and oxidative
damage, typically associated with mitochondrial respiration, thus
protecting cells from apoptosis.>*

While WT cells may utilize both oxidative phosphorylation and
glycolysis, FRDA cells, including MUT, are disadvantaged for energy
production via oxidative phosphorylation because low FXN/Fxn
levels are associated with decreased biosynthesis of Fe-S clusters,
which in turn inhibits activities of Complexes [-1I1.>*~>” However,
the metabolic shift that occurs during extended culture of immortal-
ized G127V MUT cells differs from shifts described for other FRDA
cellular models.”®*° MUT cells are not predisposed toward glycolysis
in their untransformed state, rather they rely mostly on fatty acid
oxidation for energy production.’® It is only after SV40-mediated
immortalization that MUT MEFs shift their metabolic program to-
ward aerobic glycolysis. Thus, SV40-immortalized MUT cells
cultured over time in normoxic (oxygen-rich) conditions, like those
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Figure 7. Upregulated expression of aerobic glycolysis (Warburg effect)
associated genes in MUT-LT cells

Normalized RNA-seq counts were used to generate the plot. All values were
normalized to the expression level detected in early-passage MUT cells (MUT, green
bar; MUT-LT, blue bar; WT, purple bar).

utilized in our study, likely adapt to predominantly depend on aerobic
glycolysis to fulfill energy and biomass requirements for survival in
their transformed state. This metabolic reprogramming is probably
initiated by expression of SV40 T, during the immortalization pro-
cess. For example, SV40 T, could facilitate the adaptive mechanism
via deactivation (or sequestration) of Trp53 (p53 tumor suppressor),
resulting in upregulation of glucose transporter expression (e.g.,
Slc2a1).o1%*

In summary, MUT cells are unique in that they are viable while ex-
pressing an extremely low level of Fxn. Our data demonstrate that
they could be an appropriate model for cell-based potency assays.
However, following immortalization, their metabolic adaptability
makes it necessary to strictly monitor for potential drift of prolifera-
tion-dependent phenotypes. While several studies indicated specific
sensitivity of FRDA cells to different carbon sources, systematic inves-
tigation are lacking. The low Fxn level in MUT cells and consequently
their phenotype could be a very sensitive system to empirically dissect
metabolic pathways that are the most affected in FRDA.

MATERIALS AND METHODS

Culture and immortalization of MEFs

Mouse embryonic fibroblasts (MEFs) were derived from both WT
and G127V mutant (MUT) mice as described previously.36 These
MEFs were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) with high-glucose and pyruvate (Life Technologies,
#11995), supplemented with 10% fetal bovine serum (HyClone,
#SH30396.03). Immortalization of WT and MUT cells was achieved
using an SV40 immortalization kit (Alstem, #CILV01) according to
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the manufacturer’s recommendations. Early passages were defined
as passages 6-14, while late passages encompassed passages 15-26.

Growth curves and population doubling time of MEFs

MEFs were seeded in triplicate in 12-well plates at a density of 2 x 10*
cells per well and cultured in a standard cell culture incubator (37°C,
5% CO,). Cells were detached with trypsin and counted daily from
days 1-8 after seeding. Population doubling time was calculated dur-
ing the logarithmic phase of growth using the formula: PDT =
T x In(2)/In(A/Ao), where T represents the duration of culture in
hours (h), A corresponds to the number of cells in the well at the
time of measurement, and A, denotes the initial number of cells.

Cell proliferation assay

MEFs were seeded at varying cell densities (ranging from 5 x 10°-
1 x 10° cells per well) in 96-well plates. After 48 h, cells were
incubated with XTT (sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfo-
phenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium); ATCC, #30-
1011K) for 2-3 h. Absorbance of wells containing cells (test) and
media only (blank) was recorded at 465 and 660 nm using a BMG
Biotech FLUOstar Omega plate reader. Specific absorbance was
calculated according to the following formula:

Specific Absorbance = Assnm(Test) — Adgsnm(Blank) ~ Assonm Test)

Quantitation of mMRNA

RNA was isolated from MEFs using the RNeasy Mini Kit (Qiagen,
#74104) followed by removal of genomic DNA contamination using
the TURBO DNA-free Kit (Invitrogen, #AM1907). The expression of
Fxn and Gapdh (normalizer) transcripts was quantitated by Power
SYBR Green RNA-to-CT 1-Step Kit (Applied Biosystems,
#4389986) using primers and conditions as described.”®

Quantification of mitochondrial copy number

Relative mtDNA copy number was determined as described.”® Briefly,
total DNA was isolated with the QIAamp DNA Mini Kit (Qiagen,
#51304) according to the manufacturer’s instructions. A short
mtDNA fragment (16S rRNA gene, mt-Rnr2) was quantified with Po-
wer SYBR Green PCR (Thermo Fisher Scientific, #4367659) relative
to genomic DNA (hexokinase 2 gene, Hk2). The sequence of the
primers and reactions condition were described in Fil et al.*®

Western blot

For total protein isolation, MEFs were lysed in buffer (0.1% NP-40,
0.25 M sodium chloride, 5 mM ethylenediaminetetraacetic acid,
50 mM HEPES, pH 7.5) supplemented with 1 mM dithiothreitol
and 1% protease inhibitor cocktail (Sigma-Aldrich, #P8340).
Following incubation on ice for 20 min, samples were centrifuged
at 20,000 x g for 10 min at 4°C. The soluble fraction was collected,
and protein concentration was determined using the Bradford Pro-
tein Assay Reagent (Bio-Rad, #5000006). Subsequently, protein sam-
ples were heated with reducing sample buffer (50 mM Tris-HCI, pH
6.8,2% SDS, 0.1% bromophenol blue, 10% glycerol, 100 mM DTT) at
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95°C and resolved on 4%-12% NuPAGE Bis-Tris gels, followed by
transfer to nitrocellulose membranes. Membranes were blocked
with 5% milk in Tris-buffered saline (TBST; 10 mM Tris-HCI, pH
7.5, 150 mM NaCl, 0.1% Tween 20) and probed with primary anti-
bodies for frataxin/Frataxin (Proteintech, #14147-1-AP), Hprt (Pro-
teintech, #15059-1-AP), Gapdh (Millipore, #MAB374), followed by
incubation with secondary antibodies, either anti-Rabbit HRP linked
(GE Healthcare, #NA934V) or anti-Mouse HRP linked, (GE Heatlh-
care, #NA931V). Signal was detected using SuperSignal West Dura
Extended Duration Substrate (Thermo Fisher Scientific, #34075) or
SuperSignal West Femto Maximum Sensitivity Substrate (Thermo
Fisher Scientific, #34095). Imaging and analysis were performed
with a Bio-Rad ChemiDoc MP Imaging System using ImageLab
v.6.0.1 software.

ROS measurement

MEFs were seeded at 5 x 10°-5 x 10* cells per well in 96-well plates
and cultured for 48 h, followed by incubation with General Oxidative
Stress Indicator CM-H,DCFDA (Invitrogen, #C6827) for 40 min.
Fluorescence was measured using BMG Biotech FLUOstar Omega
plate reader at Ex/Em = 485/535 nm in endpoint mode.

ATP measurement

MEFs were seeded at 5 x 10°-5 x 10* cells per well in 96-well plates
and cultured for 48 h. ATP levels were measured using the Lumines-
cent ATP Detection Assay Kit (Abcam, #ab113849) following the
manufacturer’s recommendations.

Cloning and packaging of pLenti hygro FXN-L

A miniFXN construct expressing human FXN under the control of
endogenous regulatory elements was cloned into the pLenti HRE-
Luc pGK Hygro (Addgene plasmid #118706). A fragment of 2,782
base pairs (bp) containing the entire FXN gene was excised from
PAAV EXN-L using Mlul, Pmll, and Aat] restriction enzyme diges-
tion and cloned into pLenti HRE-Luc pGK Hygro digested with
MIiul and Pmel. Lentivirus packaging was performed in HEK293 cells
using pMD2.G (Addgene #12259) and psPAX2 (Addgene #12260),
together with the pLenti hygro FXN-L. Viral titers were determined
using the Lenti-X qRT-PCR Titration Kit (Takara, #631235).

RNA sequencing analysis

Total RNA was extracted from two clones each of early-passage WT,
MUT, and late-passage MUT cell lines using the RNeasy Mini Kit
(Qiagen, #74104) followed by removal of genomic DNA contamina-
tion using the TURBO DNA-free Kit (Invitrogen, #AMI1907).
Sequencing libraries were generated at Novogene Co., Ltd using
NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, #E7770)
following manufacturer’s recommendations. Library quality was as-
sessed on the Agilent Bioanalyzer 2100 system. Cluster generation
and sequencing were performed on Illumina’s NovaSeq6000 S4
flow cell to yield 20 million paired-end reads (PE150) per sample.
Quality filtered reads were aligned to the mouse genome with
HISAT2 and quantified. Differential gene expression analyses were
performed using DESeq2.” Genes were considered differentially ex-

pressed if their adjusted p value was less than 0.05, and the absolute
value of their log 2-fold change exceeded 0. The DAVID functional
annotation tool (https://david.ncifcrf.gov/tools.jsp) and the KEGG
pathway database (https://www.genome.jp/kegg/pathway.html)
were used for pathway analyses. RNA-seq data are available in the
GEO database (accession #GSE255810).

Statistical analyses

Statistical analyses were performed using GraphPad Prism v.9. Stu-
dent’s unpaired, two-tailed t tests, multiple t tests with two-stage
step-up (Benjamini, Krieger, and Yekutieli), and ordinary one-way
ANOVA for multiple comparisons were employed to determine sta-
tistical significance, with a threshold of p < 0.05 considered
significant.

DATA AND CODE AVAILABILITY

The raw and processed RNA-seq data generated in this study will be deposited in the
Gene Expression Omnibus under accession number GSE255810. Additional data that
support the findings of this study are available from the corresponding author upon
request.
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