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Abstract: The adsorbed magnetic molecules with tunable spin states have drawn wide attention for
their immense potential in the emerging fields of molecular spintronics and quantum computing.
One of the key issues toward their application is the efficient controlling of their spin state. This review
briefly summarizes the recent progress in the field of molecular spin state manipulation on surfaces.
We focus on the molecular spins originated from the unpaired electrons of which the Kondo effect
and spin excitation can be detected by scanning tunneling microscopy and spectroscopy (STM and
STS). Studies of the molecular spin-carriers in three categories are overviewed, i.e., the ones solely
composed of main group elements, the ones comprising 3d-metals, and the ones comprising 4f-metals.
Several frequently used strategies for tuning molecular spin state are exemplified, including chemical
reactions, reversible atomic/molecular chemisorption, and STM-tip manipulations. The summary
of the successful case studies of molecular spin state manipulation may not only facilitate the
fundamental understanding of molecular magnetism and spintronics but also inspire the design of
the molecule-based spintronic devices and materials.

Keywords: molecular spintronics; spin state manipulation; scanning tunneling microscopy
and spectroscopy; Kondo effect; spin excitation; spin crossover; metal phthalocyanines;
lanthanide complexes

1. Introduction

Magnetic molecules have attracted extensive interest during the past few decades due to their
potential applications as high-density memories, displays, sensors, and so forth [1–4]. Recently,
magnetic molecules are drawing even more attention, since they are considered as a promising material
platform for the blossoming fields of molecular spintronics and quantum computing, in which the
spin degree of freedom plays the key role [5–14]. One of the crucial issues toward the development
of magnetic-molecule-based devices and functional materials is the spin state manipulation of the
molecular spin-carriers. The relevant studies focusing on the surface-confined molecular systems
and at molecular level are of special significance not only for the fundamental understanding of the
magnetic characteristics of the molecular systems but also for realizing their practical applications.

The investigation of the molecular spins absorbed on surfaces has been facilitated by the rapid
development of surface science techniques over the past few decades, especially scanning tunneling
microscopy (STM) whose ultra-high spatial resolution in real space makes it one of the most powerful
tools for directly charactering the surface-confined molecular systems at angstrom scale [15–19].
The detection of magnetic properties of molecules on surfaces with STM is enabled by measuring
the differential conductance (dI/dV) spectra of the molecules, which refers to scanning tunneling
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spectroscopy (STS). Specifically, for the magnetic molecular systems absorbed on surfaces, Kondo
resonance and spin-excitation-induced inelastic electron tunneling are frequently observed by STS
measurement, and they are taken as the key evidence for analyzing the spin information of the systems,
such as spin state and magnetic interactions [20–30]. Kondo resonance, which appears as the spectral
anomaly near the Fermi level, is originated from the exchange interaction between the localized spin
of magnetic molecules and the conduction electrons of the substrate [31]. Thus, the Kondo effect is
usually observed in the systems where there is relatively strong interaction between the molecular
spin-carrier and the conducting substrate. Inelastic electron tunneling can be induced by the spin
excitation of the magnetic molecules with split spin states due to external magnetic field or spin-orbit
interaction [28,32,33]. It is usually observed as step-like features that are symmetric with respect to the
Fermi level in the dI/dV spectra.

This review focuses on the manipulation of the electron spins of surface-confined molecules,
aiming at overviewing the recent progress achieved by molecular-level investigations based on STM
and STS. The main body of the review is divided into three parts, each of which summarizes the studies
addressing one of the categories of magnetic molecules, i.e., the molecules solely composed of main
group elements, the 3d-metal complexes, and the 4f-metal complexes. The examples presented show
the application of various methods for controlling the spin state of the molecular systems, including
chemical reactions, reversible atomic/molecular chemisorption, and STM-tip manipulations.

2. Spin State Manipulation of Molecules Composed of Main Group Elements

2.1. Metal-Free Molecules

Ranging from small inorganic radicals such as NO [34], open-shell graphene nanostructures [35–43],
to pure organic spin carriers [44–52], metal-free molecules make up an important family of molecular
magnetic materials. According to the different origins of the electron spins in the molecules,
the metal-free molecular spin-carriers that have been scrutinized on surfaces can be divided into two
categories: the open-shell radical molecules [34–36,38–46] and the molecules involved in significant
charge transfer with either the substrate [47] or the neighboring molecules [48]. The unpaired electrons
in these metal-free molecules usually reside in π molecular orbitals. Controlled generation or quenching
of the magnetic moment has been achieved in several on-surface metal-free molecular systems.

Liu and coworkers reported one of the earliest works concerning the controlled quenching of
spins carried by the pure organic radicals absorbed on surfaces [44]. Their combined STM and
density functional theory (DFT) investigations were focused on the verdazyl radicals (Figure 1a),
that is, a family of pure organic molecules with an unpaired π-electron delocalized over the
N(1)-N(2)-C(3)-N(4)-N(5) portion of the heterocycle, that were deposited on Au(111). They found
that some 1,3,5-triphenyl-6-oxoverdazyl (TOV) molecules (denoted as type B in Figure 1b) could
preserve their spin upon adsorption on Au(111), which was evidenced by the Kondo resonance seen in
their dI/dV spectra (top curve in Figure 1c). As a comparison, other TOV molecules that possessed
a protrusion in the center (denoted as type A in Figure 1b) showed no Kondo feature by dI/dV
measurement (bottom curve in Figure 1c). Moreover, featureless dI/dV spectra were also found for
another verdazyl radical, 1,3,5-triphenyl-6-thioxoverdazyl (TTV, Figure 1a). The absence of Kondo
effect in the TOV molecules of type A and TTV was explained as a result of the quenched molecular spin.
For the TOV molecules with a protruding center (type A), the variation in the molecular morphology
compared with that of type B was attributed to the attachment of a H atom to the oxygen atom of TOV.
The addition of atomic H caused the transfer of an additional electron to the verdazyl ring and thus
quenched the unpaired electron spin of TOV. As for the TTV molecules absorbed on Au(111), the spin
quenching was originated from the charge transfer facilitated by the strong interaction between the
S atom in the molecule and the Au substrate. Therefore, it can be concluded that the spin of the
TOV radical absorbed on Au(111) could be quenched by either the addition of atomic H or chemical
modification of the molecule by replaying the O atom with a S atom.
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Figure 1. (a) Chemical structures of 1,3,5-triphenyl-6-oxoverdazyl (TOV) and 1,3,5-triphenyl-6-
thioxoverdazyl (TTV). (b) Scanning tunneling microscopy (STM) image of the TOV molecules of types 
A and B on Au(111). (c) Differential conductance (dI/dV) spectra recorded at TOV molecules of types 
A and B. Adapted from [44] with permission from The American Chemical Society, 2013. 

The above-mentioned work by Liu et al. [44] shows the relatively poor stability of the pure 
organic spin systems adsorbed on surfaces, which is an obstacle to their characterization. In this 
context, controlled chemical reactions have been employed as an efficient approach to creating stable 
organic spins from close-shelled molecules on surfaces [53–55]. One of the successful cases was 
reported by Karan and coworkers [54]. The authors managed to convert a closed-shell all-trans-
retinoic acid (ReA) molecule (Figure 2a) on Au(111) into a radical that carries localized spin via 
intramolecular chemical conversions induced by the biased STM tip. As shown in Figure 2b, ReA 
molecules were found to form a striped pattern on Au(111) upon adsorption. By placing the tip at a 
bias of −2.5 V over the neck of the cyclohexene head, the ReA molecules in arrays could be switched 
selectively among different states of A, B, and C which featured distinct shapes and apparent heights 
in the STM images (Figure 2c–e). DFT calculations enabled the authors to assign the pristine and 
switched molecular states to different adsorption configurations. Further spectroscopic 
investigations revealed the different spin states between the pristine and switched states of ReA. The 
dI/dV spectra of molecules in states A, B, and C displayed a remarkable peak around the Fermi level 
which was absent for the pristine molecules (Figure 2f). The splitting of the zero-bias peaks in the 
presence of a magnetic field (Figure 2g,h) demonstrated that the zero-bias peaks were originated from 
the Kondo effect. The latter served as a key proof for the existence of a majority spin residing in the 
switched molecules, although the pristine ReA is a closed-shell molecule. The follow-up theoretical 
study [56] attributed the emergence of spin upon molecular switching to the migration and 
dissociation of the allylic hydrogen from the endocyclic bond, i.e., a sigmatropic reaction, induced by 
the negatively biased tip. The distorted molecular structures of states A, B, and C, as well as the weak 
coupling between the molecules and the inert Au(111) substrate were believed to be important for 
stabilizing the metastable radical states of ReA. The generation of spins in organic systems by 
controlled on-surface chemical reactions were also reported for cholesterol molecules [53] and 13-cis-
retinoic acid [55] on Au(111). 

Figure 1. (a) Chemical structures of 1,3,5-triphenyl-6-oxoverdazyl (TOV) and 1,3,5-triphenyl-
6-thioxoverdazyl (TTV). (b) Scanning tunneling microscopy (STM) image of the TOV molecules
of types A and B on Au(111). (c) Differential conductance (dI/dV) spectra recorded at TOV molecules
of types A and B. Adapted from [44] with permission from The American Chemical Society, 2013.

The above-mentioned work by Liu et al. [44] shows the relatively poor stability of the pure organic
spin systems adsorbed on surfaces, which is an obstacle to their characterization. In this context,
controlled chemical reactions have been employed as an efficient approach to creating stable organic
spins from closed-shell molecules on surfaces [53–55]. One of the successful cases was reported by
Karan and coworkers [54]. The authors managed to convert a closed-shell all-trans-retinoic acid (ReA)
molecule (Figure 2a) on Au(111) into a radical that carries localized spin via intramolecular chemical
conversions induced by the biased STM tip. As shown in Figure 2b, ReA molecules were found to form
a striped pattern on Au(111) upon adsorption. By placing the tip at a bias of −2.5 V over the neck of the
cyclohexene head, the ReA molecules in arrays could be switched selectively among different states
of A, B, and C which featured distinct shapes and apparent heights in the STM images (Figure 2c–e).
DFT calculations enabled the authors to assign the pristine and switched molecular states to different
adsorption configurations. Further spectroscopic investigations revealed the different spin states
between the pristine and switched states of ReA. The dI/dV spectra of molecules in states A, B, and C
displayed a remarkable peak around the Fermi level which was absent for the pristine molecules
(Figure 2f). The splitting of the zero-bias peaks in the presence of a magnetic field (Figure 2g,h)
demonstrated that the zero-bias peaks were originated from the Kondo effect. The latter served as a key
proof for the existence of a majority spin residing in the switched molecules, although the pristine ReA
is a closed-shell molecule. The follow-up theoretical study [56] attributed the emergence of spin upon
molecular switching to the migration and dissociation of the allylic hydrogen from the endocyclic bond,
i.e., a sigmatropic reaction, induced by the negatively biased tip. The distorted molecular structures of
states A, B, and C, as well as the weak coupling between the molecules and the inert Au(111) substrate
were believed to be important for stabilizing the metastable radical states of ReA. The generation of
spins in organic systems by controlled on-surface chemical reactions were also reported for cholesterol
molecules [53] and 13-cis-retinoic acid [55] on Au(111).
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Figure 2. (a) Chemical structure of retinoic acid (ReA). (b) STM image of the striped pattern formed 
by ReA molecules in their pristine form as deposited on Au(111). (c–e) STM images of the same area 
after manipulating the marked molecules at a sample voltage V = −2.5  V. (f) dI/dV spectra recorded 
at pristine (bottom curve) and four manipulated states of ReA. Magnetic field evolutions of states (g) 
A and (h) B. Adapted from [54], with permission from American Physical Society, 2016. 
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molecular magnetism. Pc, a widely used macrocyclic chelating ligand, possesses four indole rings 
bridged by four –N= groups with their two –NH– and two -N= groups pointing toward the center of 
the molecule. The coordination of Pc with metal atoms usually takes place via the dissociation of the 
two H atoms in the –NH– groups of the indole rings, leading to a –2 valence state of the coordinated 
Pc ligand. Therefore, the stable metal phthalocyanine (MPc) molecules prefer to form between Pc and 
the metals that can be stabilized in their +2 oxidation state, such as the 3d-metals. As a comparison, 
for the main-group metals that not tend to stabilize in their +2 state, e.g., K (+1), Al (+3), and Ti (+4), 
the synthesis of the Pc-coordinated complexes and the following characterization and manipulation 
of their spin-related properties are challenging. 

Hong et al. [57] employed the recently developed vacuum synthesis method for the preparation 
of AlPc, a main-group-metal phthalocyanine molecule, via the metalation of pristine H2Pc on 
Au(111). The formation of the new species was confirmed by its distinct appearance in STM images 
(Figure 3a) and the different electronic structures as detected by dI/dV measurements compared with 
H2Pc. The existence of a spin in AlPc was evidenced by the detection of a zero-bias peak in the dI/dV 
spectrum acquired at the lobe of AlPc (top-most curve in Figure 3b) which was assigned to Kondo 
resonance according to its splitting in the increasing magnetic field. The theoretical results provided 
insights into the origin of the spin by showing a doublet ground state of AlPc where the singly 
occupied molecular orbital (SOMO) and singly unoccupied molecular orbital (SUMO) were both in 
a π* state. Therefore, it is concluded that the spin density of the molecule was originated from the 
unpaired π-electron, which was mainly delocalized over the lobes of the Pc ring. This explained the 

Figure 2. (a) Chemical structure of retinoic acid (ReA). (b) STM image of the striped pattern formed
by ReA molecules in their pristine form as deposited on Au(111). (c–e) STM images of the same area
after manipulating the marked molecules at a sample voltage V = −2.5 V. (f) dI/dV spectra recorded at
pristine (bottom curve) and four manipulated states of ReA. Magnetic field evolutions of states (g) A
and (h) B. Adapted from [54], with permission from American Physical Society, 2016.

2.2. Main-Group-Metal Phthalocyanines

In addition to the metal-free molecules, some main-group-metal-involved metal–organic
complexes, such as main-group-metal phthalocyanine (Pc) molecules, are also of interest in terms of
molecular magnetism. Pc, a widely used macrocyclic chelating ligand, possesses four indole rings
bridged by four –N= groups with their two –NH– and two –N= groups pointing toward the center of
the molecule. The coordination of Pc with metal atoms usually takes place via the dissociation of the
two H atoms in the –NH– groups of the indole rings, leading to a –2 valence state of the coordinated Pc
ligand. Therefore, the stable metal phthalocyanine (MPc) molecules prefer to form between Pc and
the metals that can be stabilized in their +2 oxidation state, such as the 3d-metals. As a comparison,
for the main-group metals that not tend to stabilize in their +2 state, e.g., K (+1), Al (+3), and Ti (+4),
the synthesis of the Pc-coordinated complexes and the following characterization and manipulation of
their spin-related properties are challenging.

Hong et al. [57] employed the recently developed vacuum synthesis method for the preparation
of AlPc, a main-group-metal phthalocyanine molecule, via the metalation of pristine H2Pc on Au(111).
The formation of the new species was confirmed by its distinct appearance in STM images (Figure 3a)
and the different electronic structures as detected by dI/dV measurements compared with H2Pc.
The existence of a spin in AlPc was evidenced by the detection of a zero-bias peak in the dI/dV spectrum
acquired at the lobe of AlPc (top-most curve in Figure 3b) which was assigned to Kondo resonance
according to its splitting in the increasing magnetic field. The theoretical results provided insights
into the origin of the spin by showing a doublet ground state of AlPc where the singly occupied
molecular orbital (SOMO) and singly unoccupied molecular orbital (SUMO) were both in a π* state.
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Therefore, it is concluded that the spin density of the molecule was originated from the unpaired
π-electron, which was mainly delocalized over the lobes of the Pc ring. This explained the absence of
Kondo resonance at the center of AlPc (middle curve in Figure 3b). Further comparative investigation
of chlorinated AlPc (ClAlPc), an AlPc derivative formed by the axial bonding of the Al atom with
a Cl atom, on Au(111) (Figure 3c) showed no Kondo signature for the absorbed ClAlPc molecules
(Figure 3d), since all molecular orbitals of ClAlPc became doubly occupied upon chlorination. As a
consequence, the spin state of AlPc on Au(111) could be tuned by the attachment/detachment of a Cl
atom to the Al center.
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Figure 3. (a) STM image of H2Pc (top-left) and AlPc (bottom-right) on Au(111). (b) dI/dV spectra
of H2Pc and AlPc. (c) STM image of ClAlPc. (d) dI/dV spectra of ClAlPc in either a Cl-up or a
Cl-down configuration. Adapted from [57], with permission from the Royal Society of Chemistry, 2016.
Pc: phthalocyanine.

3. Spin State Manipulation of Molecules Comprising 3d-Metals

3.1. 3d-Metal Phthalocyanines

MPcs are one of the most studied molecular systems on surfaces [58,59], among which 3d-MPcs
draw special attention due to their diversified magnetic properties. With the different electronic
configurations of their 3d orbitals and thus the existence of unpaired d-electrons, the central metal ions
in 3d-MPcs can serve as spin-carriers presenting various spin states. Extensive investigations addressing
the magnetism of 3d-MPcs confined on surfaces, such as the ones with M = V [60,61], Mn [62–65],
Fe [21,23,26,28,66,67], Co [20,68], Ni [69], and Cu [69], have been reported. Various spin-state
manipulation strategies have been developed for the on-surface 3d-MPc systems. In the following,
we will describe by examples the two frequently used strategies for tuning the spin state of 3d-MPc
molecules on surfaces: tip-induced chemical reactions and reversible atomic/molecular chemisorption.

A well-known case of spin-state manipulation via tip-induced chemical reactions was reported
by Zhao et al. [68], which involves the CoPc/Au(111) system. For an intact CoPc molecule absorbed
on Au(111), the dI/dV measurement showed no spin-associated signature (black curve in Figure 4f),
indicating that the unpaired electron of the Co center in free CoPc was completely quenched upon
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adsorption due to the molecule–substrate interaction. However, the localized spin was recovered in
the dehydrogenated CoPc (d-CoPc) which was generated by the sequential tip pulses at 3.6 V on top
of the four indole rings (Figure 4a–e). The change in the spin state of d-CoPc was evidenced by the
presence of an intense peak around the Fermi level in the dI/dV spectra which was assigned as a Kondo
resonance due to its temperature evolution (colored curves in Figure 4f). Insights into the mechanism
of the conversion was obtained by the comparison between the theoretical results of CoPc/Au(111)
and d-CoPc/Au(111). Geometric optimizations showed a structural distortion of d-CoPc with respect
to CoPc, including a larger Co-substrate separation and a smaller distance between the end carbon
atoms and the substrate of d-CoPc compared with CoPc. The chemical-conversion-induced geometric
changes of CoPc were accompanied with the variations in the electronic structures. For intact CoPc,
the calculated spin-polarized partial density of states (PDOS) displayed the barely polarized orbitals
of the Co center, which explained the absence of a magnetic moment in the intact CoPc absorbed on
Au(111). As a comparison, polarized orbitals were found for d-CoPc, leading to a magnetic moment of
1.03 µB, which was the origin of the Kondo resonance.
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Figure 4. (a–e) STM images showing the sequential tip-induced dehydrogenation of a CoPc on Au(111).
(f) dI/dV spectra of CoPc and dehydrogenated CoPc (d-CoPc) at different temperatures. Adapted
from [68], with permission from American Association for the Advancement of Science, 2005.

It is worth mentioning that in addition to manipulation of spin state as presented in the case
shown above, the similar tip-induced chemical reactions were also employed as an efficient approach
to tuning the spin-related transport properties in another 3d-MPc system. Li et al. reported the
transition from the Kondo state to the magnetic triplet state of FePc on Au(111) upon the tip-induced
dehydrogenation [67]. Deprotonated FePc molecules (Figure 5b inset at the bottom right) were
generated from the intact FePc molecules (Figure 5a inset) on Au(111) by tip-pulse in the similar
way as that reported for the CoPc/Au(111) system [68]. dI/dV investigations uncovered the distinct
spectroscopic features of the intact and dehydrogenated species. For intact FePc, the zero-bias anomaly
in the dI/dV spectrum (Figure 5a) was interpreted as the Kondo resonances originated from two
unpaired d-electrons of the central Fe ion screened by the substrate electron gas. Once deprotonated,
the structural distortion of the molecule resulted in the increased Fe–substate separation, which led to
the weakened hybridization between the localized d-electrons of Fe and the delocalized electron gas
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of the Au substrate. As a consequence, the Kondo features were replaced by a double-step feature
in the dI/dV spectrum (Figure 5b), which indicated the emergence of inelastic electron tunneling.
These inelastic electron tunneling steps reflected the spin transitions between the α, β and γ states
(Figure 5b inset at the bottom left) that were originated from the splitting of the S = 1 state of FePc due
to the spin–orbit interaction.
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Due to the irreversibility of the tip-induced chemical conversions, the above-described strategy
usually shows a one-way effect to the molecular spin systems. As another frequently used strategy,
the chemical adsorption of atoms or small molecules provides a reversible approach to tuning
the molecular spins. One example involving the MnPc/Au(111) system was reported by Liu and
coworkers [64]. MnPc molecules absorbed on Au(111) exhibited a protruding cross feature (Figure 6a).
H2 dosage caused the conversion of the original MnPc molecules into the structures with a depression at
the center (Figure 6b). This variation in the molecular morphology induced by H2 dosage was attributed
to the chemical adsorption of an atomic H at the Mn ion in MnPc molecules which gave rise to H-MnPc.
Furthermore, it was found that the MnPc state could be recovered from the H-MnPc state by applying
a positive tip-pulse at H-MnPc molecules which led to the detachment of H. The chemisorption of
atomic H to MnPc also gave rise to remarkable changes in the dI/dV measurements. The dI/dV spetra
of MnPc on Au(111) showed a step-shaped feature at zero bias (red curves in Figure 6c). This zero-bias
anomaly was attributed to Kondo resonance according to its splitting in the presence of a magnetic
field (Figure 6d). In contrast, featureless dI/dV curves were found for H-MnPc (blue curve in Figure 6c).
Reversible conversions of the dI/dV spectra between the Kondo-featured and featureless curves were
achieved by controlled H2 dosages which led to a MnPc to H-MnPc conversion and tip-pulses which
resulted in the H detachment of H-MnPc (Figure 6c). Further theoretical investigations demonstrated
an S = 3/2 state of MnPc on Au(111). The exchange interaction between the localized spin of the Mn
ion and the substrate electron gas gave rise to the experimentally observed Kondo resonance. As for
H-MnPc, the calculations unraveled an almost unchanged number of d-electrons of the Mn ion but
redistributed effective charges in d orbitals compared with MnPc. The latter was responsible for the
reduction in the net spin of the molecule from S = 3/2 for MnPc to S = 1 for H-MnPc. Moreover,
H attachment also resulted in a larger Mn–substrate separation and thus weakened Mn–substrate
coupling for H-MnPc. Both factors contributed to the suppression of the Kondo effect in H-MnPc.
In all, the chemisorption of atomic H served as an efficient approach to tuning the spin state of MnPc
on Au(111) reversibly. The similar strategy was also employed for the manipulation of the spin state
of MnPc on Bi(110) between S = 1 and S = 1/2 states where CO instead of atomic H was used as the
adsorbate [65].
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3.2. Spin Crossover (SCO) Complexes

Spin crossover (SCO) complexes are a family of coordination compounds featuring switchable
spin-state bistability in which transition metals with 3dn (n = 4–7) electronic configuration serve as
the spin centers. Upon external stimuli such as temperature, light irradiation, pressure, or electric
field [70–73], the metal centers of SCO molecules can switch between the low-spin (LS) state and
high-spin (HS) state. The origin of the spin-state switching lies in the magneto-structural effect of SCO
complexes, that is, the change in coordination geometry can give rise to rearrangement of d orbitals
and hence a variation in the spin state of the metal center.

Investigations of SCO phenomena of individual molecules at molecular scale have been widely
carried out by STM. One recent example was reported by Kobke et al. [74] showing that the spin state
of Ni in a series of Ni–porphyrin complexes could switch between a LS (S = 0) state and a HS (S = 1)
state through reversibly changing the molecular structure between the ruffled and flat conformations.
The two different molecular conformations were stabilized by the coordination and non-coordination
of the central Ni with an axial ligand, respectively. A number of other cases have been overviewed in a
recent review [75].

Once assembled into extended structures, SCO materials may emerge various spin-state orderings
and exhibit a rich variety of collective dynamic behaviors [76]. However, in contrast to the extensively
explored individual SCO systems, only a few molecular-level studies have focused on the SCO
phenomena in ensembles [77,78]. In a recent work by Liu et al. [78], chemically bonded one-dimensional
SCO chains that were constructed via coordination between Ni and deprotonated tetrahydroxybenzene
(THB) molecules on Au(111) (Figure 7a) were scrutinized by STM. STM imaging resolved the alternate
arrangement of two types of Ni atoms, i.e., the bright ones and the dark ones, along the chains
(Figure 7b). Theoretical optimization of the coordination structure (Figure 7c) demonstrated different
coordination geometries of the two types of Ni atoms: longer (shorter) Ni–O bonds, smaller (larger)
O–Ni–O angles, and a smaller (larger) Ni–substrate separation for the bright (dark) Ni. Different spin
states of the two types of Ni atoms were identified by combined dI/dV measurements and theoretical
calculations. The dark Ni atoms exhibited featureless dI/dV spectra near the Fermi level (blue curve
in Figure 7d). This experimental observation was in accordance with the calculation result which
showed barely polarized d orbitals of the dark Ni atoms, indicating their S = 0 (LS) state. As a
comparison, zero-bias anomaly was found for the bright Ni atoms (red curve in Figure 7d) and was
attributed to Kondo resonances according to the magnetic-field evolution. Theoretical results revealed
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the highly polarized d orbitals of the bright Ni atoms whose interaction with the substrate electron
gas was responsible for the Kondo features in the dI/dV spectra. A magnetic moment of 1.59 µB

was concluded for the bright Ni atoms, corresponding to an S = 1 (HS) state. As a consequence,
the Ni atoms in the coordination chains were at a HS (S = 1) or a LS (S = 0) state alternately along
the chains, giving rise to a unique spin-state ordering known as the antiferroelastic phase. With a
magneto-structural dependence, the Ni atoms in the chains could play as the SCO centers when
being excited by the tip-pulse located upon. Interestingly, it was found that such SCO behavior,
i.e., the spin-state switching between HS and LS states, of multiple Ni atoms in the same coordination
chain could take place collectively (Figure 7e,f) upon the tip excitation of a single Ni atom (marked by
the stars in Figure 7e,f). Such collective conversions actually resulted in the reversible switching of
the chain between two degenerate antiferroelastic states, that is, the transition between the spin-state
configurations of “...101010...” and “...010101...”. A domino-like dynamic magneto-structural relaxation
process was proposed to explain the mechanism of the collective SCO phenomenon.
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Figure 7. (a) Schematic illustration of the coordination reaction between tetrahydroxybenzene (THB)
and Ni on Au(111). (b) STM image of the coordination chains. (c) Optimized models of the coordination
chain. (d) dI/dV spectra acquired at a HS-Ni and a LS-Ni, respectively. STM images of the coordination
chains (e) before and (f) after the tip-induced collective switching within the marked chain. Adapted
from [78], with permission from American Chemical Society, 2020.

4. Spin State Manipulation of Molecules Comprising 4f-Metals

Lanthanide (Ln) Pc molecules, e.g., double-decker (LnPc2) and triple-decker (Ln2Pc3) complexes,
are a promising class of single-molecule magnets (SMMs) [79]. Their large magnetic moments are
originated from the 4f electron states of the Ln ion. In the recent decade, STM has been extensively
employed for exploring the on-surface systems of Ln–Pc complexes, especially the relatively stable
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LnPc2 species, focusing on their self-assembly, electronic structures, magnetic properties, and so
on [80–94]. However, due to the inner-core nature of the 4f orbitals which leads to the little contribution
of the 4f electrons to the tunneling current, the direct detection of the 4f electron states are elusive
by STM measurement in some surface-confined LnPc2 systems [83,85,89,93]. In fact, there remain
substantial debates on whether the spin states originated from the 4f electrons in LnPc2 molecules
can be directly visualized by STM [81,83,85,86,89,91,94]. Nevertheless, the spin state manipulation
has been achieved in several LnPc2 systems by tuning the unpaired π-electrons residing on the Pc
ligands [83,93].

Komeda and coworkers reported the switch-on and off of a π-electron spin of TbPc2 on Au(111) by
rotating the upper Pc ligand with controlled current pulses [83]. There are two spin systems in TbPc2,
that is, the Tb ion and an unpaired electron in the ligand π orbital. Although the magnetic signature of
the former was invisible by STM in this case, the Kondo effect of the latter was captured by spectroscopic
investigations. The dI/dV measurement revealed the site dependence of the Kondo feature: the Kondo
peak was prominent around the lobes of the molecule but was dramatically attenuated at the center
(Figure 8a). This served as an evidence showing that it was the spin residing on the Pc ligand that was
responsible for the Kondo resonance. Then, it was found that the Kondo feature could be switched
on and off when the upper Pc ligand was rotated by applying a tip pulse to the molecule. For a
TbPc2 molecule with an azimuthal rotational angle (θ) between the two Pc ligands of 45◦ whose center
appeared brighter in the STM images (Figure 8b), the Kondo peak could be detected (top curve in
Figure 8d). Once pulsed, the center of the molecule became darker, which indicated a change in θ of
the molecule to 30◦ (Figure 8c). Meanwhile, the dI/dV measurement showed the disappearance of the
Kondo resonance for the pulsed molecules (bottom curve in Figure 8d). This θ-dependent switching
of the Kondo effect was interpreted as a result of the variation in the molecular spin state. For the
TbPc2 molecules with θ = 45◦, the Pc ligand of the molecule absorbed on Au(111) had an S = 1/2 spin
originated from the unpaired π-electron. However, the rotation of the upper ligand to θ = 30◦ led to
the rearrangement of the frontier molecular orbitals, which resulted in the charge transfer from the
surface, therefore quenching the molecular spin and hence the Kondo state.
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Figure 8. (a) dI/dV spectra recorded at the lobe and center of a TbPc2 molecule on Au(111). Inset: STM
image of TbPc2 molecules in the assembled structure. Schematic illustrations and STM images of TbPc2

molecules with (b) θ = 45◦ and (c) θ = 30◦. (d) dI/dV spectra acquired at a TbPc2 molecule before and
after the application of a tip pulse. Adapted from [83], with permission from Macmillan Publishers
Limited, 2011.

The investigation of DyPc2 in the double-barrier tunneling junction (DBTJ) consisting of vacuum
and CuO film (Figure 9a) by Zhang et al. [93] is also inspiring for the manipulation of the ligand spin
of LnPc2 molecules. The adsorption of DyPc2 on the ultrathin CuO film on Cu(110) led to four types
of molecules, that is A, B, and C in the assembled structures (Figure 9b) and the isolated molecules
D (Figure 9b inset). Similar to TbPc2, DyPc2 also possesses two spin systems in its neutral state, i.e.,
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the Dy ion whose 4f electrons are undetectable by STM measurement, and the unpaired π-electron
delocalized on the Pc ligands. Spectroscopic studies were carried out for characterizing the ligand spin.
Molecules A and B showed featureless dI/dV curves under zero magnetic field but a remarkable dip at
the Fermi level under a magnetic field of 8 T (black and orange curves in Figure 9c). The emergence of
the zero-bias feature under the nonzero external magnetic field (B) was attributed to the spin excitation
of the molecule from ms = −1/2 to ms = +1/2 which was originated from the Zeeman splitting of the
degenerated ms = ±1/2 spin states at B = 8 T (Figure 9d). Therefore, it was concluded that molecules
A and B possessed one unpaired π-electron, indicating that they were in neutral states. In contrast,
the featureless spectra were found for molecules C and D at both B = 0 and 8 T (red and blue curves in
Figure 9c), meaning that their unpaired π-electrons were quenched and thus they were charged. Given
the dependence between the spin state and charge state of DyPc2 in the DBTJ, the manipulation of the
charge state could hence lead to the change in the spin state. It was demonstrated that the charge state
of DyPc2 in this system could be tuned by applying different biases of the DBTJ, which would give rise
to the switching-on and off of the ligand spin of DyPc2.
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and C in the assembled structure and the isolated molecule D (inset). (c) dI/dV spectra of molecules
A, B, C, and D under magnetic fields of B = 0 T and 8 T. (d) Schematic showing the Zeeman splitting.
Adapted from [93], with permission from American Chemical Society, 2018.
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5. Conclusions

In this review, we summarize the recent investigations of spin state manipulation of
surface-confined molecules in three categories, i.e., molecules composed of main group elements
such as verdazyl radicals, ReA and AlPc, molecules comprising 3d-metals such as 3d-MPcs and the
spin crossover coordination chains, and molecules comprising 4f-metals such as TbPc2 and DyPc2.
Examples are presented to show the efficient effect of several spin state tuning strategies, including
chemical reactions, reversible atomic/molecular chemisorption, and STM-tip manipulations, in different
on-surface molecular systems. The employment of STM and STS in these studies enables the exploration
of the spin-related phenomena and properties at molecular level by detecting the Kondo effect or spin
excitation of the molecular systems. These case studies contribute to the fundamental understanding
of molecular magnetism and spintronics.

To make further steps toward the practical application of the magnetic molecules as spintronic
and quantum computing devices, the studies focusing on the magnetic molecular systems located on
carbon-based substrates or nanostructures are of great significance. On the one hand, the work by
Cervetti et al. concerning the molecular-spin–graphene hybrids has demonstrated that the interaction
between magnetic molecules and graphene has an essential influence on the quantum dynamics of
molecular spins [95]. Further explorations in the field have involved a variety of coupled systems formed
between different molecular spins and graphene, aiming at elucidating their structures, electronic
properties, magnetism, and so forth [61,96–101]. On the other hand, the hybrid systems composed of
single molecular magnets and carbon nanotubes (CNTs) also have drawn extensive attention [102–105].
A strong spin–phonon coupling between molecular spins and CNTs was demonstrated, which can
enhance the sensitivity of CNT-based magnetometers and ultimately enable coherent spin manipulation
and quantum entanglement [106,107]. Such hybrid systems were also found to be able to play as
spintronic devices such as spin valves [108]. More about the research progress focusing on the
hybrids consisting of molecular magnets and carbon-based materials can be found in the reviews
by Cervetti et al. [109] and Pineda et al. [110], just to name a few. Based on these excellent previous
works, the systematic investigation by STM of spin manipulation of magnetic molecules coupled with
carbon-based substrates is expected to provide more fundamental insights into the hybrid systems at
molecular level, which should be inspiring for the design of molecule-based spintronic and quantum
computing devices.
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