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Abstract

Background: Musculoskeletal disorder (MSD) are a class of inflammatory and

degener-ative diseases, but the precise molecular mechanisms are still poorly under-

stood. Noncoding RNA (ncRNA) N6-methyladenosine (m6A) modification plays an

essential role in the pathophysiological process of MSD. This review summarized the

interaction between m6A RNA methylation and ncRNAs in the molecular regulatory

mechanism of MSD. It provides a new perspective for the pathophysiological mecha-

nism and ncRNA m6A targeted therapy of MSD.

Methods: A comprehensive search of databases was conducted with musculoskeletal

disorders, noncoding RNA, N6-methyladenosine, intervertebral disc degeneration,

osteoporosis, osteosarcoma, osteoarthritis, skeletal muscle, bone, and cartilage as the

key-words. Then, summarized all the relevant articles.

Results: Intervertebral disc degeneration (IDD), osteoporosis (OP), osteosarcoma

(OS), and osteoarthritis (OA) are common MSDs that affect muscle, bone, cartilage,

and joint, leading to limited movement, pain, and disability. However, the precise

pathogenesis remains unclear, and no effective treatment and drug is available at pre-

sent. Numerous studies confirmed that the mutual regulation between m6A and

ncRNAs (i.e., microRNAs, long ncRNAs, and circular RNAs) was found in MSD, m6A

modification can regulate ncRNAs, and ncRNAs can also target m6A regulators.

ncRNA m6A modification plays an essential role in the pathophysiological process of

MSDs by regulating the homeostasis of skeletal muscle, bone, and cartilage.

Conclusion: m6A interacts with ncRNAs to regulate multiple biological processes and

plays important roles in IDD, OP, OS, and OA. These studies provide new insights

into the pathophysiological mechanism of MSD and targeting m6A-modified ncRNAs

may be a promising therapy approach.

1 | INTRODUCTION

N6-methyladenosine (m6A) is the most common internal modification

of messenger RNAs (mRNAs)1,2 and is widely present in yeast,3,4

plants,5,6 flies,7,8 mammals9,10 and viral RNAs.11 As the most abundant

chemical modification in mammals, m6A modifies about one-third of

mammalian mRNAs, and 3–5 m6A modification sites are present per

mRNA on average.12 Studies confirmed that m6A modification sites
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are predominantly distributed in stop codons, 30untranslated regions

(30UTRs),13,14 precursor mRNA, coding sequence and inner long exon

of matured mRNA.15 In recent years, the understanding of m6A modi-

fication in RNA has been further improved with the application of

next-generation sequencing and high-throughput identification.13,15

m6A RNA modification is also widely found in noncoding RNAs

(ncRNAs). NcRNA is a class of RNAs that have no protein-coding abil-

ity but is involved in complex gene expression processes16 and associ-

ated with the pathophysiological process of many diseases.17

Evidence found that m6A can regulate the expression and function of

ncRNAs, including microRNAs (miRNAs),18 long ncRNAs (lncRNAs)19

and circular RNAs (circRNAs).20 The m6A-related protein is also

affected by ncRNAs.21,22 The interplay between m6A and ncRNAs is

responsible for the biological processes of many diseases.23

Musculoskeletal disorders (MSD) are a class of inflammatory and

degenerative diseases caused by motor organ injury or pain, predomi-

nantly affecting the musculoskeletal system, such as muscle, bone,

cartilage and joint,24 and include intervertebral disc degeneration

(IDD), osteoporosis (OP), osteosarcoma (OS) and osteoarthritis (OA).

Recently, the incidence of MSD continues to rise, and MSD has

become the leading cause of disability worldwide, thereby placing a

heavy burden on global health and social security system.25,26 How-

ever, the precise pathogenesis remains unclear, and no effective treat-

ment and drug is available at present.27 Accumulating evidence

documented that ncRNA m6A modification is closely associated with

the musculoskeletal system and is suggested as crucial regulators

involved in bone osteogenic28 and osteoclastogenic processes29 and

myogenesis.30 The interplay between the m6A-related protein and

ncRNAs play a vital part in the pathological and physiological pro-

cesses of MSD.31–33 m6A can affect the generation and biological

function of some important ncRNAs, such as pri-miRNA processing31

and maturation34 and lncRNA degradation.35 NcRNAs (i.e., miRNAs,36

lncRNAs and circRNAs37) can target or modulate the m6A-related

protein regulating the occurrence and development of MSD.31 In this

review, we highlight the functional interactions between m6A regula-

tors and ncRNAs in the bone osteogenic and osteoclastogenic pro-

cesses and myogenesis, further describe the related molecular

mechanism of the interplay between m6A and ncRNAs in MSDs,

including IDD, OP, OS and OA.

2 | m6A MODIFICATION

The process of m6A methylation is dynamic and reversible. This pro-

cess involves three crucial molecular compositions, i.e., m6A met-

hyltransferases (writers), m6A demethylases (erasers) and m6A

recognition factors (readers),38 which can add, remove and recognize

m6A sites, respectively, and are essential for normal biological pro-

cesses and development in human tissues and cells.12 Writers pre-

dominantly initiate the m6A modification process, which includes

methyltransferase-like 3/14/16 (METTL3/14/16),39,40 zinc finger

CCCH-type containing 13 (ZC3H13), CCHC zinc-finger-containing

protein ZCCHC4, Wilm's tumour-associated protein (WTAP),

RNA-binding motif protein 15/15B (RBM15/15B),23 vir-like m6A

methyltransferase associated (VIRMA, also known as KIAA1429) and

NOL1/NOP2/Sun domain family member 2 (NSUN2). Erasers, which

include alkB homologue 5 (ALKBH5) and fat mass and obesity-

associated protein (FTO),41 can reverse m6A methylation. Readers

consist of YT521-B homology (YTH) domain-containing protein fam-

ily (i.e., YTHDC1/2 and YTHDF1/2/3),42 heterogeneous nuclear

ribonucleoprotein (HNRNP) family (i.e., HNRNPA2B1, HNRNPC and

HNRNPG),43,44 eukaryotic translation initiation factor 3 (eIF3),

insulin-like growth factor-2 mRNA-binding proteins 1/2/3

(IGF2BP1/2/3),45 and leucine-rich pentatricopeptide repeat-

containing protein (LRPPRC). They can selectively identify m6A

modifications.

m6A RNA modification is highly conserved in humans and mice

and is involved in regulating various complex RNA bioprocesses,46

such as RNA splicing, processing, translation and degradation.47

mRNA precursors (pre-mRNAs) form mature mRNAs through splicing.

METTL16 induce efficient splicing and regulate S-adenosylmethionine

(SAM) homoeostasis,48 and FTO and ALKBH5 are responsible for the

regulation of exon splicing.49 m6A readers (i.e., HNRNPA2B1,

HNRNPC and HNRNPG) can recognize and bind to m6A modification

sites, thereby regulating RNA alternative splicing.50,51 Similar to

METTL3, HNRNPA2B1 can interact with RNA-binding protein

DiGeorge syndrome critical region gene 8 (DGCR8) to promote pri-

mary miRNA processing.52 m6A readers are the main translation and

degradation regulator. YTHDF1 can interact with eIF3 to facilitate

m6A-modified mRNA translation and further improve translation effi-

ciency.53,54 As the initiator of mRNA translation, YTHDF3 can syner-

gistically promote mRNA translation with YTHDF1.55 However, when

YTHDF3 interacts with YTHDF2, the decay of m6A mRNA is acceler-

ated.56 YTHDF2 can also selectively recognize m6A modification sites

and directly induce mRNA degradation.57 In addition, another class of

m6A readers, i.e., IGF2BP family (including IGF2BP1/2/3), is beneficial

to enhance the stability of mRNA and translation58 (Figure 1).

Accumulating evidence documented that m6A is closely associ-

ated with MSDs and that aberrantly expressed writers,31,33,59

erasers60,61 and readers62 participate in the pathophysiological pro-

cess of MSD. In IDD, METTL14 is highly expressed in the nucleus

pulposus (NP) of patients with IDD. METTL14 could induce NP cell

death by modulating interleukin (IL)-1β and IL-18 expression levels,63

and the overexpressed METTL14 could also promote the senescence

of NP cells.31 In OP, METTL3, FTO and YTHDF1 mainly regulate oste-

ogenic differentiation of bone marrow-derived mesenchymal stem

cells (BMSCs), thereby promoting OP progression. Yan et al. reported

that METTL3 is downregulated in OP; it directly targets RUNX2 and

restrains BMSCs osteogenic differentiation.33 FTO is overexpressed

in bone marrow and promotes BMSCs adipocyte differentiation and

restrains osteoblast differentiation by GDF11–FTO–Pparg axis,

thereby inhibiting bone formation and accelerating the development

of osteopenia.60 Wang et al. further reported that FTO could also tar-

get RUNX2 directly, thereby inhibiting osteogenic differentiation and

promoting the progression of OP.64 Liu et al. found that YTHDF1 is

upregulated, and it could bind to ZNF839 and the downstream target
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RUNX2 facilitating BMSCs osteogenesis.62 In OS, the most studied

m6A-related proteins are METTL3, WTAP and ALKBH5. They mainly

regulate the proliferation, apoptosis, migration and invasion of OS

cells, and participate in the progression of OS. METTL3 functions as

oncogene and is highly expressed in OS. Studies reported that

METTL3 regulated OS cells proliferation, migration and invasion via

ATPase family AAA domain-containing protein 2 (ATAD2)65 and

LEF1/Wnt/β-catenin signalling pathway.66 Furthermore, METTL3

could also up-regulate the expression of developmentally regulated

GTP-binding protein 1 (DRG1) promoting OS cells migration and col-

ony formation.67 WTAP is highly expressed in osteosarcoma tissue

and regulats the proliferation and metastasis of osteosarcoma by

PI3K/AKT pathway.68 ALKBH5 is abnormally expressed in OS tissues

and is crucial for the growth and metastasis of OS. The overexpressed

ALKBH5 upregulated the expression of ubiquitin-specific protease

22 (USP22) and RNF40, and restrained histone H2A ubiquitination,

facilitating OS progression.69 Furthermore, ALKBH5 could also regu-

lated OS cells proliferation, apoptosis and cycle arrest by targeting

selective signal transducer and activator of transcription 3 (STAT3)

and suppressor of cytokine signalling 3 (SOCS3).70 In OA, the most

studied m6A-related proteins are METTL3, which promotes OA

progression by regulating extracellular matrix (ECM) degradation and

fibroblast-like synoviocytes (FLS) senescence. Sang et al. found that

METTL3 overexpression regulated TIMPs and MMPs expression

affecting the inflammatory response and ECM degradation.71 Chen

et al. reported that the excessive METTL3 inhibits the autophagy of

FLS and promotes the expression of senescence-associated secre-

tory phenotype, leading to cellular senescence and OA progres-

sion.59 New study found that FTO are also abnormally expressed in

OA. FTO is significantly downregulated in OA cartilage, affecting OA

progression by regulating lncRNA AC008.32

3 | ncRNA

NcRNAs are a class of RNAs that have no protein-coding ability, com-

pose about 98% of mammalian genome72 and are previously called

transcriptional noise.73 In recent years, studies reported that ncRNAs

are involved in complex gene transcriptional regulation, such as RNA

splicing, processing, editing and translation.74 NcRNAs can be divided

into two categories in accordance with the regulatory roles. The first

category is housekeeping ncRNAs, including ribosomal (rRNAs),

F IGURE 1 The composition and mechanism of m6A RNA methylation. The process of m6A methylation is dynamic and reversible and
involves three molecular compositions: m6A methyltransferases (writers), m6A demethylases (erasers) and m6A recognition factors (readers).
m6A RNA modification is highly conserved and is involved in regulating various complex RNA bioprocesse, such as RNA splicing, processing,

translation and degradation
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transfer (tRNAs), small nuclear (snRNAs), small nucleolar (snoRNAs)

and telomerase RNAs, which are necessary for cell viability. The sec-

ond category is regulatory ncRNAs, which can be further divided into

small ncRNAs (< 200 nucleotides nt, include miRNAs, siRNAs and

piRNAs) and lncRNAs (> 200 nt). CircRNAs belongs to the two classi-

fications because of their variable length and are involved in regulat-

ing transcription and translation processes.75 Currently, the most

concerned ncRNAs are miRNAs, lncRNAs and circRNAs.

MiRNAs are short ncRNAs with length of 22–23 nt and are pre-

dominantly expressed endogenously. MiRNAs can target a third of all

human genes, and mRNAs are the main target genes.76 In most

instances, miRNAs bind to the 30UTR and act as negative regulators,

inhibiting mRNA expression and translation at the post-transcriptional

level and promoting mRNA degradation.77 LncRNAs (more than

200 nt) are newly identified ncRNA with a large number78 and are

key regulators of RNA transcription, splicing, and translation.77

CircRNAs are novel endogenous ncRNAs that are approximately

500 nt long and have a stable and conserved unique and closed circu-

lar structure.79 Thus, circRNAs are considered as ideal biomarkers.

Multiple miRNA complementary binding sites are present on

circRNAs. circRNAs interact with miRNA participating in transcrip-

tional and post-transcriptional regulation, which is the main biological

function of circRNAs.80,81

As key regulators of gene expression, the role of dysregulation

ncRNAs in pathophysiological processes of MSDs has been reported

gradually. Numerous studies reported that ncRNAs miRNAs, lncRNAs,

and circRNAs are aberrantly expressed in IDD,82 OP,83 OS84 and

OA.85 In IDD, the differentially expressed ncRNAs are involved in reg-

ulating cell apoptosis and proliferation, ECM degeneration and inflam-

mation. miR-338-3p,86 miR-27a87 and miR-133a-5p88 are upregulated

in IDD tissues, and target SIRT6, FSTL1 and FBXO6, respectively, par-

ticipating in regulating NP cell apoptosis, proliferation and ECM syn-

thesis. The downregulated miR-181a,89 miR-62390 and miR-874-3p91

are related to inflammatory response and ECM degradation. CircRNAs

circRNA_104670,92 circ-4099,93 circVMA21,94 circ-GRB1095 and

circSEMA4B96 are involved in cell proliferation and apoptosis of

NP. LncRNAs HOTAIR97 and LINC0095898 are highly expressed and

positively correlated with the severity of IDD, act as promoters of NP

cell apoptosis and accelerate disease progression. In OP, the differen-

tially expressed ncRNAs regulate osteoblasts and osteoclast differen-

tiation. miRNA-433-3p99 and miRNA-139-5p100 and circRNAs

CDR1as101 and circRNA_0016624102 can promote osteoblast differ-

entiation via targeting DKK1, NOTCH1, GDF5 and BMP2, respec-

tively. For osteoclast differentiation, miR-125a-5p can promote

osteoclast differentiation by inhibiting the expression of the down-

stream target gene TNFRSF1B.103 The lncRNA Bmncr regulates Acp5,

Ctr and MMP9 expression levels and inhibits osteoclast differentia-

tion, thus slowing the progression of OP.104 CircRNA_28313 induces

osteoclast differentiation by circRNA_28313/miR-195a/CSF1 net-

work.105 In OS, the differentially expressed ncRNAs play vital roles in

OS cell apoptosis, invasion, growth and migration. The downregulated

miR-193a-3p targets Rab27B and SRR inhibiting the migration and

invasion of OS cells.106 The lncRNA TTN-AS1 is upregulated in OS,

promotes cell viability and suppresses apoptosis via the miR-134-5p/

MBTD1 axis.107 The highly expressed circ_0001658 sponges miR-

382-5p to regulate the expression level of the downstream gene

YB-1, thereby facilitating the proliferation, invasion and migration of

OS cells.108 In OA, the differentially expressed ncRNAs participate in

regulating chondrocyte proliferation, apoptosis, ECM degradation and

inflammation. The overexpressed miR-384-5p can suppress chondro-

cyte apoptosis and facilitate chondrocyte proliferation by SOX9 and

the NF-κB signalling pathway.109 The lncRNA PVT1 can target miR-

149110 and miR-488-3P,111 thus promoting chondrocyte apoptosis,

ECM degradation and inflammatory response. circRNA.33186 and cir-

cSERPINE2 are overexpressed in OA, circRNA.33186 binds to miR-

127-5p and upregulates MMP13 expression, thereby accelerating OA

progression.112 CircSERPINE2 targets miR-1271-5p and plays an

important role in regulating proliferation, apoptosis and anabolism of

ECM.113

4 | INTERPLAY BETWEEN m6A AND
ncRNA

Many m6A modification sites exist in ncRNAs (including miRNAs,

lncRNAs, circRNAs, rRNAs, snoRNAs and snRNAs).13,23,114,115 m6A

can highly modify ncRNAs, which can regulate the expression and

function of m6A-related proteins.116 The mutual regulation between

m6A and ncRNAs is involved in regulating the biological processes of

many diseases.23,46

4.1 | Mutual regulation between miRNA and m6A

Abundant miRNA target sites are found in 30UTRs where m6A is

highly enriched, confirming the strong correlation between m6A and

miRNA.13 A series of studies indicated that m6A modification regu-

lates miRNA processing, splicing and maturation. DGCR8 is the key

participant in the biosynthesis of miRNAs. In the nucleus, DGCR8

breaks down primary miRNA (pri-miRNA) and converts it into pre-

cursor miRNA (pre-miRNA).117 In the cytoplasm, Dicer cleaves pre-

miRNA into single-stranded miRNAs.118 METTL3 acts as an RNA

marker that promotes the initiation of miRNA biogenesis by DGCR8

and Dicer. METTL3 accelerates pri-miRNA processing and matura-

tion via promoting the integration between DGCR8 and pri-

miRNA119 and improves miRNA splicing by the pre-miRNA Dicer

cleavage.120 Similar to METTL3, METTL14 can interact with DGCR8

and accelerate pri-miRNA processing.121 ALARCÓN and his col-

leagues identified that the m6A reader HNRNPA2B1 can interact

with DGCR8 to activate pre-miRNA processing. Furthermore,

Alarc�on et al. found that HNRNPA2B1 can combine with nuclear

transcripts and induce alternative splicing as METTL3, but the spe-

cific regulatory mechanism remains unclear.52 Notably, m6A methyl-

ation can negatively regulate miRNA biosynthesis. The knockdown

of the m6A eraser FTO reduces the state levels of almost all methyl-

ated miRNAs.122 However, the expression level of pri-miRNAs is not
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changed, and the negative regulation of m6A on miRNA is still

unknown and needs further study.

In the classical miRNA regulatory mechanisms, miRNAs interact

with downstream target mRNA via complementary base pairing and

participate in the negative regulation of mRNA degradation and trans-

lation.123 Research demonstrated that m6A-related proteins can act

as downstream target genes and can be regulated directly by miRNAs.

The 30UTR of METTL3 mRNA is directly targeted by miR-33a, thereby

F IGURE 2 Legend on next page.
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restraining non-small-cell lung carcinoma cell proliferation.124 miR-

145 can target the 30UTR of YTHDF2 mRNA and regulate m6A levels

in hepatocellular carcinoma.125 Furthermore, miRNA plays a negative

role in inhibiting the translation of m6A-related protein-encoding

genes. miR-96 can block m6A modification, increase the expression of

m6A eraser FTO and facilitate the c-myc proto-oncogene (MYC)

expression involved in colorectal cancer (CRC) cell proliferation and

apoptosis.126

In conclusion, the mutual regulation between m6A and miRNA

involves two parts. On the one hand, m6A modification accelerates

pri-miRNA processing and maturation via promoting the integration

between DGCR8 and pri-miRNA and improves miRNA splicing by

pre-miRNA Dicer cleavage. On the other hand, miRNA targets the

30UTR of m6A mRNA and negatively regulates m6A abundance

(Figure 2A).

4.2 | Mutual regulation between lncRNA and m6A

Similar to mRNA, m6A peaks are enriched in lncRNA,127 and m6A res-

idues are preferentially localized in lncRNA transcripts.46 Recently, the

interaction between m6A and lncRNA has been studied extensively.

m6A is related to the stability and degradation of lncRNA. Ban and his

colleagues reported that m6A METTL3 and METTL14 improve the

stability of lncRNA LNCAROD in head and neck squamous cell carci-

nomas.128 Ni et al. found that the m6A reader YTHDF3 selectively

binds to lncRNA GAS5 and leads to GAS5 degradation in CRC.129

m6A regulates lncRNAs in two ways. (1) m6A modification affects the

RNA–protein interaction. LncRNA metastasis-associated lung adeno-

carcinoma transcript 1 (MALAT1) is located in the nucleus and binds

to various splicing regulators, such as serine/arginine proteins and

participates in the alternative splicing of pre-mRNAs.130 New evi-

dence indicated that the m6A located in MALAT1 can increase the

accessibility of the U5-tract via altering a local change in structure of

mRNA, thereby facilitating the combination of MALAT with HNRNPC

and regulating the transcriptome-wide mRNA abundance and alterna-

tive splicing finally.131 This regulatory mechanism is also known as

m6A-switches, which are associated with mRNA splicing, maturation

and transcription.132 (2) m6A modification affects the RNA–RNA

interaction. The vital regulatory mechanism of lncRNA is that lncRNAs

bind to miRNAs by the competitive endogenous RNA (ceRNA)

network.133 Research demonstrated that m6A can regulate the func-

tion of lncRNA via the same mechanism and acts as a positive media-

tor modulating the lncRNA–miRNA interaction by the ceRNA

network.134 For example, linc1281 is embryonic stem cell (ESC)-

specific RNA and is abundant in mouse ESCs, and m6A modification is

highly enriched in the last exon of linc1281.115 Yang et al. revealed

that the m6A writer METTL3 promotes linc1281 methylation, medi-

ates linc1281 binding to let-7 miRNAs by the ceRNA network and

regulates the expression of the downstream target gene Lin28,

thereby regulating ESC differentiation.115

The regulatory role of lncRNAs on m6A methylation has been

gradually revealed. LncRNAs can modulate the function and expres-

sion of m6A-related proteins and is involved in the pathophysiological

process of many diseases. Wang et al. found that the knockdown of

lncRNA LINRIS decreases the expression of the m6A reader IGF2BP2

and suppresses the downstream effects of IGF2BP2, thereby regulat-

ing the proliferation of CRC.135 The m6A eraser ALKBH5 is involved

in lncRNA-mediated m6A modification. The lncRNA GAS5-AS1 regu-

lates the expression of GAS5 by interaction with ALKBH5. Further-

more, m6A-mediated GAS5 RNA degradation is closely related to the

YTHDF2-dependent pathway.136 The lncRNA LNC942 can recruit the

m6A writer METTL14 directly and regulate the expression of down-

stream targets by post-transcriptional m6A modification, thereby par-

ticipating in the initiation and progression of breast cancer.137

In conclusion, the mutual regulation between m6A and lncRNA

predominantly involves two parts. On the one hand, m6A modification

affects the RNA–protein and the RNA–RNA interactions by the

ceRNA network. On the other hand, lncRNAs modulate the function

and expression of m6A-related proteins (Figure 2B).

4.3 | Mutual regulation between circRNA and m6A

In addition to miRNAs and lncRNAs, circRNAs can be modified by

m6A.114 m6A-circRNAs methylation has some unique characteristics

that are significantly different from mRNA methylation. m6A-circRNA

modification is frequently modified in exons, and circRNAs modified

by m6A are highly specific to cell. m6A modification can regulate

circRNA cytoplasmic export, translation and degradation.114 Chen

et al. reported that YTHDC1 can bind to the circRNA circNSUN2 at

the exon 5–exon 4 junction site and play roles in modulating

F IGURE 2 Mutual regulation between m6A and ncRNAs. (A) Mutual regulation between miRNA and m6A. m6A is enriched in miRNA 30UTRs
and regulates miRNA processing, degradation and translation. METTL3, METTL14 and HNRNPA2B1 accelerate pri-miRNA processing in the
nucleus by DGCR8 and drosha. MiRNA targets METTL3 and YTHDF2 that regulate mRNA degradation and translation. (B) Mutual regulation
between lncRNA and m6A. m6A modification affects the interactions of RNA–protein and RNA–RNA by the ceRNA network. LncRNA MALAT

combines with HNRNPC regulating transcriptome-wide mRNA abundance and alternative splicing. METTL3 promotes lncRNA linc1281
methylation and mediates linc1281 binding to miRNA let-7, regulating ESC differentiation. LncRNA can regulate the expression and function of
m6A-related proteins METTL14, YTHDF2 and IGF2BP2. (C) Mutual regulation between circRNA and m6A. m6A-circRNA modification is modified
in exons, YTHDC1 binds to circRNA at the exon 5–exon 4 junction site modulating circRNA cytoplasmic export. METTL3, METTL14 and
YTHDF3 initiate circRNA protein translation and reversed by FTO. (D) Mutual regulation between rRNA/snRNA and m6A. ZCCHC4 regulated
m6A4220 modification in 28S rRNA involving in mRNA translation, and METTL5 modulated FBXW7 translation efficiency in 18S rRNA A1832.
METTL16 is located in U6 snRNA 50UTR and modulates pre-mRNAs splicing
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circNSUN2 cytoplasmic export in an m6A-dependent manner.138

m6A modification can drive translation initiation and regulate the

translation efficiency by m6A level. Yang et al. revealed that m6A pro-

motes circRNA protein translation in a cap-independent fashion via

the internal ribosomal entry site pathway. The translation process is

driven by METTL3 and METTL14, reversed by FTO and initiated by

YTHDF3.55 No functional enrichment is detected even though these

circRNAs are enhanced. Increasing studies are needed to explain the

translation mechanisms. circRNA is stable and conserved because of

its closed circular structure. However, a study found that circRNA can

be degraded by the m6A reader YTHDF2 via the endoribonucleolytic

cleavage pathway.139 The RNase P/MRP (endoribonucleases) is a key

enzyme that initiates circRNA cleavage. circRNA interacts with

YTHDF2 and is downregulated by the RNase P/MRP in a heat-

responsive protein12 (HRSP12)-dependent manner. Notably, HRSP12

predominantly acts as adaptor protein in the process of circRNA

cleavage. HRSP12 combines YTHDF2 and RNase P/MRP to improve

the efficiency of endoribonucleolytic cleavage.140

Studies on the regulation of m6A by circRNA are few. Huang

et al. reported the functional link of ALKBH5 and circSTAG1 in major

depressive disorder (MDD). ALKBH5 and circSTAG1 are down-

regulated in MDD mouse. Overexpressed circSTAG1 can bind with

ALKBH5 and reduce the translocation of ALKBH5 into the nucleus,

facilitate fatty acid amide hydrolase methylation and ameliorate

depressive-like behaviours.141 In MSD, studies on the regulation of

m6A by circRNA are not available and may be the direction for future

research (Figure 2C).

4.4 | Mutual regulation between rRNA/snRNA
and m6A

Other ncRNAs, such as rRNA and snRNA, can also be modified by m6A

methylation.142 Research demonstrated that m6A modification is found

on human 28S and 18S rRNAs,143,144 but the enzyme responsible for

rRNA m6A methylation is still unclear. A recent study has found that

ZCCHC4 is identified as the m6A4220 enzyme involved in the deposi-

tion of human 28S rRNA and regulation of mRNA translation.145

ZCCHC4 is localized in nucleolus; ZCCHC4 knockout inhibited

m6A4220 modification in 28S rRNA and reduced mRNA transla-

tion.145,146 METTL5 is the m6A methyltransferase responsible for the

18S rRNA. METTL5 methylated 18S rRNA A1832 and regulated the

translation efficiency of F-box and WD repeat domain-containing

7 (FBXW7).147 Different from conventional m6A RNA methyl-

transferase, METTL5 must bind to TRMT112 to form a stable

heterodimeric complex, thereby forming m6A1832 in 18S rRNA.148

Post-transcriptional modifications on snRNA are also demonstrated.

Studies confirmed that m6A modification is on position 43 located in

the evolutionarily conserved U6 sequence48 and A43 base pairs with 50

splice sites of pre-mRNAs during splicing.149 METTL16 is the methyl-

transferase for the U6 spliceosomal snRNA participating in the regula-

tion of splicing.149 Another study found that METTL16 regulates

methionine adenosyltransferase 2A expression in humans by enhancing

intron-preserving splicing when SAM is lacking48 (Figure 2D). Overall,

although m6A methylation has been found in a variety of ncRNAs, the

biological functions and regulatory roles in diseases are still poorly

understood. More research is needed in the future.

5 | INTERPLAY BETWEEN m6A AND
ncRNA IN MUSCULOSKELETAL BIOLOGY

The musculoskeletal system includes bones and skeletal muscles.

Bone loss and sarcopenia are the main clinical manifestations of

MSD.150 In recent years, the role of ncRNA m6A modification in mus-

culoskeletal system has been gradually discovered.

5.1 | Mutual regulation between m6A and ncRNA
in bone

Bone is an important motor organ of human body and is the basis of

human movement. Bone is characterized by continuous regeneration

and remodelling throughout life to maintain and repair bone during

homoeostasis and injury.151 The process of bone regeneration and

remodelling involves two stages, i.e., bone formation and resorp-

tion.152 Bone formation is predominantly mediated by osteoblasts,

which are key factors in matrix synthesis and bone mineralization.

Bone resorption is mediated by osteoclasts whose primary function is

the removal of bone mass.153 Bone formation and resorption are in a

dynamic balance, and osteoblasts interact with osteoclasts to maintain

stable bone mass.152 When the bone homoeostasis is upset, it can

lead to a range of diseases, such as RA,154 OP155 and OA.156 The

maintenance of bone homoeostasis depends on the differentiation

potential of BMSCs.157 BMSCs are pluripotent nonhaematopoietic

stem cell population that can differentiate into chondrocytes, adipo-

cytes, osteocytes, osteoblasts and myoblasts, ultimately generating

bone, cartilage and fat tissues.158 Therefore, the role of BMSCs in

bone and cartilage development and repair has gained attention.

New evidence indicated that ncRNA m6A modification is closely

associated with BMSC osteogenic differentiation.159,160 The mecha-

nism is that miRNA directly targets m6A demethylase FTO and regu-

lates BMSC osteogenic differentiation. Li et al. found that miR-

149-3p is overexpressed in the osteoblastic differentiation period,

and FTO is the direct target of miR-149-3p. Upregulated miR-149-3p

significantly downregulates FTO mRNA expression and promotes the

osteogenic differentiation of BMSCs.159 Zhang and his colleagues

reported that miR-22-3p is a positive regulator of osteogenic differen-

tiation and can increase RUNX2, osteocalcin and osteopontin expres-

sion levels during BMSC osteogenic differentiation. Furthermore,

upregulated miR-22-3p targets FTO and negatively regulates FTO

methylation via the MYC/PI3K/AKT pathway, accelerating osteogenic

differentiation.160 Similar to FTO, METTL3 can promote osteogenic

differentiation by regulating ncRNA. Song et al. revealed that METTL3

is upregulated in human adipose-derived stem cells (hASCs). As osteo-

genesis promotor, METTL3 targets lncRNA RP11-44 N12.5 and
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regulates the RP11-44 N12.5 m6A modification by activating the

STK3/MAPK signalling pathway, thereby promoting hASC osteogenic

differentiation.28 However, another study found that METTL3 acts as

an inhibitor of osteogenic processes. METTL3 inhibits miR-7212-5p

maturation by the METTL3/miR-7212-5p/FGFR3 axis, restraining

osteoblast differentiation.161 Notably, a recent study has found that

METTL3 can regulate lncRNA–miRNA–mRNA axis to promote osteo-

genic differentiation. Yuan et al. found that lncRNA XIST negatively

regulates miR-302a-3p expression and that ubiquitin-specific pepti-

dase 8 (USP8) is the target gene of miR-302a-3p. METTL3 promotes

the ossification of primary ligament fibroblasts by the XIST/miR-

302a3p/USP8 axis.162 The main mechanism of lncRNAs is that

lncRNAs act as miRNAs sponge competitively binding to miRNAs and

inhabiting miRNA expression.163 However, in this study, whether

lncRNA acts as miRNA sponge is not clear.

The m6A-circRNA methylation is also associated with osteoclast

differentiation and bone resorption. Wang et al. revealed multiple

potential m6A sites in circ_0008542–9, and METTL3 and ALKBH5

can regulate circ_0008542–9 m6A methylation levels. In RAW264.7

cells, the exosome circ_0008542 competitively binds to miRNA-

185-5p acting as miRNA sponge and enhances the expression of the

target Tnfrsf11a (RANK), thereby promoting osteoclast differentiation

and bone resorption. The m6A methylase METTL3 can promote the

competitive binding of circ_0008542 to miRNA-185-5p and lead to

the initiation of osteoclast bone absorption by the circ_0008542/

miRNA-185-5p/RANK axis. The process that METTL3 regulates the

binding efficiency between circRNA and miRNA and changes the spa-

tial structure of circ_0008542 by circRNA m6A functional site is called

“m6A-switch”.29 The “m6A-switch” is the regulation mechanism of

RNA–protein interactions by m6A-dependent RNA structural

F IGURE 3 Interplay between m6A and ncRNA in bone and skeletal muscle. ncRNA m6A methylation in bone (A), skeletal muscle (B) and
cartilage (C)
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remodelling.132 Currently, studies on m6A ncRNA methylation related

to “m6A-switch” are few and may be the direction for future research

(Figure 3A and Table 1).

In addition to bone formation and resorption, the m6A modifica-

tions of ncRNA is involved in regulating cartilage function. Xiao et al.

found that METTL3 and miR-126-5p are upregulated in endplate cho-

ndrocytes induced by IL-1β and that METTL3 regulates the expression

of miR-126-5p and downstream target phosphatidylinositol-3-kinase

regulatory subunit 2 (PIK3R2) by the PI3K/Akt pathway, leading to

dysfunctional cell vitality and metabolism and accelerating the degen-

eration of endplate chondrocytes164 (Figure 3C and Table 1).

5.2 | Mutual regulation between m6A and ncRNA
in skeletal muscle

The skeletal muscle is an important functional organ in the human

body, accounting for about 30%–40% of the body weight, and plays a

key role in human metabolism, endocrine system and voluntary move-

ment.165 Skeletal muscle is composed of multinucleated muscle fibres,

and mononucleated myoblasts fuse together in longitudinal arrays to

form mature muscle fibres.166 The skeletal muscle has regenerative

capacity. When the muscle is injured, muscle satellite cells, which are

muscle stem cells, are activated, thus multiplying and differentiating

into myoblasts. These myoblasts move to the injured area and fuse

with damaged muscle fibres to promote muscle formation, growth and

repair.166,167 However, the dysregulation of proliferation and differenti-

ation of muscle cells during myogenesis lead to impaired skeletal mus-

cle function, causing a range of MSDs.168 The in-depth exploration of

skeletal muscle functional mechanism is important for understanding

the pathophysiological basis and diagnosis and treatment of MSD.

The functional regulation of ncRNA and m6A methylation in skel-

etal muscle development, differentiation and maintenance of muscle

homoeostasis has been reported widely.169,170 New evidence indi-

cated that muscle-specific ncRNAs are regulated by m6A RNA modifi-

cation at the post-transcriptional level.30,171 Diao et al. found that

TABLE 1 Interplay between m6A and ncRNA in bone and skeletal muscle

m6A

component Expression ncRNA Expression Interplay Pathway Function References

Bone/osteogenic differentiation

METTL3 Up lncRNA

RP11-44 N12.5

Up METTL3

regulate

RP11-44 N12.5

METTL3/

RP11-44 N12.5/

STK3/MAPK

Enhancing osteogenic

differentiation of

hASCs

[28]

METTL3 Down miRNA

miR-7212-5p

Down METTL3 target

miR-7212-5p

METTL3/miR-

7212-5p/FGFR3

Inhibiting osteogenic

differentiation

[161]

METTL3 Up lncRNA

XIST

Up METTL3

regulate

lncRNA XIST

XIST/miR-302a-

3p/

USP8

Enhancing osteogenic

differentiation of

fibroblasts

[162]

FTO Down miRNA

miR-149-3p

Up miR-149-3p

target

FTO

miR-149-3p/FTO Inhibiting the adipogenic

differentiation of

BMSCs

[159]

FTO Up miRNA

miR-22-3p

Down miR-22-3p

target

FTO

miR-22-3p/FTO/

MYC/PI3K/AKT

Promoting osteogenic

differentiation

[160]

Bone/osteoclast differentiation

METTL3

ALKBH5

circRNA

circ_0008542

– METTL3/

ALKBH5

regulate

circ_0008542

METTL3/

circ_0008542/

miRNA-185-5p/

RANK

Initiating osteoclast bone

absorption

[29]

Cartilage

METTL3 Up miRNA

miR-126-5p

Up METTL3

regulate

miR-126-5p

METTL3/miR-

126-5p/PI3K/

Akt

Accelerating the

degeneration of

endplate chondrocytes

[164]

Skeletal muscle

METTL3 Up miRNAs

miR-1a/miR-

133a/miR-

133b/miR-206

Down METTL3

regulate

miRNAs

METTL3/miRNAs Repressing the muscle-

specific miRNAs

expression

[30]

METTL3 Down lncRNA

Brip1os

Down METTL3

regulate

Brip1os

METTL3/Brip1os/

Tbx2

Promoting skeletal

muscle development

[171]
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pri-miRNA sequences are significantly enriched in conserved m6A

modification motifs. The m6A writer METTL3 is overexpressed in

muscle injury and regeneration mouse model, whereas muscle-specific

miRNAs miR-1a, miR-133a, miR-133b and miR-206 are down-

regulated. METTL3 can inhibit the expression levels of these miRNAs

by the m6A modification of pri-miRNAs. Furthermore, METTL3 acts

as negative regulator in myoblast state transition and represses

muscle-specific miRNA expression, thereby reducing the differentia-

tion of C2C12 myoblasts.30 In addition to miRNA, lncRNA is regulated

by METTL3 in the differentiation of C2C12 myoblasts. Xie et al.

detected abundant differentially expressed lncRNAs and m6A met-

hyltransferases and demethylases during C2C12 differentiation. m6A

motifs are significantly enriched in lncRNA, and m6A methylation

levels are positively correlated with m6A-modified lncRNAs. In the

process of muscle tissue development, m6A methylates lncRNAs and

regulates the expression of nearby mRNAs. The lncRNA Brip1os and

m6A methyltransferase METTL3 are downregulated, whereas Brip1os

near the mRNA Tbx2 is upregulated. METTL3 regulates skeletal mus-

cle development by the METTL3/Brip1os/Tbx2 axis.171 These studies

showed that METTL3 regulates muscle-specific ncRNAs via the post-

transcriptional level, playing an important role in skeletal muscle

differentiation and development. METTL3 can also modulate muscle-

specific miRNAs via the transcriptional level. A study found that

METTL3 directly regulates muscle cell differentiation-related tran-

scription factors (i.e., MEF2A, MEF2C and SRF) and epigenetic regula-

tors (i.e., HDAC1, HDAC4 and HDAC8) repressing the expression

level of miRNAs.30 Overall, these studies revealed crosstalk between

m6A and ncRNA during skeletal muscle differentiation and develop-

ment, providing new insights into ncRNA m6A modification in skeletal

muscle and MSD (Figure 3B and Table 1).

6 | INTERPLAY BETWEEN m6A AND
ncRNA IN MSDs

MSDs affect muscle, bone, cartilage and joint, causing human body's

movement and musculoskeletal dysfunctions.172 However, cellular

and molecular mechanisms remain unclear. The mutual regulation

between m6A and ncRNA is found in MSD, and m6A modification can

regulate ncRNAs, which ncRNAs can also target m6A regulators to

influence MSD pathological and physiological processes.

6.1 | Mutual regulation between m6A and ncRNA
in IDD

IDD is a common MSD that is identified to be the main cause of lower

back pain and affects 18.3%–30.8% of the global population.173,174

The intervertebral disc consists of NP and annulus fibrosus and is

located between the upper and lower vertebrae. As a major compo-

nent of intervertebral disc, abnormal functions of NP cell are the main

pathogenesis of IDD.175 New evidence indicated that ncRNA m6A

modification plays vital roles in regulating the function of NP

cell.31,63,176 The regulatory mechanism between m6A and lncRNAs is

that m6A acts as a positive mediator modulating the lncRNA–miRNA

interaction by the ceRNA network. Wang et al. found 261 lncRNAs

with significantly differential m6A methylation levels in NP of IDD by

epitranscriptomic microarray analysis. The RNA methylation regulator

zinc-finger protein 217 (ZFP217) and m6A demethylase FTO are

upregulated in IDD, and ZFP217 can activate FTO transcription and

accelerate lncRNA m6A demethylation. The demethylated lncRNA

LOC102555094 regulates GSK-3β expression by binding to miR-431,

regulating glucose metabolism of NP cells and accelerating disc

degeneration.176 Furthermore, the mutual regulation between m6A

and miRNA is found in NP cells, and m6A can regulate the m6A modi-

fication of miRNA. The m6A modification accelerates pri-miRNA

processing via promoting the integration between DGCR8 and pri-

miRNA. Zhu et al. reported that METTL14 methylation and miR-34a-

5p expression are increased in the NP tissues of patients with IDD.

METTL14 facilitates the pri-miR-34a processing via regulating the rec-

ognition and binding of DGCR8 and pri-miR-34a. SIRT1 is the down-

stream target of miR-34a-5p, and METTL14 promotes miR-34a-5p

methylation by targeting SIRT1 facilitating NP cell senescence.31

Notably, miRNA can target the 30UTR of m6A mRNA and negatively

regulates m6A abundance in NP cells. Yuan et al. found that the over-

expressed METTL14 is inhibited by human umbilical cord mesenchy-

mal stem cell (hucMSC) exosomes. NLRP3 is the downstream target

of METTL14, and hucMSC-secreted exosomal miR-26a-5p directly

degrades METTL14 inhibiting NP cell pyroptosis via the METTL14/

NLRP3 inflammatory pathway.63 Overall, these studies showed the

evidence of the interaction between ncRNA (lncRNA and miRNA) and

m6A in the IDD pathophysiological process, providing a new direction

for further study (Figure 4A and Table 2).

6.2 | Mutual regulation between m6A and ncRNA
in OS

OS is a common primary malignant bone tumour that predominantly

affects long bones. OS occurs mostly in children and adolescents and

ranks fifth among those aged 15 to 19 years.177 OS is characterized

by the abnormal differentiation of mesenchymal stem cells, forming

immature bone and osteoid by tumour cells and erosion of bony cor-

tex.178 OS attacks the musculoskeletal system, causing joint pain,

swelling, muscle atrophy, joint dysfunction and even pathological frac-

ture.179 OS has a high degree of heterogeneity and significant genome

complexity, and the pathophysiology remains unclear.180 The mutual

regulation between m6A and miRNA/circRNA/lncRNA is found in OS

and is involved in the growth, migration, invasion of tumour cells,

tumorigenesis and tumour progression.34,37,181 The major mutual reg-

ulation mechanism between miRNA and m6A in OA is that m6A accel-

erates pri-miRNA processing and maturation. Yuan et al. reported that

the m6A demethylase ALKBH5 is downregulated, and m6A methyla-

tion is substantially increased in OS cells/tissues. Pre-miR-181b-1 is a

potential target of ALKBH5. ALKBH5 methylates pre-miR-181b-1 and

accelerates pre-miRNA maturation in the cytosol. ALKBH5 acts as an
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antitumour factor that inhibits osteosarcoma cell growth, migration

and invasion by dual mechanisms. On the one hand, ALKBH5 directly

targets the Yes-associated protein (YAP) m6A methylation, inhibiting

its mRNA stability and translation. On the other hand, ALKBH5

upregulates miR-181b-5p and inhibits the downstream target YAP

involved in the development and progression of OS.34 The mutual reg-

ulation between circRNA and m6A is also found in OS, and circRNA

m6A modification regulates the development of OA by the circRNA–

miRNA–mRNA network. Meng et al. detected that METTL3 and

circNRIP1 are upregulated in OS cells/tissues, and circNRIP1 can pro-

mote forkhead box protein C2 (FOXC2) expression by sponging miRNA

miR-199a. METTL3 contributes to circNRIP1 m6A modification,

promoting cell proliferation and apoptosis by the circNRIP1/miR-199a/

FOXC2 axis.37 The regulatory mechanism between m6A and lncRNAs

in OS is that m6A modification regulates the stability and degradation

of lncRNA. LncRNA PVT1, DANCR, m6A demethylase ALKBH5 and

methyltransferase METTL3 are upregulated in OS, and lncRNA PVT1

can associate with ALKBH5, suppressing PVT1 degradation and facili-

tating PVT1 stability. ALKBH5 promotes OS cell proliferation and

tumour growth partially by the ALKBH5–PVT1 axis.35 METTL3 can

increase lncRNA DANCR mRNA stability by m6A modification, contrib-

uting to OS cell proliferation, migration and invasion.181 Other m6A-

related lncRNAs are associated with OS. Zhang et al. analysed OS gene

expression profiles and identified 111 m6A-related lncRNAs, which are

F IGURE 4 The interplay between m6A and ncRNA in MSD. ncRNA m6A methylation in IDD (A), OS (B), OP (C) and OA (D)
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closely associated with the prognosis of OS.182 In summary, the ncRNA

m6A modification plays vital roles in OS pathophysiology, and the in-

depth exploration of new m6A-related ncRNAs in OS may be a promis-

ing direction (Figure 4B and Table 2).

6.3 | Mutual regulation between m6A and ncRNA
in OP

OP is a chronic metabolic bone disease that is characterized by bone

loss and impaired bone tissue microstructure and bone strength,

resulting in increased bone fragility and fracture. OP has become a

major global health problem.183 The imbalance of bone homoeostasis

is the pathogenesis of OP, which is manifested as increased osteo-

clast bone resorption and decreased osteoblast bone formation.184

Promoting BMSC osteogenic differentiation and remodelling bone

homoeostasis is the main treatment methods for OP.185 Growing

evidence showed that ncRNA m6A modification plays vital roles in

regulating BMSC osteogenic differentiation; ncRNA and m6A are

potential target for OP.33,36,186 In BMSCs, METTL3 targets the

miRNA that regulates osteogenic differentiation. Yan and his col-

leagues found that METTL3 is a pro-osteogenic factor and is

TABLE 2 The interplay between m6A and ncRNA in MSD

m6A

component Expression ncRNA Expression Interplay Pathway Function References

IDD

ZFP217

FTO

Up lncRNA

LOC102555094

Down ZFP217

regulate

LOC102555094

ZFP217/

LOC102555094/

miR-431/GSK-

3β/Wnt

Regulating glucose

metabolism of NP cells

[176]

METTL14 Up miRNA

miR-34a-5p

Up METTL14

target

miR-34a-5p

METTL14/

miR-34a-5p/SIRT1

Facilitating senescence of

NP cells

[31]

METTL14 Up miRNA

miR-26a-5p

– miR-26a-5p

target

METTL14

miR-26a-5p/

METTL14/

NLRP3

Inhibiting pyroptosis of

NP cells

[63]

OS

ALKBH5 Down miRNA

miR-181b-5p

Down ALKBH5 target

miR-181b-5p

ALKBH5/miR-

181b-5p/YAP

Inhibiting growth,

migration and invasion

of OS cells

[34]

METTL3 Up circRNA

circNRIP1

Up METTL3

regulate

circNRIP1

METTL3/

circNRIP1/

miR-199a/FOXC2

Promoting proliferation,

migration and

apoptosis of OS cells

[37]

ALKBH5 Up lncRNA

PVT1

Up ALKBH5 target

PVT1

ALKBH5/PVT1 Promoting OS cells

proliferation and

tumour growth

[35]

METTL3 Up lncRNA

DANCR

Up METTL3

regulate

DANCR

METTL3/DANCR Promoting proliferation,

migration and invasion

of OS cells

[181]

OP

METTL3 Down miRNA

miR-320

Down METTL3

regulate

miR-320

METTL3/miR-320/

RUNX2

Facilitating BMSCs

osteogenic

differentiation and

bone formation

[33]

METTL3 Down lncRNA

LINC00657

Down METTL3

regulate

LINC00657

METTL3/

LINC00657/

miR-144-3p/

BMPR1B

Facilitating BMSCs

osteogenic

differentiation

[187]

METTL14 Down miRNA

miR-103-3p

Up miR-103-3p

target

METTL14

miR-103-3p/

METTL14

Restraining osteoblast

proliferation,

differentiation and

matrix mineralization

[36]

OA

FTO Down lncRNA

AC008

Up FTO regulate

AC008

FTO/AC008/miR-

328-3p-AQP1/

ANKH

Accelerate chondrocyte

apoptosis and ECM

degradation

[32]
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downregulated in the bone tissue of patients with OP. METTL3 can

methylate pre-miR-320 in the nucleus and regulate pre-miR-320

maturation in the cytosol. METTL3 downregulates miR-320 and

upregulates the downstream target gene RUNX2, inhibiting BMSC

osteogenic differentiation and bone formation.33 MiRNA can directly

target m6A methyltransferase to inhibit osteoblast activity function-

ally. Sun et al. reported that miR-103-3p acts as negative regulator

restraining osteoblast proliferation and matrix mineralization. miR-

103-3p is upregulated in the bone tissue of OP and negatively regu-

lates METTL14 m6A methylation, thereby inhibiting osteoblast

activity. In addition, METTL14 can regulate pri-miR-103-3p

processing via promoting DGCR8 and pri-miR-103-3p recognition.36

The mutual regulation between m6A and lncRNA is also found in

OP. m6A regulates the function of lncRNA via the ceRNA network

participating in BMSC osteogenic differentiation. METTL3 is down-

regulated in OP. LncRNA LINC00657 can compete to bind to miR-

144-3p and target bone morphogenetic protein receptor B 1 (BMPRB1).

METTL3 facilitates BMSC osteogenic differentiation via the

LINC00657/miR-144-3p/BMPR1B axis in OP.187 In addition to miRNA

and lncRNA, other ncRNAs, such as piRNA, can be m6A methylated in

OP. piRNA m6A modification is involved in osteoblast differentiation.

piR-36741 binds to METTL3 and impedes METTL3-mediated BMP2

m6A methylation that upregulates the BMP2 expression, thereby pro-

moting BMSC osteogenic differentiation and inhibiting OP progres-

sion.186 Overall, existing studies illustrated that the mutual regulation

between METTL3/METTL14 and miRNA/lncRNA/piRNA plays critical

roles in OP by regulating BMSC osteogenic differentiation, which may

be potential target for OP (Figure 4C and Table 2).

6.4 | Mutual regulation between m6A and ncRNA
in OA

OA is the most common degenerative joint disease affecting 10%–

18% of people over 60 years of age and is a major source of pain and

disability worldwide.188 The main pathological manifestations are

articular cartilage degeneration, subchondral ossification, synovial

inflammation and systemic inflammation.189 OA is a complex disease

that affects the entire joint, and its exact pathogenesis is still unclear.

The role of ncRNAs in the pathogenesis of OA has been extensively

studied. ncRNA is differentially expressed in articular cartilage and

plays vital roles in chondrocyte proliferation, apoptosis, ECM degrada-

tion and inflammation.190,191 New evidence demonstrated that

ncRNA m6A modification is also associated with the pathogenesis of

OA, and m6A can regulate RNA stability and ncRNA expression.32

Yang et al. detected that lncRNA AC008 is a key regulator of OA, and

AC008 can accelerate chondrocyte apoptosis and ECM degradation

and inhibit chondrocyte viability by the miR-328-3p-AQP1/ANKH

axis. The m6A demethylase FTO is found to be highly enriched in

AC008 sequence from chondrocytes, and the overexpressed FTO

decreases the m6A level of AC008 and its RNA stability. By contrast,

the low FTO improves AC008 RNA stability and upregulates AC008

expression in OA.32 This work is the first to study the interaction

between ncRNA and m6A in OA, and more studies are needed to dis-

cover more ncRNA m6A modification of OA (Figure 4D and Table 2).

7 | CONCLUSION AND PERSPECTIVES

m6A is the most common internal modification of mRNAs in eukaryotic

species, and ncRNA is the major component of the human genome and

participates in the regulation of multiple biological processes. The roles

of m6A methylation and ncRNA in human diseases have been exten-

sively studied.192,193 NcRNA and m6A methylation participate in the

pathophysiological process of various human diseases and regulate

the occurrence and development of diseases.194,195 Recently, with the

rapid development of bioinformatics analysis and gene sequencing

technology, an increasing number of m6A modification sites are identi-

fied in ncRNAs, and ncRNA m6A modification has become a research

hotspot and attracted wide attention.

m6A interacts with numerous ncRNAs, modulates multiple biolog-

ical processes and plays important roles in MSDs, such as IDD, OP,

OS and OA. The m6A-related protein (writers/erasers/readers) can

regulate ncRNAs participating in RNA processing, splicing, translation,

maturation, RNA–protein interactions and RNA–RNA interactions.

Moreover, m6A modifications are regulated by numerous ncRNAs

(miRNAs/lncRNAs/circRNAs). NcRNAs regulate the interactions

between m6A-related protein and downstream target mRNA nascent

transcripts and control target mRNA degradation, translation and

expression.77 Studies confirmed that some m6A-related proteins in

ncRNA are abnormally expressed and participate in the occurrence

and development of musculoskeletal diseases by modulating the

homoeostasis of skeletal muscle, bone and cartilage.32,187 However,

the regulatory mechanism of ncRNA m6A modification is still unclear.

Furthermore, studies mostly focused on the modification of miRNAs

and lncRNAs by m6A writers (METTL3/METTL14) and erasers

(ALKBH5/FTO), and studies on circRNAs and other m6A-related pro-

tein are few. Thus, further research is needed.

Musculoskeletal diseases are a class of inflammatory and degen-

erative diseases affecting muscle, bone, cartilage and joint and are the

leading cause of disability worldwide. However, effective treatments

and drugs are not available at present.25 Numerous m6A-modified

ncRNAs, which have been found abnormally expressed in musculo-

skeletal diseases and participate in the pathophysiological process of

diseases, may be promising potential therapeutic targets for diseases.

In IDD, hucMSCs deliver exogenous miR-26a-5p, which can directly

target METTL14 that improves the viability of NP cells and inhibits

IDD progression by METTL14/NLRP3 pathways.63 Exosomes are

small extracellular vesicles that can transfer cargos to reprogramme

recipient cells primarily by miRNAs.196 Exosomes have been exten-

sively studied in the treatment of tumours through a m6A-dependent

manner,197 but studies on musculoskeletal diseases are few. This

study provides theoretical support for the application of exosomes in

the clinical treatment of musculoskeletal diseases, and exosomes

targeting m6A-related proteins may be a promising therapeutic direc-

tion for musculoskeletal diseases.
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Overall, studies on the mutual regulation between m6A and

ncRNA provide a new perspective for studying the pathophysiological

mechanism of musculoskeletal diseases. With more in-depth studies,

more ncRNA m6A molecular regulatory mechanisms will be uncov-

ered, and targeting m6A-modified ncRNAs may be a promising ther-

apy approach.
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