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Abstract

Exome sequencing (ES) in the clinical setting of inborn metabolic diseases

(IMDs) has created tremendous improvement in achieving an accurate and

timely molecular diagnosis for a greater number of patients, but it still

leaves the majority of patients without a diagnosis. In parallel, (personal-

ized) treatment strategies are increasingly available, but this requires the

availability of a molecular diagnosis. IMDs comprise an expanding field

with the ongoing identification of novel disease genes and the recognition

of multiple inheritance patterns, mosaicism, variable penetrance, and

expressivity for known disease genes. The analysis of trio ES is preferred

over singleton ES as information on the allelic origin (paternal, maternal,

“de novo”) reduces the number of variants that require interpretation. All

ES data and interpretation strategies should be exploited including CNV

and mitochondrial DNA analysis. The constant advancements in available

techniques and knowledge necessitate the close exchange of clinicians and

molecular geneticists about genotypes and phenotypes, as well as knowl-

edge of the challenges and pitfalls of ES to initiate proper further diagnostic

steps. Functional analyses (transcriptomics, proteomics, and metabolomics)

can be applied to characterize and validate the impact of identified variants,

or to guide the genomic search for a diagnosis in unsolved cases. Future

diagnostic techniques (genome sequencing [GS], optical genome mapping,

long-read sequencing, and epigenetic profiling) will further enhance the

diagnostic yield. We provide an overview of the challenges and limitations

inherent to ES followed by an outline of solutions and a clinical checklist,

focused on establishing a diagnosis to eventually achieve (personalized)

treatment.

KEYWORD S

diagnostic yield, exome-negative, exome sequencing, genome sequencing, inborn metabolic
disease, treatment

Synopsis
We provide an overview of the challenges and limitations inherent to exome
sequencing, followed by an outline of solutions and a clinical checklist,
focused on establishing a diagnosis to eventually achieve (personalized) treat-
ment in exome-negative patients.

1 | INTRODUCTION

Although each rare genetic disease (RGD) affects a small
number of individuals, collectively they affect about 1%
of all live births representing an important global disease

burden. The total number of RGDs is still to be deter-
mined. Currently, OMIM (www.omim.org) lists 6281
disease-gene associations, of which 1629 are inborn meta-
bolic disease (IMD)s (www.iembase.org) (accession date
08.01.2022).
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Over the past 10 years, achieving an accurate and
timely molecular diagnosis in the clinical setting of RGD
has seen tremendous improvement with a prominent role
for whole-exome sequencing (ES; Figure 1). This also
influenced the definition of IMDs. The presence of an
abnormal metabolite is no longer a prerequisite for a dis-
ease to be labeled as an IMD. Classification of a disorder
as an IMD requires only that impairment of specific
enzymes or biochemical pathways is intrinsic to the
pathomechanism.10

In parallel, the development of personalized treat-
ment options for RGD, and especially IMDs, has
gained significant momentum. Both in vitro and
in vivo studies increasingly identify treatment targets
for a growing number of disorders, paving the way for
(personalized) treatment opportunities either based on
the pathomechanism (e.g., nutritional interventions)
or aiming to directly target the genetic defect
itself.11–18 Assuming that treatment early in the course
improves outcome, a timely diagnosis is key. Given the
absence of known biomarkers in many recently molec-
ularly defined RGD/IMDs, genetic (newborn) screen-
ing is the only way to the diagnosis.19 Digital
knowledgebases such as Treatabolome and Treatable
ID (www.treatable-id.org) aim to shorten the path to
therapy, by providing (digital) access to treatment
information for specific genes, variants, or (groups of)
disorders.20–22 Treatment response has even been
suggested as an addition to the American College of
Medical Genetic (ACMG) criteria for variant
interpretation.23

Here, we provide a diagnostic strategic outline for
those patients with (suspected) RGD/IMDs in which ES
did not provide a diagnosis (ES-negative) to optimize the
diagnostic yield, and thus therapeutic potential. We will
focus on clinical presentations as neurodevelopmental
disorders (NDDs)/intellectual disability, epilepsy, and
movement disorders.

2 | ES SUCCESS: CURRENT
CLINICAL PRACTICE

Whereas data is generated for all protein-coding
sequences, interpretation strategies are often divided into
a targeted interpretation strategy first based on (rare) var-
iants in genes with an established association to the dis-
ease (virtual panel) or when investigating all known
gene-disease associations listed in OMIM (clinical
exome). Subsequently, an exome-wide analysis allows the
identification of variants in candidate disease-genes with-
out prior disease association. Accordingly, clinicians are
no longer limited to sequencing data of only one gene at
a time, but have access to data from the coding regions of
virtually all genes allowing a comprehensive diagnostic
strategy and making ES the first-tier diagnostic tool for
RGD/IMDs.1,24–26

2.1 | Analysis of copy number variation
and mitochondrial DNA

Although the annotation of point mutations (SNVs) and
small insertions or deletions (indels) from ES data is stan-
dard, the annotation of copy number variation (CNV) is
not. CNVs are a prevalent source of genetic variation that
has been implicated in many genomic disorders,27,28

resulting in the widespread application of genomic
microarrays as a first-tier diagnostic tool for CNV detec-
tion. More recently, it has been shown that the majority
(88%) of disease-relevant CNVs (>3 exons) can be
detected in short-read ES data via read-depth
analysis.29–32 Moreover, in a cohort unselected for cytoge-
netic abnormalities, CNV analysis from ES outperformed
chromosomal micro-arrays when applied as a second-line
test.33 One has to bear in mind that genomic microarrays,
single nucleotide polymorphism (SNP) chips, multiplex
ligation-dependent probe amplification (MLPA), and

FIGURE 1 Median diagnostic yield

of next-generation sequencing for

different groups of rare genetic

neurological disease. The bars display data

from multiple studies (“n” is the total
number of individuals) showing the range

in diagnostic yields in light gray and the

mean with a red line.1–9
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other technologies are superior for detecting certain types
of CNVs.

The full potential of ES is often not exploited as the
additional analysis of “off-target reads” (alternatively
beads-based enrichment of mtDNA) deriving from the
mtDNA can be used to analyze both, nuclear and mito-
chondrial, genomes. Additional analysis of the mtDNA
in existing ES data has been shown to increase the diag-
nostic yield by nearly 2% in an IMD cohort. It showed a
high concordance (96.2%) and excellent precision
(99.5%) when compared to the gold standard of targeted
mtDNA next-generation sequencing and is thus of suffi-
cient quality for clinical diagnostics.34 One should, how-
ever, be aware of the tissue specificity of mtDNA
alterations, and thus consider additional (targeted) next-
generation sequencing preferably in an affected tissue.
Furthermore, mtDNA deletion(s) are usually not picked
up by ES using DNA from blood since the proportion of
deleted mtDNA is often too low. Again, in specific cases,
ES cannot replace current techniques and this should be
kept in mind.

3 | CHALLENGES AND
LIMITATIONS OF ES AND
MITIGATION STRATEGIES

3.1 | Data sharing and collaboration

The Matchmaker exchange network connects the data
from six matchmaking initiatives (GeneMatcher, DECI-
PHER, PhenomeCentral, seqr, MyGene2, IRUD).35–40

This creates a collective data set containing over 150 000
cases from more than 11 000 contributors for sharing of
molecular and clinical data to establish gene-disease asso-
ciations for “newly” defined RGD.41 It is difficult to quan-
tify the success that can be attributed to these initiatives;
however, the number of matches (e.g., in 2019, 56% of
gene entries in GeneMatcher had at least one match) and
publications (e.g., in 2019, GeneMatcher was cited by
267 publications of which 77% were novel disease gene
discoveries) facilitated by these platforms show their
importance in gene discovery.

3.2 | The need for continuous data (re)
analysis and (reverse) phenotyping

Data interpretation is a continuously evolving discipline;
with increased access to sequencing, requiring less clini-
cal preselection, milder presentations of diseases are
uncovered giving rise to the realization that all diseases
have a phenotypic spectrum rather than one “classic”

phenotype. Variants should not be discarded just because
single disease-feature are absent or unusual features are
present. A detailed family history and collection of medi-
cal data from other (similarly) affected family members
can be of added value. Disease manifestations may
emerge or disappear over time and may not be present
when an individual is investigated at a single time point
during the course of the disease. The term “reverse
phenotyping” (re-evaluating the clinical findings of the
individual in light of a potential pathogenic genotype)
illustrates the ongoing urgency of exchange between the
diagnostic laboratory and the referring physician.

Reanalysis of ES data 1–3 years after the initial analy-
sis may increase the diagnostic yield by 3%–15% and
should make use of both the updated “phenotypical”
input, as well as, the “genotypic” knowledge to be most
successful.42–45 At initial analysis, there may have been
insufficient evidence for candidate variants or gene cau-
sality (Box 1).

3.3 | When reanalysis is not enough:
when to consider a new ES?

The diagnostic yield is in part a result of the continuous
development of bioinformatic tools to analyze and inter-
pret ES data and constant updates of variant databases.
At the same time, it is important to be aware of the data
quality and completeness (coverage of the entire coding
region of [clinically relevant] genes, as well as, sufficient
read depth for the covered regions), especially of older ES
data. For example, the Agilent V4 exome enrichment
platform captured 89% of annotated genes on average
while its follow-up version V5 captured 95%.50 As will be
discussed later, genome sequencing (GS) data are gener-
ated enrichment-free and this aspect can overcome the
limitation of ES in sufficiently covering coding exons,
especially GC-rich regions, as well as in characterizing
structural variants. Depending on local resources, both a
new ES on an up-to-date exome enrichment platform or
ideally GS should be considered in a ES-negative case
after reanalysis.

4 | DISCOVERING VARIANTS
FROM ES DATA (BOX 2)

4.1 | Multiple inheritance models

The three most common patterns of Mendelian inheri-
tance are: autosomal dominant (AD), autosomal recessive
(AR), and X-linked. The mode of inheritance for human
diseases can, however, be more complex (Figure 2). An
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increasing number of genes are identified that can be
associated with an AD, as well as, an AR disorder and
the co-occurrence of different modes of inheritance is not
restricted to a specific type of protein or clinical pheno-
type (Table S1). Hence, it is within reason to expect that
this phenomenon is to be uncovered for more disease
genes. This is another factor complicating the variant
interpretation and emphasizes the importance of reverse
phenotyping and need to continue the search for con-
firmative biomarkers and functional (biochemical)
assays, especially for potentially treatable conditions.

The availability of ES data from multiple family mem-
bers, parents (trio-ES), or (affected) siblings, facilitates
better interpretation of variants. For example, trio-ES
provides immediate data on the allelic origin of the vari-
ant and will allow for the detection of de novo variants
(variants that are not inherited from either parent).51 In
addition, deep phenotyping data next to ES of multiple
family members allow for accurate segregation analysis
and aid in figuring out complex modes of inheritance.52

Standardization of phenotypic terms (e.g., Human

Phenotype Ontology [HPO]) is important to utilize
phenotyping to its best, for example, when comparing
patients from different institutes.53 However, it needs to
be reminded that when parents are only mildly affected
and not recognized as affected individuals, inherited
genetic variants will be filtered out in AD inherited disor-
ders and therefore lost in analysis. Similarly, when a vari-
ant occurs as a mosaic in one of the parents, the analysis
should be adapted accordingly (Box 2).

4.2 | X-linked disorders

X-inactivation is a well-established, physiological, dosage
compensation mechanism ensuring that X-chromosomal
genes are expressed at comparable levels in males and
females.92 The phenotypic range in XL-disorders is broad.
Certain XL-disorders are incompatible with life in males
and therefore only affected females are seen, while others
present with more severely affected males compared to
females. In addition, the onset of disease in females can be

BOX 1 Online resources

- The American College of Medical Genetics (ACMG) standards and guidelines for the interpretation of
sequence variants': consists of five classes (benign, likely benign, variant of uncertain significance [VUS],
likely pathogenic or pathogenic), and lists functional tests as an important factor in variant interpretation.46

In line with the increasing pathomechanism-based treatment options, we suggested to integrate “response to
treatment” into the variant interpretation.31 An online tool for variant interpretation with individual adjust-
ment can be found at https://wintervar.wglab.org/).47

- The ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/) annually curates >10 000 disease variants.
- The Genome Aggregation Database (gnomAD, www.gnomad.org) contains the genomic data of more than
140 000 genomic data sets of “healthy/unaffected” individuals.48,49

- GeneMatcher (www.genematcher.org) is a matchmaking initiative where researchers interested in the same
gene can get in touch. Numerous examples of successful matchmaking for identifying rare genetic disease
can be found on the website listing > 400 publications referencing to this initiative.

- GeneReviews (https://www.ncbi.nlm.nih.gov/books/NBK1116/) comprehensively provide clinically relevant
and medically actionable information (diagnosis, management, and genetic counseling) in a standardized for-
mat focused on the clinician (>800 chapters available).

- Genome Aggregation Database (gnomAD, www.gnomad.org): genomic data of more than 140 000 genomic
datasets of healthy individuals. This database allows better interpretation of variants, especially when in-
house databases are small.

- The Leiden Open Variation Database (LOVD, www.lovd.nl) includes gene- and patient-centered data con-
taining >690 000 disease variants. This database allows better interpretation of variants, especially when in-
house databases are small.

- Online Mendelian Inheritance in Man (OMIM, www.omim.org) is the comprehensive, authoritative compen-
dium of human genes and genetic phenotypes.

- Varsome (https://varsome.com/) is a variant knowledge community, data aggregator, and variant data dis-
covery tool.
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(much) later in life and hence mothers of severely affected
males can be without medical concerns at the time of
ES. In some cases, skewed X-inactivation can occur,

meaning that the X-inactivation of one X-chromosome
is favored over the other (here: the X chromosome
with the mutation), and explain the phenomena seen.

FIGURE 2 Legend on next page.
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4.3 | Mosaicism

De novo pathogenic variants (DNMs) can occur during
gametogenesis, as well as, the post-zygotic phase
resulting in mosaicism (Figure 2B). Post-zygotic variants
(PZMs) leading to disease often occur during early
embryogenesis in the first 15 mitotic divisions.93 Mosaic
variants may be inherited from a parent (gonadal or
somatic mosaic) or can arise in the child, which influ-
ences the recurrence risk and is therefore important to
know for adequate counseling.94,95 In an epilepsy disor-
der cohort 3.5% of the molecular diagnoses could be
attributed to pathogenic mosaic variants and a study of
4293 patients with NDD showed that mosaicism was pre-
sent in 40 cases, of which in 16 the variant was of paren-
tal origin and in 24 cases had occurred de novo in the
child.96,97 Upon detection or suspicion of a mosaic vari-
ant in the affected individual, it is important to perform
sensitive testing in the parents to determine their genetic
profile as this will affect counseling. The recurrence risk
that parents have in a new pregnancy can roughly be
divided into three groups. A moderate to high risk of up
to 50% in case of parent-PZM (�1%–2% of DNM)
depending on the level of parental mosaicism. Low risk,
1%, when gonadal mosaicism is at play (�95% of DNM)
and a negligible risk when the DNM occurs in the child
(�3% of DNM).97 Post-zygotic de novo events in the child
(child-PZM) that result in mosaicism may contribute to
the variable expressivity of single-gene disorders through
gene-dose effect or by acting in addition with other (epi)
genetic factors.

Somatic pathogenic variants, already known to be
involved in cancer development, may also play a role in
neurodevelopmental diseases, especially in patients with
brain malformations.98,99 Pathogenic somatic DNM

affecting the brain may remain undetected in ES when
the gene is not expressed in blood and require sequencing
of other tissues, for example, fibroblasts or buccal swabs.
Furthermore, the detection of mosaicism, in general,
requires deep sequencing (preferably >100� coverage)
which is not always achieved by ES. In addition, the anal-
ysis strategy must be adapted to enable the detection of
low-level variants.

4.4 | Variable penetrance and
expressivity

“Penetrance” of a monogenic disorder describes the condi-
tional probability that an individual carrying a pathogenic
variant manifests the disease phenotype (Figure 2C). If this
probability does not equal 100% within a specific age
range, the disorder displays incomplete penetrance.
Hence, some AD disorders occasionally appear to skip a
generation, meaning that individuals carrying a patho-
genic variant do not express the disease phenotype
(asymptomatic carriers) but can transmit the mutant allele
to the offspring (reviewed in Mangrinelli et al.100). It
should be borne in mind that when using trio-ES analysis,
these variants can be missed. AR, XL, and mtDNA-linked
disorders can also exhibit incomplete penetrance. Among
others, age, gender, and ethnicity are drivers of incomplete
penetrance in certain diseases. Although it goes beyond
the scope of this article, we would like to alert that for
mtDNA-related issues like heteroplasmy, threshold and
the chosen tissue have to be taken into account as well.

“Expressivity” is the extent to which a given genotype
is expressed at the phenotypic level (Figure 2C). When
the same genetic variant is expressed, it can show quanti-
tatively different effects among distinct individuals, even

FIGURE 2 Example pedigrees explaining different inheritance patterns. (A) Recessive inheritance models. Compound heterozygosity:

the parents each carry a different variant in the same gene. The child receives the variant carrying allele from each parent and is affected.

Consanguinity: the parents are related and carry the same heterozygous variant. XL-recessive inheritance: females are carriers of the

pathogenic trait while males are affected. (B) Gonadal mosaicism: variant occurs in gonadal cells of a healthy parent and the pathogenic

variant is transmitted to the child. Parent-post-zygotic variant (PZM): the PZM occurs during the embryonic stage of the parent resulting in

both gametes and somatic cells (soma) to carry the pathogenic variant, which is transmitted to the affected child. Child-PZM: the variant

occurs during embryogenesis of the child and results in multiple mosaic tissues. Somatic mosaicism: the pathogenic variant occurs post-

zygotically at a later stage during development affecting a single or limited number of tissues. (C) Complex inheritance models. Incomplete

penetrance: all individuals in the family carry the pathogenic variant, but not all individuals manifest the disease phenotype. Variable

expressivity: all individuals in the family carry the pathogenic variant, but the expression of the phenotype is variable. Multiple diseases

recessive: both parents are heterozygous carriers of two pathogenic variants that are associated with two distinct disease phenotypes. Both

pathogenic variants are transmitted to the child who presents the two distinct disorders. Multiple diseases dominant: both parents manifest a

dominant disease and transmit the variant allele to the child who presents two distinct disorders. Pathogenic variant (m). Pathogenic variant

on chromosome X (Xm). (D) Uniparental disomy. Complete isodisomy occurs when both copies of the chromosome originate from one

parent and none from the other parent. Segmental isodisomy is when only a segment of the chromosome originates from one parent and the

rest of the chromosome has two origins, one from mother and one from father. Heterodisomy refers to the situation in which both homologs

from one parent are inherited by the child.
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among members of the same family (intrafamilial vari-
ability). Variable expressivity is recognized in monogenic
disorders with all patterns of inheritance and represents
a major contributor to phenotypic heterogeneity.101

Finally, genetic modifiers may play a role not only in
the severity of the disease, but also in whether a carrier

will manifest the disease.102 These modifiers usually seg-
regate independently from the disease-causing variant,
and are currently investigated for several inherited dis-
eases to better understand the disease pathophysiology
(and will need to be included in the diagnostics of spe-
cific genes in the future).

BOX 2 Illustrative examples of complex genomics in IMD

3.1 Multiple inheritance models:

- disorders of organelle biogenesis, dynamics, and interactions (OPA154 and OPA355,56); disorders of complex I
subunits and assembly factors (DNAJC3057); disorders of mtDNA replication and maintenance (TWNK58,59), other
disorders of mitochondrial function (AFG3L2,60–62 CLPB,63,64 and ATAD3A65); disorders of organelle interplay
(EMC166); disorders of mitochondrial and peroxisomal dynamics (GDAP167,68); disorders of the synaptic vesicle
cycle (PRRT269 and KIF1A70,71); disorders of non-mitochondrial tRNA processing and aminoacyl-tRNA synthe-
tases (NSUN272); and disorders of carbohydrate transmembrane transport and absorption (GLUT173).

3.2 X-linked IMDs:
- disorders of pyruvate metabolism (PDHA174); disorders of mitochondrial membrane biogenesis and remo-
deling (TAZ75); disorders of peroxisomal fatty acid oxidation (ABCD176); and disorders of sphingolipid degrada-
tion (GLA77), urea cycle disorders and inherited hyperammonemias (OTC78).

3.3 Mosaicism:
- disorders of mitochondrial metabolite repair (IDH1, IDH279); disorders of sphingolipid degradation (GLA80),
urea cycle disorders, and inherited hyperammonemias (OTC81); disorders of carbohydrate transmembrane
transport and absorption (GLUT182); and disorders of niacin and NAD metabolism (NAXD83).

3.4 Variable penetrance and expressivity (reviewed in ref.84):
- general: copper-transporting ATPase subunit beta deficiency (ATP7B), mtDNA-related disorders (heter-
oplasmy, threshold), gender-related penetrance: disorders of tetrahydrobiopterin metabolism (GCH1), age-
related penetrance: disorders of the synaptic vesicle cycle (LRRK2), ethnicity related penetrance: disorders of
the synaptic vesicle cycle (LRRK2).

3.5 Multiple diseases in one individual or one family:
- disorders of phenylalanine and tyrosine metabolism (PAH) and disorders of glycogen metabolism (SLC37A4)
(personal experience), disorders of glycolysis (PCK1), and disorders of glutamate (GRIN2B).85

4.1 Intronic, regulatory and splice-site variants (reviewed in ref.86):
- exon skipping: disorders of mitochondrial fatty acid oxidation (ACADM), disorders of mitochondrial nucleo-
tide pool maintenance (MPV17), gamma-aminobutyric acid neurotransmitter disorders (SSADH), disorders of
sphingolipid degradation (GLA), and disorders of mitochondrial membrane biogenesis and remodeling
(SERAC1).
- poisonous exon: disorders of complex I subunits and assembly factors (TIMMDC187).

4.2 Complex DNA rearrangements:
- short tandem repeat expansion: disorders of glutamate/glutamine and aspartate/asparagine metabolism (GLS88).

6. Epigenetics:
- compound epigenetic-genetic heterozygosity: disorders of cobalamin metabolism (MMACHC/PRDX1, “epi-
CLBc”).89

- uniparental disomy (UPD): disorders of glycerolipid metabolism (ABHD590)*, disorders of amino acid trans-
port (SLC7A791).*

(*in both cases, UPD led to homozygosity of a variant found in heterozygous state in parents, not to an epige-
netic effect).
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4.5 | Multiple diseases in one individual
or one family

It may not always be clear whether there is one or multi-
ple (hereditary) diseases running in one family or, even
more complicated, in one individual (Figure 2C). The
occurrence of multiple genetic diagnoses underlying a rare
disease phenotype in an individual is estimated about 5%
and most often occurs in consanguineous families.52,103 To
maximize the chance of identifying multiple genetic diag-
noses and their underlying molecular defects, ES should
be extended to more family members beyond trio-ES. One
should not forget that family members may be hesitant to
participate, fearing an unexpected genetic diagnosis espe-
cially in the absence of medical complaints. A diagnosis of
multiple disorders obviously has implications for genetic
counseling and patient management. Also, it is essential
for our insights into rare diseases: blended phenotypes
caused by multiple disorders should not be mistaken for
an extended phenotype caused by a single disorder. In
addition, patients may develop more common disorders
during life, such as type II diabetes or cancer, that are not
directly related to their genetic disorders.

4.6 | Digenic disease/synergistic
heterozygosity, polygenic risk scores

Different inheritance models, such as digenic disease and
synergistic heterozygosity, are being explored in which not
a single gene, but variants in multiple genes are causative
for a genetic disorder in an individual.104,105 Furthermore,
the genetic burden (amount of genetic variants in disease-
associated genes) that individuals carry can be expressed
in a so-called polygenic risk score.106 The exact role that
these models play in the origin of RGDs/IMDs is still
under investigation and not yet ready for diagnostic care.

5 | TECHNICAL LIMITATIONS
OF ES

5.1 | Intronic, regulatory, and splice site
variants

Roughly 1%–2% of our DNA is protein-coding and
referred to as the exome. The majority of disease-causing
variants that we currently know are located in this
“small” coding section of our DNA. The remainder is
called non-coding DNA which consists of intergenic
(between genes) and intronic (between the exons of a
gene) DNA. The exact function of most of the non-coding
DNA remains to be elucidated, however, for certain

evolutionary conserved regions, that is, promotor sites,
(non) canonical splice sites, untranslated regions (UTRs),
and long non-coding RNAs (lncRNA), the importance in
causing disease has been shown.84,107,108

The essential role of UTRs and introns in gene regu-
lation, and thereby disease association, is becoming
more apparent. Variants in the splice site regions (�3
bases and +8 bases of each exon) are known to often
cause aberrant transcripts. Moreover, in recent years the
essential role of UTRs and deep-intronic sequences in
gene regulation has become evident.109 Deep-intronic
variants, as well as, variants in the UTR can influence
gene regulation by affecting the binding site for regula-
tory proteins or by altering the gene transcript. Such
variants can, for example, introduce a new start codon
in the 50 UTR or cause the inclusion of a pseudoexon
that can in turn lead to an out-of-frame transcript that
may be dysfunctional (Figure S1).84 A recent publication
showed the significant contribution of pathogenic vari-
ants in the 50 UTR region of MEF2C, emphasizing the
importance of screening the 50 UTR of disease-relevant
genes.108 Another element that should be
considered during genome analysis are variants sur-
rounding the naturally occurring poison exons, which
are exons that contain a termination codon and cause
degradation of the transcript via nonsense-mediated
decay when included. Several publications have now
shown the impact of poison exons in NDD.110 Further-
more, intergenic DNA contains non-protein-coding
DNA but sequences important for transcriptional and
translational regulation of protein-coding sequences
(e.g., enhancers) and can encode for RNA genes.111

These RNA genes in turn play a role in transcriptional
and translational processes (Figure S1). More and more
examples arise showing the pathogenic effect of variants
in non-protein-coding DNA on human biology.112,113

During embryogenesis, precise gene transcription in
space and time requires that distal enhancers and pro-
moters communicate by physical proximity within gene
regulatory landscapes. To achieve this, regulatory land-
scapes fold in the nuclear space, creating complex 3D
structures that influence enhancer-promoter communi-
cation and gene expression and that, when disrupted,
can cause disease.114 RNA-sequencing aids in estimating
the effect of a variant on transcription, but each non-
coding DNA variant requires adequate functional test-
ing before a final molecular diagnosis can be made.

5.2 | Complex DNA rearrangements

Disease-causing variants are not limited to SNVs or
CNVs, but include structural variants (SVs) that can
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result in complex rearrangements of our DNA. SVs are
large genomic alterations that include DNA duplica-
tions, repeats, deletions, insertions, inversions, and
translocations. CNVs are a subtype of SVs that are not
addressed in this paragraph. Standard ES analysis is
based on short sequence reads that are aligned to the
best matching position in the reference genome. In
some cases, for example, in case of a translocation or a
transposable element, the mapped position does not
resemble the true genomic position in the patient.
Mobile or transposable elements are DNA sequences
that move around or change the number of copies in
the genome. Mobile elements can be inserted within a
gene, causing a frameshift, or nearby affecting splicing
or gene regulation.18 A switch from short-read
sequencing (SRS, 150–300 bp reads) to long-read
sequencing (LRS, >10 kb reads) allows for better
sequence mapping and therefore better SV detection,
including complex rearrangements and repetitive
sequences.115 A recent publication comparing SRS to LRS
showed that 80% of LRS SV calls were not identified by
SRS.116 Short-tandem repeats (STRs) are another type of
SV that are missed in ES analysis. STR variants and mobile
elements can also be detected by ES when specific bio-
informatic tools are used, which are not yet standard in
diagnostic settings.117,118 STR expansions are often associ-
ated with neurologic disease, for example, Fragile X syn-
drome, Huntington's disease and several hereditary
ataxias, and will likely be the underlying genetic
pathomechanism in subgroups of unsolved patients
(e.g., glutaminase deficiency119). Another suitable new
technique is optical genome mapping based on high-
resolution genome imaging instead of sequencing. In
short, long linear single DNA molecules are labeled at spe-
cific sites creating a whole-genome image of which patient
patterns can be compared to the expected labeling pattern
of the reference genome. This technique proves to be espe-
cially suitable for large and complex rearrangements
(>500 bp), and also shows high sensitivity to somatic SVs,
but can also detect STR expansions.120–122 This technique
is complementary to sequencing, and rather a potential
replacement of all cytogenetic technologies, such as
karyotyping, FISH and CNV-microarrays. Altogether, the
detection of SVs can be improved by moving from ES to
GS since inclusion of the non-coding parts will improve
sequence read mapping. However, important to note is
that GS files are considerably larger and contain more var-
iants that make the interpretation of the data more chal-
lenging. Currently, the analysis pipeline for GS data is
ready for clinical interpretation when it comes to the cod-
ing region of our DNA, but it will take time, research, and
experience to be able to clinically interpret the non-coding
region.

6 | THE ADDED VALUE OF
FUNCTIONAL DATA

6.1 | Transcriptomics (RNA-seq) and
proteomics

For the accurate interpretation of variants, DNA sequence
data alone may not always suffice. In some cases, trans-
criptomics is performed before or simultaneous with ES to
highlight those genes that show an aberrant transcription
profile.123 It is important to note that the choice of tissue used
for transcriptomic studies could impact the results as not all
genes are equally relevant and expressed in every
tissue.123,124

RNA analysis may also be used to study up- or down-
regulated genes or pathways just as proteomics can pro-
vide insights into protein interaction networks. The effect
of missense variants is not always straightforward as they
may lead to aberrant splicing, incorrect folding of the pro-
tein, or abnormal expression levels. The latter could be a
result of allelic expression imbalance (AEI), where the
mutant allele is higher expressed than the wildtype allele
causing a seemingly dominant presentation (heterozygous
variant) of a recessive disorder.88 ES (or preferably GS) to
identify intronic and regulatory variants, in combination
with quantitative RNA studies are required to detect AEI.
Again other techniques can aid in confirming pathogenic-
ity. It has been shown that additional RNA-seq can
enhance the diagnostic yield by 10%–16% compared to ES
alone and can be integrated at reasonable costs and turn-
around times.124,125 The diagnostic value of integrating
proteomic data with genomic, transcriptomic, and pheno-
typic data from 145 individuals has been shown in a study
on individuals suspected of having a mitochondrial dis-
ease and achieved genetic resolution of 21% in ES-negative
cases.126 Although RNA-seq still focuses on the genetic
level, additional functional analyses can help in variant
interpretation, especially for IMD. As for genetic analyses,
these -omics techniques rely on finding “outliers” and
need comparison with a control cohort of sufficient size.

6.2 | Metabolomics

Targeted metabolic screenings, covering a specific class of
metabolites such as amino acids, organic acids, or
acylcarnitines, have already been used for decades in diag-
nostics for IMD, providing a variant-transcending read-out
of biochemical function of a metabolic pathway. Currently,
untargeted metabolomics is replacing targeted metabolic
screening, moving from multiple targeted analyses per-
formed in parallel, to a “one-size-fits most” -omics approach
(Next Generation Metabolic Screening [NGMS]; validated
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for use in clinical diagnostics under ISO:15189 accredita-
tion).127,128 Furthermore, NGMS offers the possibility to find
novel biomarkers in (neuro) IMDs that in some cases have
been found to play an essential role in the pathophysiology
of the disease.87,129,130 Untargeted metabolomics holds the
potential to serve as a functional counterpart to ES data, as it
provides unbiased functional data that may not otherwise be
available from targeted biochemical assays.131–133 Besides
the additional functional evidence to determine the pathoge-
nicity of variant of unknown significance (VUS) in known
IMD genes, untargeted metabolomics may detect aberrant
metabolite profiles that highlight certain pathways and may
lead to the discovery of novel disease-gene associations
(Figure 3). This approach specifically helps to elucidate the
pathogenicity of variants in genes that encode for enzymes
or transporters. A recent study with 170 individuals pre-
senting predominantly with neurological symptoms showed
that metabolomics data contributed to the variant interpreta-
tion in 73 different IMD genes in 43% of investigated cases.134

Importantly, untargeted metabolomics can increase our
mechanistic understanding of the metabolic pathways
involved, as well as identify novel biomarkers and treatment
targets (Box 3). Until now, untargeted metabolomics has
mostly been applied to body fluid analysis and as such will
only evaluate metabolites that will be able to cross the cell
outer membrane. The technique surely will be able to gain
momentumwhen studieswill start targeting the intracellular
metabolome of various cell types.

6.3 | Other -omics

Although proteomics and metabolomics are quite univer-
sal approaches, the utility and yield of other -omics tech-
niques (e.g., lipidomics and glycomics)135,142,143 require
further evaluation. Fluxomics using stable isotope label-
ing, to study the flux of metabolites through a metabolic

pathways, is a relatively new technique.144 It has the
capacity to analyze entire metabolic pathways in vitro
and in vivo in a dynamic fashion, useful especially for
IMDs to delineate the reprogrammed metabolism due to
a specific enzymatic or other biochemical defect.145

In summary, (targeted) metabolomics, RNA-seq, and
proteomics are the most established -omics technologies
alongside ES/GS and “other -omics” have mainly been
used to validate or reject single candidate variants or to
study novel gene-disease phenotypes (Box 3). Evidence
for their utility in terms of pathophysiologic delineation,
prognostication, and therapeutic effect monitoring is
clearly emerging.146,147

7 | EPIGENETICS

Besides changes in the DNA sequence itself, epigenetic
changes can cause disease. Modifications of DNA or histones
regulate gene expression by remodeling the chromatin struc-
ture, making DNA accessible or inaccessible for the tran-
scriptional machinery. One of these so-called epigenetic
modifications is methylation of cytosines at CpG dinucleo-
tides in the DNA molecule. Methylation of the promoter
region of a gene is generally associated with gene silencing.
Epigenetic changes are thought to be caused by stochastic
errors in the establishment ormaintenance of the epigenome
or induced by underlying variations in DNA sequence.
Changes in methylation status of the DNA are not detect-
able by ES.

7.1 | Targeted or genome-wide analysis
of promoter methylation

The best known example of promoter hypermethylation
associated with gene silencing is Fragile X syndrome. A

FIGURE 3 Added value of genomics andmetabolomics data integration. Exome or genome sequencing (genomics) provides data on variants

found in the DNAof a patient, whereas targeted or untargetedmetabolomics provides data on aberrantmetabolites. The integration of both data sets

may aid in the interpretation of variants. For example, themetabolic profile of a patient showed an elevated level of substrate 1 and a decrease of

products 1 and 2, implicating that there is a defect in pathway one that in turn points to gene Awith a VUS. VUS, variant of unknown significance.
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repeat expansion in the promoter region of FRM1 causes
hypermethylation and loss of expression of that allele.139

A small number of other examples exist where methyla-
tion analysis revealed the disease-causing mechanism

while the underlying genetic defects (repeat expansions,
variants in non-coding regions, or in neighboring genes)
are usually not detected by ES. Methylation analysis,
either targeted or genome-wide, will detect these

FIGURE 4 Genomic stepwise checklist to solve exome negative neurological cases. This checklist can be used to standardize analysis

and interpretation methods to improve diagnostic care.
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epigenetic defects regardless of the underlying genetic
defect. Only few examples are known today. A study of
489 patients with NDD and congenital anomalies without
an identified cause showed an increase in de novo epige-
netic aberrations in patients compared to controls. Cau-
sality needs to be established, but this indicates that
epigenetic variations may play a substantial role in the
etiology of NDD.148 Recently “epi-cblC” has been
described as a first example of an IMD with compound
epigenetic-genetic heterozygosity. Affected individuals
are compound heterozygous for a genetic variant and an
epimutation at the MMACHC locus, which is secondary
to a splicing variant at the adjacent PRDX1 gene. Both
these variants cause aberrant antisense transcription and
cis-hypermethylation of the MMACHC gene promotor
with subsequent silencing.149

7.2 | Methylation status of imprinted
genes

Genomic imprinting describes the phenomenon that the
expression of a gene is dependent on the parental origin of
the gene. In humans, already 100 genes are known to be
subject to imprinting and are expressed only from the pater-
nal or the maternal allele. Imprinted genes tend to be orga-
nized in clusters under the control of imprinting centers.
These imprinting centers are differentially methylated, that
is, methylation is present only on one of the two alleles.
The most well-known clusters are those on 11p15, involved
in Beckwith–Wiedemann/Silver–Russel syndrome, and on
15q13, involved in Prader–Willi/Angelman syndrome. Dis-
turbances of imprinting result in overexpression or loss of
expression of imprinted genes. This can be due to loss of
one allele, uniparental disomy (UPD), or imprinting defects
(often primary epigenetic defects). UPD occurs when both

copies of a chromosome originate from one parent
(Figure 2D). This can involve the entire chromosome (com-
plete isodisomy or heterodisomy) or only a small segment
(segmental disomy). As a consequence, UPD may result in
aberrant dosage of genes regulated by genomic imprinting
or homozygosity of a recessive mutation (reviewed in150).
Targeted methylation analysis of imprinted regions to
detect imprinting disorders is usually done by methylation-
specific multiplex ligation-dependent probe amplification
(MLPA) assays, but can also be detected with genome-wide
methylation analysis.151,152

7.3 | Methylation signatures

In addition to methylation defects at specific loci, vari-
ants in genes encoding proteins involved in epigenetic
regulation may cause a broader, genome-wide aberrant
methylation profile. Patients with variants in such genes
exhibit DNA methylation “episignatures” that are detect-
able in peripheral blood and have shown to be highly
sensitive and specific for specific disorder.151,153 Cur-
rently, a characteristic methylation signature has been
recognized for over 40 syndromes, in association with
more than 60 genes. These signatures can be used as bio-
markers for ES-negative patients or for variant interpreta-
tion. Epigenetic profiling is available for diagnostic
care.152 From a cohort of 207 affected individuals, �28%
were positive for an episignature that supported the diag-
nosis of the associated syndrome. The number of identi-
fied disorder- or gene-specific epigenetic signatures is
growing rapidly, increasing the diagnostic power and
yield of this type of test.

In addition to genetic variations, environment may
impact the epigenome. Prenatal exposure to, for instance,
maternal smoking, alcohol consumption, or famine

BOX 3 IMDs characterized with support of -omics techniques

Transcriptomics: disorders of complex I subunits and assembly factors (TIMMDC187).

Metabolomics: disorders of sialic acid metabolism (NANS133), disorders of pyridoxine metabolism
(ALDH7A1135,136).

Glycomics: disorders of N-linked protein glycosylation (GFUS137).

Lipidomics: disorders of mitochondrial membrane biogenesis and remodeling (SERAC1138); disorders of phos-
phatidylcholine, phosphatidylserine, and phosphatidylethanolamine metabolism (PCYT2139); disorders of fatty
acyl synthesis, elongation, and recycling (ALDH3A2140); and disorders of peroxisomal fatty acid oxidation
(reviewed in ref.141).

Complexomics: other disorders of mitochondrial function (CLPB63).
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affects the health of the child and is associated with
changes in the genome-wide methylation profile.89,154,155

Especially fetal alcohol spectrum disorder, a non-
inherited mimicker of genetic NDD, seems to be associ-
ated with specific epigenetic profiles, which is promising
for future diagnostic use to discriminate between the two
disorders.156

7.4 | The genomic checklist

“The modern world has given us stupendous know-how.
Yet avoidable failures continue to plague us in health care
[…]—in almost every realm of organized activity. And the
reason is simple: the volume and complexity of knowledge
today has exceeded our ability as individuals to properly
deliver it to people—consistently, correctly, safely. We
train longer, specialize more, use ever-advancing technolo-
gies, and still we fail.”157 Atul Gawande makes this com-
pelling argument that we can do better, using the simplest
of methods: the checklist. For surgical safety and on inten-
sive care units, World Health Organization checklists have
been adopted worldwide as a standard for care, decreasing
errors and improving success.158–160 Analogous to these,
we propose the genomic checklist (Figure 4), with the goal
of standardizing analysis and interpretation methods, to
enhance diagnostic success as well as minimize delay and
costs.

8 | CONCLUSIONS

We have shown that a “negative” ES should not be con-
sidered the end of the road in the quest for a diagnosis in
patients suspected of having an RGD. Rather the con-
trary, there is more to explore still.
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