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The oncogene PI3Ka and the tumor suppressor PTEN represent two antagonistic enzymatic activities that
regulate the interconversion of the phosphoinositide lipids PI(4,5)P2 and PI(3,4,5)P3 in membranes. As
such, they are defining components of phosphoinositide-based cellular signaling and membrane traffick-
ing pathways that regulate cell survival, growth, and proliferation, and are often deregulated in cancer. In
this review, we highlight aspects of PI3Ka and PTEN interplay at the intersection of signaling and mem-
brane trafficking. We also discuss the mechanisms of PI3Ka- and PTEN- membrane interaction and cat-
alytic activation, which are fundamental for our understanding of the structural and allosteric
implications on signaling at the membrane interface and may aid current efforts in pharmacological tar-
geting of these proteins.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Eukaryotic cells are defined by the presence of a plasma mem-
brane (PM) and a complex endomembrane system. These membra-
nous compartments exhibit several distinct features that rely on
the compartmentalization of specific proteins and membrane
lipids and the net charge of the cytosolic face of the membrane
bilayer [1]. Amongst these features, relatively non-abundant phos-
pholipids such as phosphoinositides (PIPs) play an essential role in
regulating almost all aspects of cell physiology [2,3]. PIPs exhibit a
differential subcellular membrane localization, thereby providing a
unique PIP code to distinct membrane compartments [4]. These
PIP-based switches function as essential drivers of cellular signal-
ing and trafficking at the PM and endomembranes. Phosphatidyli-
nositol (4,5)-bisphosphate (PI(4,5)P2) and Phosphatidylinositol
(3,4,5)-trisphosphate (PI(3,4,5)P3), specifically, have long been
known as defining components of signaling pathways operating
under the control of growth factor and neurotransmitter receptors,
thus likely constituting the most widespread PIP switch for cellular
signaling and membrane trafficking in mammalian cells. One of the
major signaling cascades, the PTEN/PI3Ka/Akt pathway and more
specifically the antagonizing proteins Phosphatidylinositol-3-
kinase a (PI3Ka) and Phosphatase and tensin homolog (PTEN), reg-
ulate cell survival, growth, and proliferation by controlling the
interconversion between PI(4,5)P2 and PI(3,4,5)P3. In this review,
we will highlight the interplay between PI3Ka and PTEN in mem-
brane trafficking and signaling, with emphasis on the mechanisms
that regulate their membrane association.
2. Overview of PM activation of the PI3Ka/Akt/PTEN pathway

Both PI3Ka and PTEN are cytosolic proteins that interact tran-
siently with the PM and play pivotal roles in signaling. PI3Ks are
critical for initiating the protein kinase B (Akt)/mTOR signaling
pathway and play fundamental roles in cell proliferation, growth,
metabolism, motility, and intracellular trafficking. Thus, it is not
surprising that dysregulation of the PI3K/Akt/mTOR pathway leads
to various disorders, including cancer. Specifically, it is the most
frequently mutated signaling pathway in human cancer [5]. Phos-
phoinositide 3-kinases (PI3Ks) are divided into three distinct
classes, Class I, II and III. Class I PI3Ks are further classified into four
isoforms, a, b, c and d, which phosphorylate the hydroxyl group of
the inositol ring of phosphatidylinositols at the D-3 position to pro-
duce phosphatidylinositol PI(3,4,5)P3 from PI(4,5)P2 using ATP
(Table 1 for kinetic parameters). Class II PI3Ks, C2a, C2b, and C2c
do not produce PI(3,4,5)P3, but they primarily synthesize PI(3,4)
P2 with PI(4)P as substrate. The single human class III PI3K, vacuo-
lar protein sorting 34 (hVps34), synthesizes only PI(3)P using PI as
substrate [6,7]. PI(3,4,5)P3 generated by Class I PI3Ks recruits
phosphoinositide-dependent kinase-1 (PDK1) and Akt, thus pro-
moting the activation of Akt by PDK1 and mTORC2 phosphoryla-
tion [8,9]. The activation of Akt leads to multiple downstream
signaling cascades, including the mTOR pathway, which upregu-
lates processes such as transcription and translation, protein syn-
thesis, and cell cycle progression, among others (Fig. 1) [6,10,11].
PIK3CA, the gene that encodes the catalytic subunit of PI3Ka is
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the most frequently mutated kinase in human malignancies [12],
and the second most frequently-mutated oncogene in all human
cancers. Activating mutations that are present in many high mor-
tality cancers are located throughout the PI3Ka primary sequence
[13].

The negative regulator of the pathway is PTEN, thus it may
come as no surprise that PTEN is also one of the most frequently
mutated tumor suppressors in human cancers. PTEN is recruited
to PM and functions as a PI(3,4,5)P3-phosphatase that dephospho-
rylates the phosphate at position 3 of the inositol ring and converts
PI(3,4,5)P3 to PI(4,5)P2, thus directly antagonizing PI3Ka [14,15]
(Table 1 for kinetic parameters). As a result of low PTEN expression
or activity, PI(3,4,5)P3-downstream signaling pathways are hyper-
activated and tumor size increases, while PTEN overexpression
brings resistance to tumor growth [14]. Germ-line mutations in
the PTEN gene, are associated with several cancer predisposition
syndromes, collectively referred to as PTEN Hamartoma-Tumor
Syndromes (PHTS) [16]. In addition to its tumor suppressor func-
tion, PTEN has an important role in the central nervous system
and controls neurogenesis, axonal growth, and synaptogenesis
[17].
3. Phosphoinositide turnover interplay between signaling and
membrane trafficking

Receptor-mediated signaling initiates upon ligand/receptor
interaction at the PM. Extensive studies throughout the last two
decades have shown that, soon after receptor activation at the cell
surface, ligand/receptor complexes are internalized in PM invagi-
nations, leading to formation of cytoplasmic vesicles that deliver
their cargo to the early endosome (reviewed in [25]). At the endo-
somal compartment, sorting of the ligand/receptor complexes
determines whether the receptors will be delivered to the lyso-
some for degradation, or they will return to the PM for another
round of activation. Transport from the endosome to the PM can
take place directly (quick recycling), via vesicular carriers budding
from the endosomal membrane, or after delivery of the cargo to the
recycling endosome, which serves as an intermediate station
before further transport of the receptor to the PM (slow recycling)
[26]. Interestingly, transport of the ligand/receptor complexes
through these intricate endosomal compartments, determines
not only the fate of the ligand/receptor complexes, but also the
exact transient endomembrane stations where the receptor can
activate specific downstream signaling molecules [25]. Thus, the
specific endocytic routes undertaken by individual ligand/receptor
complexes determine the intensity, duration and output of recep-
tor signaling [27].

This bidirectional interplay between signaling and membrane
trafficking, relies on a number of molecular players that are shared
between these two processes [28]. Typical molecules of this func-
tional interplay are PIPs. Their regulation by signaling molecules,
e.g. receptors [29], and trafficking mediators, e.g. Rab GTPases
[30], coordinates receptor-mediated signaling with vesicular trans-
port (Fig. 1). More specifically, clathrin-mediated endocytosis
(CME) appears to require the presence of a local pool of PI(4,5)P2,
which is necessary for the initial formation of clathrin coated pits



Table 1
Kinetic parameters (Km values) for human PI3Ka and PTEN.

Enzyme Kinetic parameter Substrate References

PI3K Km (lΜ)a ATP 24,8 ± 4,2 [18]

2,0 ± 0,5 [19]

PI(4,5)P2 62–69 [18,20,21]

1,8 ± 0,03 [19]

PTEN Km (lΜ)a soluble PI(3,4,5)P3 23–70 [22,23]
iKm (mol%)a PI(3,4,5)P3 in lipid vesicles 0,04–0,6 [22,24]

a Km, the concentration of substrate at half of maximum enzymatic activity; iKm, apparent Km constant. Note that the values may differ depending on the type of assay
used, the concentrations of co-substrates or on the form of substrate presentation (i.e., soluble or membrane bound PIPs).

Fig.1. PTEN/PI3Ka/Akt pathway at the plasma membrane and at the endosomes. PI3Ka binds to the activated receptor and is anchored by RAS on the membrane in order to
convert PI(4,5)P2 to PI(3,4,5)P3 on the PM. PI(3,4,5)P3 activates the kinases PDK1 and Akt. Akt gets phosphorylated and activated by both PDK1 and mTORC2. Akt promotes cell
survival, growth and proliferation through important downstream targets including MDM2, BAD, FOXO and GSK3 as well as protein synthesis by inhibiting TSC1/2, enabling
the GTPase Rheb to activate mTORC1 which subsequently phosphorylates 4EBPs proteins [6,53,54]. The negative regulator of this pathway, PTEN, antagonizes PI3Ka
performing the reverse reaction. Recruitment of PI3Ks and phosphatases at the plasma membrane and at the endosomal membranes is responsible for regulating endocytic
transport of growth factor receptors, thus affecting receptor fate and downstream signaling.
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(CCPs), while the conversion of PI(4,5)P2 to PI(3,4)P2 controls mat-
uration of CCPs [31]. On the other hand, two other endocytic path-
ways, macropinocytosis (MP) [32] and Fast Endophilin-Mediated
Endocytosis (FEME) [33], require the activity of class I PI3Ks that
generates PI(3,4,5)P3. Along the endocytic route, PI(3,4,5)P3 is
dephosphorylated by 5-phosphatases SHIP1/2 or OCRL to generate
PI(3,4)P2, followed by dephosphorylation at the 40 position by
INPP4A/B, to form PI(3)P, the main PIP at the early endosome
[34]. HVPS34/p150 complex is recruited to the endosome through
5609
interaction with the small GTPase Rab5 [30,35]. Interestingly, Rab5
also mediates the catalytic activation of hVPS34 at the endosomal
membrane [7,35], by interacting with the interface between
hVPS34 and p150 [7]. As a consequence, both endosomal recruit-
ment and catalytic activation results in generation of membrane
domains that are enriched in PI(3)P and Rab5GTP [36], which func-
tion as membrane docking sites for a complex network of endoso-
mal proteins containing a specific PI(3)P binding domain, called
FYVE [30,36]. Recruitment of the FYVE domain containing proteins
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to endosomes plays an important role in endocytic transport,
thereby controlling receptor trafficking and signaling [36].

The Receptor Tyrosine Kinase (RTK)-dependent recruitment of
PI3Ks, generation of PI(3,4,5)P3 from PI(4,5)P2 and subsequent acti-
vation of Akt have been traditionally assigned to take place at the
PM. Yet, it is now clear that activation of Akt takes also place at
endomembranes [28,37–41]. Interestingly, although PI3K/PI(3,4,5)
P3/Akt signaling can take place both at the PM and intracellularly,
different cellular functions appear to depend on activation of this
signaling pathway in restricted cellular locations, rather than glob-
ally. For example, chemotactic migration of macrophages relies on
PM activation of PI3K/Akt [42], while angiogenesis depends on acti-
vation of this signaling axis at the endosomes [43,44].

One of the proposed mechanisms for PI3Ka-mediated genera-
tion of PI(3,4,5)P3 at the endosomes involves membrane recruit-
ment of the lipid kinase by interaction with the microtubule-
binding protein MAP4 [37]. The question that arises from this pro-
posed regulatory mechanism concerns PI(4,5)P2 availability, which
appears to be absent from early endosomes. Thus, according to this
mechanism, the de novo synthesis of endosomal PI(4,5)P2 would be
required. Batrouni and Baskin hypothesized that phosphorylation
of phosphatidylinositol (PI) by PI4KIIIa and PIP5K is a possible
source of PI(4,5)P2 [37,45,46]. An additional mechanism that con-
tributes to the production of PI(3,4,5)P3 at the endosome relies
on Rab5-dependent recruitment of the class I PI3K p85a/p110b
[34], which is also enriched at clathrin coated vesicles [30]
(Fig. 1). Subsequently, PI(3,4,5)P3 is hydrolyzed by 5- and 4- phos-
phatases, thus contributing to an enrichment of PI(3)P at the endo-
somal membrane [34]. The presence of class I [34] and class II [47]
PI3Ks in endocytic compartments could result in a transient pro-
duction of PI(3,4,5)P3, or PI(3,4)P2, which further supports a local
activation of the Akt pathway in the endomembranes [48]. Inter-
estingly, PTEN, besides PI(3,4,5)P3, dephosphorylates also PI(3,4)
P2 [49,50] and its association with endosomes via a PI(3)P docking
site results in termination of endosomal Akt activation [51]. These
regulatory mechanisms may ensure that Akt activation is limited
to endocytic vesicles that reside in the cell periphery, while mature
endosomes that are distant from the PM are restrictive in Akt-
signaling. Besides the above mentioned catalytically-mediated role
of PTEN at the endosome, endosomal PTEN plays an enzymatically-
independent role in Glut1 recycling. More specifically, binding of
PTEN to SNX27, an adaptor of various cargo molecules, prevents
interaction of SNX27 to VPS26 retromer complex, which disables
recycling of GLUT1 to the PM, thus leading to impaired cellular glu-
cose uptake [52]. This PTEN-mediated regulation of glucose meta-
bolism could be part of the PI3K-independent mechanisms that
control this metabolic pathway.

Our understanding on the role of endocytosis in receptor signal-
ing and PIP turnover has been greatly facilitated by the develop-
ment of excellent inhibitors of the various endocytic routes [55–
57]. However, as small molecule inhibitors could bind to multiple
targets, complementary experiments, e.g. knockdowns or knock-
outs, are usually undertaken to back up experimental data gener-
ated with these inhibitors [58–64].
4. PI3Ka and PTEN structure and regulation of membrane
interactions

4.1. PI3Ka

PI3Ka is a heterodimer composed of a catalytic (p110a) and a
regulatory subunit (p85a), encoded by PIK3CA and PIK3R1, respec-
tively (Fig. 2a). The catalytic subunit consists of an N-terminal
adaptor binding domain (ABD) that mediates binding to the iSH2
domain of p85a, a Ras binding domain (RBD) that interacts with
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switch I and II regions of RAS to stabilize PI3Ka on the membrane
[65,66], a C2 domain (C2) that participates in membrane binding, a
helical domain which interacts with nSH2, and a kinase domain
which hosts functionally important regions, including the PI(4,5)
P2 and the ATP binding pockets (Fig. 2a and 2b). PIK3CA, the gene
encoding the catalytic subunit of PI3Ka, is one of the most fre-
quently mutated genes in solid tumors. The vast majority of the
oncogenic mutations are located in either one of two hotspots;
(i) E545K and E542K located at the interface between nSH2 and
helical domain and (ii) H1047R located at C-terminal tail of the
kinase domain. The regulatory subunit contains two Src homology
2 domains, nSH2 and cSH2, that bind to the pYXXM motifs of the
phosphorylated RTK, and a coiled-coiled domain (iSH2) between
them, which mediates the high-affinity interaction to the catalytic
subunit. These domains are preceded by a Src homology 3 domain
(SH3), a Bar cluster region homology domain (BH), and two
proline-rich regions, PR1 and PR2 surrounding the BH domain
(Fig. 2a) [6,67]. Cheung et al. reported that SH3 and BH domains
along with the PR regions may facilitate the homodimerization of
p85a [68]. Besides p85a, PIK3R1 also encodes two functional splice
variants, p55a and p50a, which lack the domains required for
homodimerization (they lack the proline-rich regions, BH and
SH3 domains) (Fig. 2c).

Post-translational modifications of p85a regulate the catalytic
activity of PI3Ka (Fig. 2d). Direct phosphorylation of S361 in
nSH2, and S652 in cSH2, by Protein Kinase C (PKC), prevents PI3Ka
from binding to the activated receptor [69,70]. It should be noted,
however, that PKCa can also indirectly stimulate PI3K/Akt signal-
ing by phosphorylating MARCKS to displace it from PI(4,5)P2,
thereby generating free PI(4,5)P2, the lipid substrate of PI3K,
required for PI(3,4,5)P3 production [71,72]. Another post-
translational modification that prevents the binding of cSH2 to
the phosphorylated RTKs is the phosphorylation of S690 in cSH2,
by IkB kinase (IKK). On the contrary, phosphorylation of Y688 in
cSH2 may activate PI3Ka by facilitating an intramolecular interac-
tion with nSH2. Moreover, phosphorylation of S83 in the SH3
domain by protein kinase A (PKA) promotes p85 binding of 14–
3-3z protein, which leads to increased membrane binding and sub-
sequently to increased p110a activation [69,70,73]. The catalytic
subunit, p110a can phosphorylate the regulatory subunit, p85a,
at S608, although this autophosphorylation is not a significant reg-
ulator of the lipid kinase activity of PI3Ka [74]. Moreover, p85a is
phosphorylated on Y508 by the Platelet-derived growth factor
receptor (PDGFR) [75]. Cruz-Herrera et al. suggest that SUMO1
and SUMO2 modulate the p85 function by reducing the levels of
tyrosine-phosphorylated-p85. Different lysine residues located at
the iSH2 domain are putative SUMOylation sites [76].

PI3Ka can be activated by phosphorylated RTKs, their adaptor
proteins (e.g. IRS-1) and a broad spectrum of RAS family members
(e.g. HRAS). RTKs activate PI3Ka through binding of the PI3Ka SH2
domains to the pTyr residues (pYXXM motifs) located in the
cytosolic domain of the activated RTK. This phosphopeptide
sequence binds to the nSH2 domain, disrupting the charge-
charge interaction between the nSH2 domain and the helical
domain of p110a [6,77]. pTyr also binds to cSH2, however, cSH2
does not have an inhibitory role in PI3Ka [78]. Two conserved FLVR
motifs (res. 355–358 in nSH2 domain and 646–649 in cSH2
domain) are critical for binding to the phosphorylated RΤK [70].
The receptor and the RAS protein synergistically activate PI3Ka.
In fact, it was shown by Buckles et al. that the activation of PI3Ka
by RAS is mediated primarily via the membrane recruitment mech-
anism, rather than allosterically. Thus, the association of receptor
pTyr residues with the inhibitory SH2 domains of p85 make
p110 accessible for PI(4,5)P2 and binding of p110 to HRAS con-
tributes to the activation promoting the membrane recruitment
[79]. Upon activation, p110a is recruited to the membrane to syn-



Fig. 2. The structure of the PI3Ka heterodimer and its post-translational modifications. (a) The 3D structure of PI3Ka heterodimer and its domains (b) Functionally important
residues of PI3Ka. The 3D structure was produced by authors using PDB ID 7MYN structure as a reference (https://doi.org/10.2210/pdb7MYN/pdb) (c) PIK3R1 splice variants.
p50a and p55a differ from p85a at N-terminal residues and contain a unique 35-amino-acid and a 5-amino-acid sequence respectively (d) Regulation mediated through post-
translational modifications. Phosphorylation sites are represented as yellow circles. PTMs with positive effects on PI3K activity are shown with arrows, whereas those with
negative effects on PI3Ka activity are shown with bars. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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thesize PI(3,4,5)P3 by transferring the c-phosphate group of ATP to
PI(4,5)P2.

However, the ATP pocket (active site) and the PI(4,5)P2 binding
site of PI3Ka are 6–7 Å apart in crystal structures of the inactive
state (e.g. PDB ID: 4OVV [80]). For the phosphorylation to take
place, PI(4,5)P2, needs to approach ATP. This is mediated through
a sequence of allosteric motions that are triggered by nSH2 disen-
gagement. Hence, the surface of the kinase domain becomes acces-
sible for interaction with the membrane [81].

4.1.1. PI3Ka active state
The natural transition of PI3Ka from an inactive cytosolic state

to an activated state on membranes entails four distinct events.
Apart from the breaking of the nSH2–helical interface described
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above (event 1), three other events have been described by Burke
et al. [82]. These events include disrupting the iSH2–C2 interface
(event 2), movement of the ABD domain relative to the kinase
domain (event 3), and interaction of the kinase domain with the
membrane (event 4). Based on HDX-MS data and protein-lipid
FRET assays, oncogenic mutations upregulate the enzyme by
enhancing one or more of these dynamic events [82]. Moreover,
a recent cryo-electron microscopy (cryo-EM) study showed that
the phosphopeptide-bound structure of PI3Ka consists of a stable
core, where electron density for ABD and the regulatory subunit
is absent (Fig. 3a) [83]. Indeed, in a previous study Zhao et al.
had shown that the deletion mutant of PI3Ka lacking the ABD
domain (DABD) and the entire regulatory subunit, efficiently acti-
vates PI3K signaling [84].



Fig. 3. The active state of PI3Ka and its membrane-interacting regions. The 3D structure was produced by authors using PDB ID 7MYN structure as a reference [83] (a)
Proposed active state model of PI3Ka in which electron density for the ABD and the p85a is absent (b) TheDABDmodel on a model cell membrane based on the PDB ID 7MYN
structure [83]. Membrane interacting residues are colored green. (c) Residues 405–420 of the nSH2 domain (colored red) are in close proximity to the membrane. The DABD
model based on the 7MYN structure is colored blue and the superimposed DABD + nSH2 structure of the E545K mutant with a detached nSH2 domain, as observed in our
simulations, is colored green. The DABD model was placed on a model membrane at a distance of 5 Å and was rotated to match the referred membrane interactions. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.1.2. PI3Ka membrane interactions
As mentioned, mutations are distributed throughout the pri-

mary sequence with two main hot spots in key regulatory regions,
one in the helical domain (E545K) and one in the C-terminus of the
kinase domain (H1047R). The PI3Ka C-terminus plays both an
auto-inhibitory role for the kinase, but is also a key element for
binding to the cell membrane, where PI3Ka receives its substrate,
the lipid PI(4,5)P2, and converts it to PI(3,4,5)P3, which starts a sig-
naling cascade for cell proliferation. It has been shown in the liter-
ature that PI3Ka C-terminal mutants such as the H1047R prevalent
PI3Ka mutation cause the kinase to be overactivated by altering
the PI3Ka interaction with the cell membrane [82,85–87]. Accord-
ing to HDX-MS data of the overactivated H1047R oncogenic
mutant, the membrane-binding regions are 716–744 (membrane
binding loop1), 848–859 (active site), 859–872 (membrane bind-
ing loop 2), 930–956 (activation loop) and 1039–1068 (C-
terminus) (Fig. 3b) [82,88,89]. To generate a model of the PI3Ka
active state we used the recent cryo-EM structure with PDB ID:
7MYN [83] the model of DABD p110a. Taking into account the
above-mentioned membrane-binding regions, the DABD model
was appropriately placed on a model cell membrane. Additionally,
we aligned thisDABDmodel with a representative conformation of
the E545K mutant from our previous simulations, in which the
nSH2 domain has detached from the helical domain [90] mimick-
ing the active state. We find that the region 405–420 of the nSH2
domain is in close proximity to the membrane (Fig. 3c). Indeed,
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HDX-MS experiments show that the 405–420 region of nSH2 exhi-
bits decreased hydrogen–deuterium exchange upon membrane
binding with HRAS-coupled vesicles, suggesting that nSH2 binds
not only to the RTKs but also to the membrane [89,91]. Full activa-
tion of PI3Ka requires recruitment to membrane-bound HRAS,
which greatly leads to the formation of a stable, membrane-
bound PI3Ka complex [79].
4.2. PTEN

PTEN is a cytosolic 403aa protein consisting of five functional
domains. The N-terminus contains the PI(4,5)P2-binding domain
(PBD), which folds into an a-helix conformation [92–94], the cat-
alytic phosphatase domain, which includes the active site com-
posed by the P loop with the catalytic CX5R sequence, the WPD
loop, the TI loop, and a positively charged Arginine loop [94–97],
the C2 domain, which contains CBR1, CBR2 and CBR3 loops that
are responsible for PTEN binding to the membrane [94–96,98]
and the C-terminal tail (CTT), which is crucial for PTEN regulation
[99,100]. At the end of the CTT a PDZ-binding region is located,
which facilitates the interaction with other proteins [17,101]
(Fig. 4a).

PTEN is under hierarchical control by transcriptional, post-
transcriptional and post-translational mechanisms, and protein–
protein interactions [14]. Post-translational modifications are
heavily studied and include phosphorylation [102], oxidation



Fig. 4. The structure of PTEN and phosphorylation sites on CTT. (a) The domains and functionally important residues of PTEN (b) PTEN on a model cell membrane. Domains
and regions that interact with the membrane are colored green (actual interacting residues are given in the text). The 3D structure was produced by authors using PDB ID
5BZZ structure as a reference [128] (c) Schematic illustration of PTEN membrane localization and conformation. The open/closed PTEN model. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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[103], acetylation [104] and ubiquitination [105] amongst others
(reviewed in [14,106]. Phosphorylation is the major determinant
of PTEN conformations with residues S380, T382, T383 and S385
in the CTT phosphorylated by CK2 in vitro [107], and likely by addi-
tional kinases in vivo [102,108,109]. Residues T366 and S370 are
phosphorylated by GSK3b and CK2, respectively [110], and they
may be important for stability and active-site accessibility of PTEN
[111,112]. Ubiquitination is also an important posttranslational
modification that controls both stability of PTEN and its shuttling
to the nucleus [14,106].

The PTEN crystal structure has been reported early on [94], pro-
viding significant insight into its regulatory mechanisms. However,
some unstructured intrinsically disordered regions (IDRs) were
missing or incomplete, like the CBR3 loop, the CTT and the N-
terminus [94,113]. Importantly, and in contrast to PI3Ks, PTEN
appears to constitutively and dynamically interact with mem-
branes via multiple interactions of its domains depending on the
lipid composition of the membranes [17,98,114].

4.2.1. PTEN membrane interactions
According to HDX-MS data of the active dephosphorylated

PTEN in the presence and absence of cholesterol and PI(4,5)P2-
containing lipid vesicles the membrane-interacting regions are
residues, 4–21, 35–42 (Arginine loop), 82–99 (WPD loop), 155–
177 (TI loop), 201–215 (CBR1 loop), 259–273 (CBR3 loop), 319–
342 (Ca2) (Fig. 4b) [96]. The WPD and TI loops, together with the
P loop, create a negatively charged, wide and deep pocket, allowing
access to the bulky PI(3,4,5)P3 in the membrane [94]. From func-
tional mutagenesis studies the dominant PTEN membrane binding
sites include: (a) the C-terminus of the PBD a-helix and the N-
terminus of the phosphatase domain that interact with PI(4,5)P2
with residue K13 being required for binding [93,115]; (b) the pos-
itively charged Arginine loop in the phosphatase domain that
boosts the interaction with acidic phospholipids including PI
(3,4,5)P3 [96,97,114]; (c) the CBR3 and Ca2 loops in the C2 domain
that bind to both zwitterionic and anionic membrane phospho-
lipids [92,116]. Interestingly, molecular dynamics simulation of
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the phosphatase-C2 domains of PTEN suggests that binding to
the membrane proceeds through electrostatic interactions and
results in changes in the relative orientation of the phosphatase
and C2 domain [117].

4.2.2. The open/closed conformation model of PTEN
A breakthrough in our understanding of the membrane-

associated PTEN active state has been the discovery that PTEN
can assume two conformations: an ‘‘open” (active) and a ‘‘closed”
(inactive) state (Fig. 4b). When S380, T382, T383, and S385 of the
CTT are phosphorylated, PTEN assumes the compact ‘‘closed” state
with reduced membrane interaction and phosphatase activity
[96,118]. The closed state is associated with increased stability
and it is strengthened by intramolecular interactions between
the phosphorylated CTT that folds over the active-site and the C2
domain [22,118,119]. Chen et al using X-ray scattering, found that
phosphorylated C-tail interacted with the Ca2 and CBR3 loops of
the C2 domain but also with the Arginine loop of the phosphatase
domain [120]. These results are in agreement with Masson et al.
2016 mass spectrometry (HDX-MS) experiments [96] and also
compatible with crystallography studies on semisynthetic PTEN-
like molecules [121]. Residues R41, E73, N262, and N329 in the
phosphatase and C2 domains play important roles in the
intramolecular interaction with the CTT and specific mutations in
these residues result in increased membrane association and
increased phosphatase activity of PTEN [122].

Thus, phosphorylated PTEN assumes a ‘‘closed” autoinhibited
form that is mostly cytoplasmic, whereas upon dephosphorylation
of the CTT, the autoinhibition is released, the active site is exposed,
thus permitting access to PI(3,4,5)P3 in the membrane [123].
Apparently, the released unphosphorylated CTT does not interact
with membranes nor interfere with PTEN membrane binding per
se [114,116]. Mutation of S/T residues in the 380–385 stretch of
CTT to alanine results in an ‘‘open” PTEN conformation, localized
at the membrane with increased catalytic activity [105]. The
details of how this phosphorylation-induced conformational
changes happen are missing and the fact that PTEN CTT is consid-
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ered an IDR, makes it difficult to create an accurate structural
model of the proposed closed state [112,121,124,125]. While sev-
eral kinases, most prominently CK2, have been postulated to phos-
phorylate PTEN and thus induce the conformational shift to the
autoinhibited state [126], the involvement of protein phosphatases
has been understudied. In this context, it has been suggested that
PTEN may release this auto-inhibitory state by its protein phos-
phatase activity. Although this notion is compelling, and it is sup-
ported by some experimental data [111,127] very little is known
about the mechanism of this regulatory step.

It has been proposed that formation of PTEN dimers is an addi-
tional step towards its full activation [129,130]. Homodimerized
PTEN is in the open conformation and exhibits maximal lipid phos-
phatase activity [129]. PTEN dimers seem to assume a more com-
pact conformation than monomers, and the CTT is highly
associated with the stability of the configuration. This compact
conformation permits increased cooperativity between the cat-
alytic and C2 domains that may affect the efficiency of the phos-
phatase activity [130]. The biological significance of PTEN dimer
formation has been demonstrated in vitro and in vivo; it has been
proposed that mutated PTEN alleles have a dominant negative
function on the wild type protein via dimer formation [129].
Dimerization appears to be inhibited by the E3 ligase WWP1 via
K27-linked polyubiquitination of PTEN [131]. Accordingly, phar-
macological inactivation of WWP1 reactivates PTEN and sup-
presses PI3K/Akt-dependent tumorigenesis [131].
5. Allosteric mechanisms for membrane recruitment and
catalysis

The conformational landscape of a protein is defined by pre-
existing protein conformations that interconvert as a result of
ligand/co-factor/protein binding, membrane encounter, and other
environmental factors. The shift of the equilibrium protein popula-
tions due to a perturbation on the protein, which biases the confor-
mations towards specific conformers is defined as allostery. As
such, allostery can be viewed as an intrinsic property of the confor-
mational ensemble and not simply an induced fit phenomenon.
Allostery has been highlighted as an important aspect of protein-
membrane interactions during signaling [132] and furthermore,
provides an innovative approach to modulate protein function by
biasing protein structure towards specific active or inactive confor-
mations. Therefore, describing the protein conformational ensem-
ble is of paramount importance as these protein conformations
can be stabilized by allosteric modulators. Allosteric modulators
typically bind to less conserved sites compared to the active site
of an enzyme, and consequently they may confer greater specificity
in mutant proteins compared to the WT, or selectively target a
specific isoform within a protein family [133]. Below, we briefly
discuss current knowledge on the allosteric modes of PI3Ka and
PTEN interaction with membranes and catalytic activation.
5.1. Allostery in PI3Ka

The full molecular mechanism of how PI3Ka binds on the mem-
brane and becomes activated is still unclear. As mentioned above,
the nSH2 disengagement leads to the activation of PI3Ka triggering
a series of allosteric conformational changes. In the inactivated
conformation of PI3Ka, nSH2 interacts with the C2, helical and
kinase domains [85]. Upon nSH2 binding to the RTK, these interac-
tions are no longer present. The interface between nSH2 and the
helical domain, which includes charge interactions between the
negatively-charged helical domain and the positively-charged
nSH2 becomes disrupted. The nSH2 release partially destabilizes
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the iSH2-C2 and ABD-Kinase interfaces revealing its inhibitory role
[82,88,134].

Conformational changes in the iSH2-C2 interface and the ABD/
RBD linker may be mechanistically linked according to HDX-MS
data. Burke et al. observed that mutations in the ABD-RBD linker
caused similar conformational changes to those located at the
iSH2-C2 interface [82].

Mutations in the C-terminal tail may also influence the allos-
teric regulation of enzyme activity, lipid binding, phosphoryl-
transfer or product release during catalysis [6]. The hotspot
H1047R mutation alters the membrane recruitment as it leads to
a large rearrangement of the membrane-binding C-terminus to
an active conformation. Mandelker et al. reported the crystal struc-
ture of the mutated heterodimer and observed that R1047 points
toward the cell membrane, perpendicular to the orientation of
H1047 in the WT enzyme [85]. Also, the performed biochemical
assays revealed that the enzymatic activity of the p110a H1047R
mutant is differentially regulated by lipid membrane composition
[85]. Hon et al. report that the activated H1047L, H1047R and
G1049R mutants increase both hydrophobic and electrostatic
interactions with lipids [135]. Moreover, Burke et al. using hydro-
gen/deuterium HDX-MS and protein-lipid FRET assays showed that
mutations such as H1047R favor the membrane interaction [82].
Gkeka et al. proposed a series of events that lead to the overactiva-
tion of the protein kinase mutant H1047R, using SPR experiments
and Molecular Dynamics (MD) simulations [86]. The proposed
mechanism of overactivation due to the H1047R PI3Ka mutant,
includes enhanced binding of H1047R to the membrane, loss of
the C-terminal autoinhibitory role and orientation change of
H917, a residue critical for ATP hydrolysis. Dynamical Network
analyses performed on PI3Ka WT and H1047R mutant trajectories
[86] showed that the C-terminal tail of PI3Ka is connected to the
PI3Ka membrane binding loop 2 through a pathway of ten resi-
dues, whereas the mutant H1047R significantly shortens this path
to a pathway of six residues [132]. Recently, Ranga-Prasad et al.
suggested that the recruitment and activation of PI3Ka to the
membrane triggers the release of the ABD domain from p110a,
of the iSH2 from the C2, and also requires the reorientation of
the C-terminal tail [88].

Except for the nSH2 domain, another interesting element of
p85a involved in PI3Ka activation is the third helix of the iSH2
domain, ia3 (res. 587–598). This helix forms an interface with
the activation loop and is expected to stabilize it in the inactive
conformation of PI3Ka [80]. Simulations performed by Galdadas
et al. have shown that the disruption of the interactions between
the ia3 helix and the activation loop along with the bending of
the N-terminal part of the iSH2, expose helix A to the solvent
weakening the niSH2 domains-mediated regulation of the kinase
activity, which is in accordance with HDX-MS experiments
[78,80,82].

5.2. Allostery in PTEN

An important aspect in order to appreciate allosteric regulation
of PTEN relies on its mode of interfacial catalysis kinetics. PTEN
likely operates via a mixed scooting/hopping model [24,114]. PI
(4,5)P2, the product of PTEN, appears to be a major determinant
of catalytic activation by imposing a positive feedback loop upon
interaction with membranes. Early studies showed that catalytic
activity is stimulated by 5-8fold when assayed with lipid vesicles
containing variable amounts of PI(4,5)P2 [24,115]. Interestingly,
this PI(4,5)P2-dependent increase of catalytic activity is observed
also with monodispersed PIPs, which are typically water-soluble,
suggesting that interaction with membrane per se is not the deci-
sive factor [136]. At higher PI(3,4,5)P3 concentrations the kinetic
curves are sigmoidal and do not follow Michaelis-Menten models.
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This indicates that enzymatic activity increases as the reaction pro-
gresses, apparently due to the increase of its product, PI(4,5)P2
[136]. Furthermore, PI(4,5)P2 may additionally regulate the mem-
brane lateral diffusion of PTEN. Thus, individual PTEN molecules
may exhibit temporal changes in their lateral diffusion mobility
as the local PI(4,5)P2 density changes on the membrane whereas
the spatial distribution of PI(4,5)P2 also changes depending on
the local density of PTEN, since PI(4,5)P2 density increases due to
the enzymatic activity [137]. These findings imply multiple feed-
back loop mechanisms operating at the level of membrane
between PTEN and PI(4,5)P2.

Detailed analysis using supported lipid bilayers coupled to TIRF
imaging has proposed that PTEN kinetics can be described by a
combination of both recruitment and allosteric activation effects
by PI(4,5)P2 [138]. Interestingly, this PI(4,5)P2 positive feedback
loop is necessary and sufficient for the reaction size-dependency
of PTEN catalysis that is readily observed in restricted supported
lipid bilayers [139].

Recent studies have updated and informed the open-closed
conformation notion and the allosteric PI(4,5)P2 positive feedback
loop notion [116,121]. The temporal sequence of allosteric modes
embedded in the activation of PTEN and the interaction with mem-
brane are: (a) phosphorylation of the CTT (S380, T382, T383, S385
stretch) results in intramolecular closure with CTT contacting the
CBR3 loop and Ca2 segment in C2 domain and likely extending into
the phosphatase domain; at the same time this closure disrupts the
N-terminal a-helix of PBD [121]. (b) dephosphorylation of PTEN
results in the open conformation which uncovers the active site
in the phosphatase domain and regains the a-helical motif in
PBD. (c) binding to the membrane proceeds via the positively
charged arginine loop and CBR3 loop in the phosphatase and C2
domains respectively [116]. (d) the initial PBD a-helical motif is
rapidly disrupted and converted into an unstructured region which
anchors the protein in the lipid bilayer via strong salt bridge inter-
actions between anionic lipids and a polybasic patch (R11, K13,
R14, and R15), resulting in the coordination of two PI(4,5)P2 lipids
[116]. It is likely that the coordination of PI(3,4,5)P3 to the P loop
may allosterically promote PBD unfolding to stabilize PTEN bind-
ing to the membrane [116].
6. Mechanisms for co-regulation of PI3K and PTEN

Although PI3Ka and PTEN have been studied extensively, due to
their importance in diseases including cancer, there are still signif-
icant gaps in our understanding of how these two proteins co-
regulate and orchestrate interconversion of PI(3,4,5)P3 and PI
(4,5,)P2. Both are cytosolic proteins, which implies that their
recruitment on the membrane plays a fundamental role in their
mechanism of action. Although membrane recruitment and cat-
alytic activation of PI3Ka is agonist-induced and receptor-
operated, this is not the case for PTEN. Several receptors of the tyr-
osine kinase and G protein-coupled receptor families have been
proposed to bind and recruit PTEN to the PM although it is not
always clear if these interactions are direct or even agonist-
induced [17,106]. Regardless, these interactions may function to
prime PTEN towards PI3K-generated PI(3,4,5)P3 domains [17]. It
has to be emphasized that although recruitment and activation
of PTEN to sites of PI3K/PI(3,4,5)P3 signaling may be important
for fine tuning of PI(3,4,5)P3, it may be counterproductive in other
settings, particularly when a polarized steep PI(3,4,5)P3 distribu-
tion on the PM is necessary for cell functions. For example, PTEN
may be still recruited but inhibited at the PM in order to attain high
levels of PI(3,4,5)P3, for induction of filopodia and branches along
neuronal axons [140,141], or even actively excluded from PM
regions with intense synthesis of PI(3,4,5)P3 to ensure continuous
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and robust cell polarization and chemotaxis [142,143]. Below we
briefly discuss different modes of interaction and co-regulation of
PI3K and PTEN.

6.1. Role of p85a

It has been reported that p85 plays a dual function in regulation
of PI(3,4,5)P3 upon growth factor receptor activation. In addition to
its role as a regulatory subunit of p110-PI3Ks, p85a binds directly
to unphosphorylated PTEN and enhances its stability and phos-
phatase activity [144,145]. Consequently, p85a would be an ideal
candidate for the temporal co-regulation of PI3K and PTEN activi-
ties towards PI(4,5)P2 and PI(3,4,5)P3 upon acute signaling. Binding
proceeds via interactions of the BH domain of p85 with the phos-
phatase and C2 domains of PTEN [146]. Interestingly, the BH
domain of p85a binds with low affinity to monophosphorylated
PIPs in vitro; the binding to PI(3)P specifically [146], might also
help to localize p85a to endosomal vesicles containing PTEN
[51]. Cancer-related mutations in the p85a-BH domain, however,
do not consistently correlate with changes in PTEN activity [147].
Cheung et al. have suggested that p85a dimers bind and stabilize
PTEN by preventing ubiquitination and degradation by the E3
ligase WWP2 [68]. The p85a homodimer includes intermolecular
interactions between SH3:PR1 in trans and BH:BH interactions
between the monomers. The homodimerized p85a binds PTEN at
least partly through the PR2 domain and through several residues
of the BH domain (I127, I133, E137) [68].

This model of dual regulation of p110a and PTEN entails the
presence of free p85a in the cytoplasm that is able to either form
homodimers. or stabilize and activate p110a and PTEN. The pres-
ence of excess free p85a has been verified and indeed it modulates
PI3K signaling with the effect being dominant at low levels of
receptor activation [148]. Also, the balance between the amount
of p85a and the amount of the splice variants, p50a and p55a,
which are not able to stabilize p110a as strongly as p85a and at
the same time cannot form homodimers, can affect PI3Ka signal-
ing. Although the direct regulation of PTEN by free p85 in the
monomeric or dimeric form provides an intriguing explanation
for the known effects of partial loss of p85a on PI3K signaling,
these results have not been verified by other groups [149]. Thorpe
et al. have suggested that PTEN downregulation may represent a
secondary (and not a direct) effect of p85a loss [149]. It is likely,
however, that direct p85a-PTEN interactions might play an impor-
tant role under certain conditions for example in specific cell types
or specific growth factor receptors.

6.2. Localized PI(4,5)P2 and PI(3,4,5)P3 pools

Intriguingly, recent advances in lipid kinase and phosphatase
assays on restricted supported bilayer systems have revealed a
reaction size-dependency of catalytic activity of several enzymes,
including PTEN [139,150]. In essence, reaction size-dependency
of PTEN suggests that PTEN will dephosphorylate faster large
domains of PI(3,4,5)P3 compared to small domains on the PM.
Studies with PI(4,5)P2 phosphatase and PI(4)P kinase pairs have
shown that competitionmay result in formation of a compositional
pattern of PI(4)P and PI(4,5)P2 that exhibits bistability when the
membrane reaction environment is geometrically confined [150].
This model has been also proposed for PI3K and PTEN competition,
thus imposing size-restriction and bistability to PI(3,4,5)P3 and PI
(4,5)P2. [139,150].

These fundamental properties of antagonizing lipid kinases and
phosphatases may relate also to the distribution of PIP-rich
domains in the PM. Recent super resolution microscopy of PI(4,5)
P2 and PI(3,4,5)P3 in live cells or membrane sheets have advanced
our understanding of the segregation, fractional partitioning and
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distinct properties of PIP domains in the membrane. For example,
PI(4,5)P2 and PI(3,4,5)P3 appear to mark distinct nanoscale
domains within the PM of PC12 cells under basal conditions
[151]. PI(4,5)P2 has been observed in nanoscale domains within
the PM in several experimental settings (reviewed in [152]). Con-
sidering the biophysical properties of distinct PI(4,5)P2 domains,
these may correspond to liquid-ordered, cholesterol-rich ‘‘raft-
like” or liquid-disordered ‘‘non-raft” regions of the membrane
[152]. Interestingly, raft and non-raft PI(4,5)P2 domains may expe-
rience differential dynamics upon receptor activation of Phospho-
lipase C signaling [153]. The spatial segregation, recruitment and
signaling of PI3K and PTEN in lipid raft vs non-lipid raft mem-
branes has also been proposed [154], with PTEN primarily localized
in non-raft domains. This segregation, however, may relate to the
activation of PI3Κb isoform in lipid rafts rather than the PI3Ka iso-
form [155].

Although intuitively-one assumes that PI3K and PTEN are co-
regulating the same PI(3,4,5)P3 domains in the PM, we still lack
the temporal and spatial insight on whether this is indeed the case.
Paradoxically, in chemoattractant-induced migration of Dic-
tyostelium slime molds and immune cells, PTEN and PI(3,4,5)P3
exhibit mutually exclusive localization at the PM [142,143]. This
segregation corresponds to PI(3,4,5)P3-enriched/PTEN-excluded
and PTEN-enriched/PI(4,5)P2-rich but PI(3,4,5)P3-excluded states.
This apparent segregation suggests that, at least upon strong acti-
vation of PI3Ks, PTEN may be actively excluded from PI(3,4,5)P3-
rich PM regions [143].
7. Pharmacological targeting of PI3Ka and PTEN

PI3Ka has emerged as a promising therapeutic target due to its
importance in cancer. Extensive efforts have been made in the last
decades to develop drugs able to regulate PI3Ka signaling. Inhibi-
tors targeting PI3Ka can be classified into pan-PI3K, dual PI3K/
mTOR and isoform-specific inhibitors. Pan-PI3K inhibitors are
ATP-competitive inhibitors that target all four isoforms of class I
PI3K and thus, due to their non-selectivity, are associated with sev-
eral adverse reactions. An example of a pan-PI3K inhibitor is
Copanlisib, which is FDA-approved for treatment of adult patients
with relapsed follicular lymphoma [156]. Dual PI3K/mTOR inhibi-
tors target and block both all PI3K isoforms and mTOR kinase. They
exhibit poor tolerance when given systemically and therefore none
of them has been approved by the FDA [157,158]. Isoform-specific
PI3K inhibitors selectively inhibit specific PI3K isoforms and four
FDA-approved isoform-specific inhibitors are currently on the mar-
ket; Alpelisib, which is selective against PI3Ka [159], Idelalisib
[160] and Umbralisib selective against PI3Kd [161] and Duvelisib,
which is a dual PI3Kc/PI3Kd inhibitor [162]. Although the develop-
ment of PI3K inhibitors has progressed rapidly with many drugs
entering clinical trials in the last few years, intrinsic and acquired
resistance limits their therapeutic efficacy [163]. Resistance to PI3K
inhibitors often occurs through numerous feedback loops involved
in the PI3K/Akt signaling network, rebalancing the inhibitory
effects of the drugs [158]. Other factors that can lead to resistance
in PI3K inhibitors include inactivation or loss of PTEN activity
[164], mutations and amplification of PI3K [165], and non-coding
RNAs (ncRNAs) [166].

As mentioned, only one PI3Ka-targeting drug is currently in the
clinic, alpelisib, which has been approved by the FDA for breast
cancer due to its selectivity and pharmacokinetics [159]. Another
orthosteric small molecule PI3Ka inhibitor, Inavolisib (GDC-
0077), leads to degradation of the E545K and H1047R mutant
p110a in cells [167] and is in clinical trials [168]. Both these
ATP-competitive inhibitors exhibit severe concentration-
dependent adverse effects due to the fact that the ATP binding
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pocket is very similar across the different PI3K isoforms [169].
Understanding the allosteric pathways that exist in PI3Ka and its
mechanism of action (see Section 5.1) will enable the design of
mutant-specific inhibitors that will selectively regulate the
membrane-binding and activation. Targeting the protein-
membrane interface emerges as a new promising therapeutic
strategy, as the activation of PI3Ka is directly linked to the mem-
brane recruitment. The membrane-binding regions are expected
to communicate with the active site and thus it can be modulated
allosterically.

In contrast to PI3Ka, less attention has been given to develop-
ment of effective drugs that modify the activity of PTEN, likely
because it is considered undruggable [116,125]. However, positive
or negative modulators of PTEN may find use in cancer and neu-
rodevelopmental diseases or neurodegenerative and nerve injury
conditions, respectively [170]. Unfortunately, currently used 1st
generation PTEN inhibitors suffer from specificity, selectivity and
reversibility issues [171] and unexpected adverse effects (Premeti,
Syropoulou, Leondaritis, unpublished data). Most 1st generation
PTEN inhibitors are complexes of peroxo-V (V), oxo-V (VI) and
vanadyl- (VO-) with organic substituent, and they are proposed
to cause oxidative inhibition of PTEN, at least in vitro
[128,171,172]. However, it is unclear whether all these compounds
act by oxidative inhibition in cells (Premeti, Syropoulou, Leondari-
tis, unpublished data). Nevertheless, some of these compounds
have exhibited promising results in preclinical animal studies

assessing tissue survival and regeneration after trauma [173].
As previously discussed, the interaction with the membrane has

a crucial role for enzymatic activity of PTEN [116,174]. Considering
the allosteric mechanisms that affect PTEN membrane interaction
and catalytic activation (see Section 5.2), could we design reversi-
ble allosteric modifiers/modulators to shift the equilibrium
between active and inactive states or influence the formation of
dimers [116,125]? Recently, PTEN reactivation by small molecules
that restore its dimerization via inhibition of polyubiquitination
has proved the validity of these approaches to treat cancer [131].
In alternative approaches, peptides targeting several regions and
domains of PTEN have proven their validity in modulating (inhibit-
ing) PTEN membrane interactions and activity in neurodegenera-
tive and nerve injury conditions [175,176]. On a more general
note, direct PTEN modulators will certainly provide us with
unprecedented insight on the acute roles of PTEN upon activation
of PI3K signaling; so far, we have almost exclusively relied on
genetic means of manipulating PTEN activity or localization to
membrane.

Although controlling PI3K signaling through PTEN activity is
crucial for the regulation of vital cellular mechanisms, the function
of PTEN as a tumor suppressor gene complicates the use of existing
drugs as well as the design of new potential modulators. Consider-
ing PTEN’s association with a multitude of other diseases and
pathological phenotypes beyond cancer, it is increasingly recog-
nized that we need to better study and understand the complica-
tions and benefits of PTEN’s pharmacological targeting.
8. Summary and outlook

As described herein, our knowledge of the mechanistic and
structural details of PI3Ka and PTEN membrane interactions and
catalytic activation have progressed at a rapid pace over the last
decade. However, the molecular mechanisms of how PI3Ka and
PTEN communicate and co-regulate remain unclear. Thus, we lack
fundamental insight into how they antagonize, or even synergize,
to create spatially and temporally dynamic pools of signaling PI
(3,4,5)P3 in the rich PI(4,5)P2 environment of the PM inner leaflet.
Do PI3Ka and PTEN display bistability upon competition on mem-
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branes as has been suggested for other pairs of PIP kinases and
phosphatases [150]? What is the role of PI(4,5)P2 or PI(3,4,5)P3
binding proteins [3] that may limit free binding/substrate sites
available for PI3K and PTEN? Can their effect be quantified and
modeled? Are PI3K and PTEN segregated upon intense receptor sig-
naling? This segregation may relate to the need for establishing
steep opposing gradients of PI(3,4,5)P3 and PI(4,5)P2 along the
PM that may define polarity upon cell migration [143].

Significant questions about their allosteric regulation remain
unanswered. Concerning PI3Ka, how does the catalytic cycle close
and PI3Ka returns to its inactive state? What is its active confor-
mation? Ιf DABD p110a is indeed the active state of PI3Ka, how
does ABD domain interact again with p85a (iSH2)? Does p85a
have a dual role, stabilizing the inactive state of PI3Ka and at the
same time homodimerizing and stabilizing PTEN on the mem-
brane? p85a/p110 and p85a/PTEN coincide on RTKs? Are there
any phospholipid recognition regions in the p85a subunit? Con-
cerning PTEN, how are PTEN dimers integrated in the conforma-
tional model of PTEN membrane interaction and catalysis?

Given the distinct PIP composition between PM and endosomes,
the mechanisms controlling the balance between PI3K and PTEN
activities in these prominent subcellular compartments also
remain unexplored. So far, simulations and experiments have been
biased towards a typical PM lipid composition. The different mem-
brane interface in endosomal compartments may alter the rules of
engagement. For PTEN specifically, PI(3)P seems to be an additional
C2-directed docking site to endosomal membranes. Furthermore, it
is intriguing to address whether PI3K/PTEN balance is affected by
the exact coordinates of individual endosomal compartments, i.e.
proximal to the PM versus distant ones, or by their maturation
state, their shape, size and cargo content, and how these parame-
ters affect the final output towards Akt signaling?

Finally, complexity of PI3Ka and PTEN catalytic kinetics and
interaction with membranes coupled with the inherent redun-
dancy in PI(4,5)P2 and PI(3,4,5)P3 metabolism necessitates the
use of innovative computational tools in parallel with current
and future experimental approaches. Such computational tools
ranging from predictive kinetic modelling [50,138], molecular
dynamics simulations [86,87,90,125,177] to membrane interaction
modelling and new cryo-EM structures will be of crucial impor-
tance in better understanding the interplay between these impor-
tant signaling enzymes.
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