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Abstract

Background

Environmental and endogenous factors under genetic predisposition are considered to initi-

ate the human intervertebral disc (IVD) degeneration. DNA methylation is an essential

mechanism to ensure cell-specific gene expression for normal development and tissue sta-

bility. Aberrant epigenetic alterations play a pivotal role in several diseases, including osteo-

arthritis. However, epigenetic alternations, including DNA methylation, in IVD degeneration

have not been evaluated. The purpose of this study was to comprehensively compare the

genome-wide DNA methylation profiles of human IVD tissues, specifically nucleus pulpous

(NP) tissues, with early and advanced stages of disc degeneration.

Methods

Human NP tissues were used in this study. The samples were divided into two groups: early

stage degeneration (n = 8, Pfirrmann’s MRI grade: I-III) and advanced stage degeneration

(n = 8, grade: IV). Genomic DNA was processed for genome-wide DNA methylation profiling

using the Infinium MethylationEPIC BeadChip array. Extraction of raw methylation data,

clustering and scatter plot of each group values of each sample were performed using a

methylation module in GenomeStudio software. The identification of differentially methyl-

ated loci (DMLs) and the Gene Ontology (GO) analysis were performed using R software

with the ChAMP package.

Results

Unsupervised hierarchical clustering revealed that early and advanced stage degenerated

IVD samples segregated into two main clusters by their DNA methylome. A total of 220

DMLs were identified between early and advanced disc degeneration stages. Among these,
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four loci were hypomethylated and 216 loci were hypermethylated in the advanced disc

degeneration stage. The GO enrichment analysis of genes containing DMLs identified two

significant GO terms for biological processes, hemophilic cell adhesion and cell-cell

adhesion.

Conclusions

We conducted a genome-wide DNA methylation profile comparative study and observed

significant differences in DNA methylation profiles between early and advanced stages of

human IVD degeneration. These results implicate DNA methylation in the process of human

IVD degeneration.

Introduction

Low back pain (LBP) is a debilitating disorder that is significantly associated with personal,

social, and economic burdens. Recent reports in the Global Burden of Disease (GBD) Study

2015 showed that 7.3% of the global population (540 million people) had activity-limiting LBP

on the global point prevalence survey[1].

Epidemiological and clinical studies have recently provided evidence that LBP has a signifi-

cant association with lumbar intervertebral disc (IVD) degeneration[2–6].

The vertebral column complex consists of ventrally located vertebral bodies and intervening

intervertebral discs (IVDs). The IVD is composed of a central gelatinous nucleus pulposus

(NP) and a surrounding fibrous anulus fibrosus (AF).

Intervertebral disc degeneration is suggested to be defined as ‘the structural and functional

failure of the disc as a result of aberrant, pathological cellular and extracellular matrix (ECM)

changes’[7]. The pathophysiology of IVD degeneration is not entirely understood; however,

environmental and endogenous factors under genetic predisposition are considered to initiate

the degenerative changes of human IVDs (see review in[8]). Intervertebral disc degeneration is

generally believed to be a consequence of increased catabolism of the ECM[8, 9]. Biochemi-

cally, IVD degeneration, especially NP degeneration, is well characterized by a change in extra-

cellular matrix molecules (loss of proteoglycan and water content in the NP), resulting in an

alteration of the biomechanical properties of IVD tissues. These degenerative changes are con-

sidered to induce the disruption of IVD tissues, leading to the degenerative disc diseases that

are associated with low back pain[9].

A substantial number of mechanisms are known that regulate gene expression and cell fate

persistence, commonly referred to as epigenetics[10]. The most extensively studied epigenetic

modulation is DNA methylation[11].

DNA methylation induces changes in gene expression without changing the DNA sequence

by adding methyl groups to a cytosine in a CpG-containing nucleotide to form 5-methylcyto-

sine[12]. When methylation is located in gene promoter and enhancer regions, DNA methyla-

tion typically acts to silence genes, whereas methylation located in gene body regions usually

induce enhanced gene expression[13]. DNA methylation is an essential mechanism to ensure

cell-type-specific gene expression for normal development, while aberrant epigenetic alter-

ations have been considered to play a pivotal role in several different diseases, such as cancer

and neurodegenerative diseases[14, 15]. Therefore, research in epigenetics, including DNA

methylation, can elucidate the key pathological process of several diseases; hence, leading to

the identification of a new molecular target for therapeutic intervention.
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Osteoarthritis (OA) is a chronic musculoskeletal disease characterized by degradation of

articular cartilage; similar biochemical changes have also been found in the pathogenesis of

IVD degeneration. The involvement of DNA methylation in the pathogenesis of OA has been

increasingly evident, reflected by the growing body of reports on the subject. Cross-Sectional

studies of DNA methylation on candidate genes have identified alternations in the methylation

status of genes involved in OA pathogenesis[16–23]. More recently, genome-wide DNA meth-

ylation studies have shown that there is a distinct methylation profile in OA cartilage com-

pared with healthy cartilage in the hip and knee joints[24–31]. However, epigenetic

alternations, including DNA methylation, in IVD degeneration have not been evaluated.

The purpose of this study was to comprehensively compare the Genome-wide DNA meth-

ylation profiles of human NP tissues at early and advanced stages of disc degeneration using

an Infinium MethylationEPIC BeadChip array.

Materials and methods

Human intervertebral disc samples

Study ethics were approved by the institutional review board of the Mie University Hospital

(Tsu, Mie, Japan; IRB reference number: H2018-050). Written or oral informed consent was

obtained from all participants.

Human IVD tissues obtained from spine surgeries were used in this study (average age:

55.6 [25–83] years-old). The degree of disc degeneration was evaluated by preoperative mag-

netic resonance imaging (MRI) according to Pfirrmann’s classification[32]: grade I (n = 3);

grade II (n = 3); grade III (n = 2); grade IV (n = 8) (Fig 1). Human IVD tissues were divided

into two groups: early stage degeneration (Pfirrmann grades I-III, Fig 1) and advanced stage

degeneration (Pfirrmann grades IV–V, Fig 1) (Table 1). NP tissues grossly separated from

human IVD samples were stored at -80˚C until used.

DNA isolation and bisulfate treatment

Frozen NP tissue samples (200–250 mg wet weight) were pulverized in the presence of liquid

nitrogen using a cryopress (Microtech Nichion, Chiba, Japan). DNA was isolated using the

Wizard1 Genomic DNA Purification Kit (Promega, City, WI, USA) according to the manu-

facturer’s instruction. First, protein precipitation solution, 0.5 M EDTA and nuclei lysis

Fig 1. Magnetic resonance imaging (MRI) of human intervertebral disc classified according to the Pfirrmann grading system[22]. Grades I to III were classified as

early stage degeneration (ED). Grade IV and V were classified as advanced stage degeneration (AD).

https://doi.org/10.1371/journal.pone.0222188.g001
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solution were added to the sample (20 mg), and the sample was then treated with Proteinase

K. Next, DNA was precipitated by adding isopropanol. Finally, the DNA pellet was washed

twice in 70% ethanol and resuspended in sterilized ultrapure water. The concentration of

DNA was measured by the Qubit1 dsDNA HS Assay Kit (Molecular Probes, City, OR, USA).

The DNA samples were stored at -20˚C. Five hundred ng of genomic DNA was then bisulfite

converted using an EZ DNA methylation kit (Zymo Research, Irvine, CA, USA) and eluted in

10 μl of elution buffer (50 ng/μl).

Genome-wide DNA methylation profiling

DNA methylation profiling was performed on bisulfite-converted genomic DNA in the Center

for Molecular Biology and Genetics of Mie University using the Infinium MethylationEPIC

BeadChip array, which allowed the interrogation of over 850,000 methylation sites throughout

the genome at single-nucleotide resolution (Line #000010, catalog #WG-317-1001, Illumina,

San Diego, CA, USA). The arrays were processed following the manufacturer’s instructions

and scanned in an Illumina iScan (Illumina). Extraction of raw methylation data, scatter plots

of each group values and clustering of each sample were performed using the Methylation

module (Version 1.90) in GenomeStudio software (V2011.1, Illumina). GenomeStudio pro-

vides the methylation data as β values: β = M/(M + U), which were calculated from the fluores-

cent signal of the methylation probe (M) and unmethylated probe (U). The β values range

from 0 (no methylation) to 1 (100% methylation).

A difference in β values between early and advanced IVD degeneration stage groups were

tested with the Illumina Custom model. False discovery rate (FDR)—corrected P values and

DiffScores were computed. The data of the Infinium MethylationEPIC BeadChip array are

available on NCBI NIH Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)

under accession number # GSE129789. For scatter plot and clustering analyses, raw data were

normalized and background was subtracted using a control probe in this array. Probes that

had a detection P—value greater than 0.01 were removed from the analysis data. Because male

and female samples were studied, sex chromosome probes were also removed.

Table 1. Patient characteristics.

ID Age (years) MRI grade Grander Diagnosis

ED01 66 III Male Degenerative disc disease

ED02 38 II Male Spinal trauma

ED03 39 I Male Spinal trauma

ED04 39 I Male Spinal trauma

ED05 25 I Male Spinal trauma

ED06 63 II Female Spinal trauma

ED07 34 III Male Spinal trauma

AD01 52 IV Female LSS

AD02 71 IV Female LSS

AD03 83 IV Female LSS

AD04 64 IV Female LDS

AD05 67 IV Female LDSc

AD06 56 IV Female LDS

AD07 74 IV Female LDS

AD08 56 IV Female LDS

ED: Early stage disc degeneration, AD: Advanced stage disc degeneration, LSS: Lumbar spinal stenosis, LDS: Lumbar degenerative spondylolisthesis, LDSc: Lumbar

degenerative scoliosis

https://doi.org/10.1371/journal.pone.0222188.t001
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Data processing and statistical analysis

Processing of the raw methylation data was performed using R (version 3.4.3; https://www.r-

project.org/) with the Chip Analysis Methylation Pipeline (ChAMP) package[33]. Raw methyl-

ation data were imported by the minfi method[34, 35], and normalized by the SWAN method

[36]. By default setting, raw data were filtered for probes with a detection P> 0.01, non-CpG

site[37], the multi-hit probe list[38] or X and Y chromosomes. As a result, the remaining

741955 probes were utilized for data analysis. To show statistically significant genome-wide

differences in the differential methylated loci (DMLs), the adjustment P-value (Adjust P.

Value) moderated with “BH (Benjamini-Hochberg)” correction was calculated using the

limma package[39, 40]. DMLs whose Adjust P.Value was less than 0.05 were selected. Gene

ontology analysis for 220 DMLs was performed using the missMethyl package with the gometh

method[41–43].

Comparison analysis of differentially methylated loci (DMLs) with human

knee osteoarthritis

To identify the common gene symbols that differentially methylated between human IVD

degeneration and human knee osteoarthritis, 187 gene symbols comprising 220 DMLs identi-

fied in this study were compared with 484 gene symbols comprising 653 DMLs identified in

knee osteoarthritis (OA) cartilage study[44]. The percentage of common gene symbols against

187 genes and the percentage of the DMLs associated with common gene symbols against 220

DMLs were calculated.

Statistical analysis

The correlation between methylation β values and age was evaluated using Pearson’s correla-

tion coefficient test. Differences in methylation β values were assessed for statistical signifi-

cance by two-way analysis of variance (ANOVA) to compare the disc degeneration groups

(ED and AD) and gender. All the statistical analyses were performed using IBM Statistical

Package for Social Sciences Software (SPSS) Statistics (IBM Japan, Tokyo). The accepted level

of significance was p<0.05.

Results

DNA methylome in early and advanced stages of human intervertebral disc

degeneration

Unsupervised hierarchical clustering revealed that early and advanced stages of degenerated

samples segregated into two main clusters by their DNA methylome (Fig 2). Cluster 1 consists

of 7 ED samples and 3 AD samples and cluster 2 consists of 5 AD samples and 1 ED sample.

Scatter plot of average methylation β values in all ED and AD samples are presented in Fig 3.

Identification of differentially methylated loci (DMLs) in early and

advanced stages of human disc degeneration

A total of 220 differentially methylated loci (DMLs) were identified in early and advanced IVD

degeneration stages, comprising a total of 187 individual genes (for the complete list of DMLs,

see supporting information, S1 Table). Among these, four loci were hypomethylated, and 216

sites were hypermethylated in the advanced stage of degenerated IVDs. The gene-associated

four hypomethylated DMLs and ten highest hypermethylated DMLs in the advanced IVD

degeneration stage are shown in Table 2.
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Examples of methylation β value plots for the four representative hypomethylated and

hypermethylated DMLs are shown in Fig 4. In the hypomethylated DMLs, the averaged β
value of CARD14, CRHR1, C14orf139 and ZBTB47 in the ED group was significantly higher

compared to those in the AD group (Fig 4A–4D). In the hypermethylated DMLs, the averaged

β value of GNL3, SNORA52, XYR5 andMED23 in the ED group was significantly lower com-

pared to those in the AD group (Fig 4E–4H).

In the total eight samples including ED and AD groups, a significant correlation between

methylation β-value and age was found in 6 genes (CARD14, CRHR1, GNL3, SNORA52,

XKR5, and MED23); however, the remaining two genes (C24orf139 and ZBTB47) showed no

significant correlation between methylation β value and age (Fig 5). When the data were ana-

lyzed by ED and AD groups, respectively, no significant correlation between methylation β val-

ues and age were identified both by ED and AD groups (Fig 5).

For evaluating the involvement of gender on DNA methylation, the β values of these repre-

sentative eight genes were statistically evaluated. A significant difference in β values by gender

was only identified by MED23 (P<0.05, Two-way ANOVA); however, the remaining seven

genes showed no significant differences by gender. Furthermore, no significant differences in

the interaction effect of disc degeneration (DD) groups and gender were also identified.

Fig 2. Unsupervised hierarchical clustering of DNA methylation values of human nucleus pulposus (NP) tissues in eight early stage (ED) and eight

advanced stage (AD) of disc degeneration.

https://doi.org/10.1371/journal.pone.0222188.g002

Genome-wide DNA methylation profile analysis of human intervertebral disc degeneration

PLOS ONE | https://doi.org/10.1371/journal.pone.0222188 September 12, 2019 6 / 20

https://doi.org/10.1371/journal.pone.0222188.g002
https://doi.org/10.1371/journal.pone.0222188


Identification of differentially methylated loci (DMLs) shared between

human IVD degeneration and human knee osteoarthritis

When compared to data of 653 DMLs from human knee osteoarthritis cartilage[44], six com-

mon genes were identified (Table 3). Among 220 DMLs comprising a total of 187 individual

genes found in the advanced stage of disc degeneration IVDs, 2.7% (6/220) DMLs, and 3.2%

(6/187) individual genes were shared with those from knee OA cartilage previously reported

by Alvarez-Garcia et al.[44].

Gene ontology analysis

The GO enrichment analysis of genes containing DMLs identified two significant GO terms

for biological processes associated with cell adhesion; these were hemophilic cell adhesion

through plasma membrane adhesion molecules (enrichment 11.2%, P = 5.86E-06) and cell-cell

adhesion through plasma membrane adhesion molecules (enrichment 7.8%, P = 9.86E-05).

Fig 3. Scatter plot of average DNA methylation level of early stage (ED) and advanced stage (AD) of degeneration.

https://doi.org/10.1371/journal.pone.0222188.g003
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Discussion

This is the first study that compared DNA methylation profiles of the human NP between

early and advanced stages of disc degeneration using the comprehensive methylation array,

the Illumina Infinium MethylationEPIC array. We identified 220 differentially methylated loci

that comprised a total of 187 individual genes, revealing that the early and advanced degener-

ated human NP tissues exhibit substantially different methylomes. Furthermore, the GO

enrichment analysis identified two significant GO terms for biological processes associated

with cell adhesion.

As written in the recent review on the biological aging of intervertebral disc[8], the authors

described that disc degeneration could be theoretically distinguished from disc aging. Disc

aging is considered to occur systemically in all spinal discs of all older individuals. On the

other hand, no precise definition of "intervertebral disc degeneration" has been accepted for

biomedical research and/or clinical practice. Adams et al.[7] reported that IVD degeneration

is considered to be a structural failure with accelerated or advanced changes of the aging disc.

Unfortunately, however, the specific biological differences between an aged disc and a degen-

erated disc have not been clearly defined because both share many similar biological, histologi-

cal, and radiological changes[7]. Importantly, degenerative disc diseases also should be applied

to be a degenerated disc that is also painful and/or associated with neurological symptoms[7].

In the clinical setting, human IVDs with a MRI finding of ‘no clear distinction between the

AF and NP’, which signifies the loss of signal of the NP on T2-weighted images, the generally

accepted image findings of disc degeneration[45, 46], were assigned to Pfirrmann grade IV or

V[32] (Fig 1). A previous study demonstrated that the loss of signal intensity in the NP area is

significantly associated with the morphological features and biochemical contents of degenera-

tive human IVDs[46]. Furthermore, the expression of catabolic factors, such as proinflamma-

tory cytokines and matrix-degrading enzymes, was upregulated in the degenerated human

IVD evaluated by MRI[47–51]. We, therefore, defined an MRI classification of more than

grade IV as ‘advanced stage of degeneration.’

Table 2. Analysis of significantly differentially methylated loci (DMLs).

Illumina probe ID Associated gene ΔMean Beta Adjust P.Value Region

Hypomethylated in AD

cg10846936 CARD14 -0.110885116 0.007781919 Body

cg09422970 CRHR1 -0.050218804 0.024295548 5’UTR

cg26175287 C14orf139 -0.044147002 0.031953803 TSS1500

cg04634182 ZBTB47 -0.083351824 0.048423567 5’UTR

Hypermethylated in AD

cg00106685 GNL3 0.105363371 0.00029138 1stExon

cg22777949 SNORA52 0.083679742 0.0005680 TSS1500

cg24668990 XKR5 0.07712002 0.0005680 Body

cg11871820 MED23 0.107756592 0.001778816 TSS200

cg24947371 GPR133 0.165178116 0.002749519 Body

cg08616760 ZNF354A 0.138590611 0.005013752 TSS200

cg07740693 / 0.104746299 0.005013752 IGR

cg21872822 IGF2BP1 0.085669086 0.005013752 5’UTR

cg20090957 MAPKAPK5 0.082908954 0.005013752 TSS1500

cg23725152 INAFM1 0.064246138 0.005013752 Body

AD: advanced stage of intervertebral disc degeneration

https://doi.org/10.1371/journal.pone.0222188.t002
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Human IVD samples at the early stage of disc degeneration were obtained from anterior

fusion surgeries of spinal trauma patients, except for one patient. On the other hand, those at

the advanced stage of disc degeneration were obtained from spinal fusion surgeries for patients

with degenerative lumbar diseases, such as lumbar spinal stenosis or degenerative spondylo-

listhesis. It should be kept in mind that the differences in DNA methylation profiles between

these two groups, therefore, reflect not only changes in MRI findings, but also the underlying

changes with/without lumbar degenerative diseases caused by progressive disc degeneration.

Nevertheless, it would not be a practical issue in this study that the human IVD samples iso-

lated from the patients with degenerative lumbar diseases can be regarded as the discs with

advanced disc degeneration (AD).

Fig 4. Differences in β value of four highest hypomethylated and hypermethylated loci between early stage (ED) and advanced stage (AD) of degeneration. � =

adjust. P. Val< 0.05; �� = adjust. P. Val< 0.01; ��� = adjust. P. Val< 0.001. A: CARD14 (Caspase Recruitment Domain Family Member 14), B: CRHR1 (Corticotropin

Releasing Hormone Receptor 1), C: C14orf139 (Chromosome 14 Open Reading Frame 139), D: ZBTB47 (Zinc Finger And BTB Domain Containing 47), E: GNL3 (G

Protein Nucleolar 3), F: SNORA52 (Small Nucleolar RNA, H/ACA Box 52), G: XKR5 (X Kell Blood Group Precursor-Related Family, Member 5), H:MED23 (Mediator

Complex Subunit 23).

https://doi.org/10.1371/journal.pone.0222188.g004
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Fig 5. Scatter plots of the β value of four highest hypomethylated and hypermethylated loci between early stage (ED) and advanced stage (AD) of degeneration

according to age. Blue dots indicate the β values of the early stage of degenerated (ED) samples, and orange dots indicate β values of the advanced stage of degenerated

(AD) samples. R2: correlation coefficient. �P<0.05, ��P<0.01. A: CARD14 (Caspase Recruitment Domain Family Member 14), B: CRHR1 (Corticotropin Releasing

Hormone Receptor 1), C: C14orf139 (Chromosome 14 Open Reading Frame 139), D: ZBTB47 (Zinc Finger And BTB Domain Containing 47), E: GNL3 (G Protein

Nucleolar 3), F: SNORA52 (Small Nucleolar RNA, H/ACA Box 52), G: XKR5 (X Kell Blood Group Precursor-Related Family, Member 5), H: MED23 (Mediator

Complex Subunit 23).

https://doi.org/10.1371/journal.pone.0222188.g005

Table 3. Overlap of differentially methylated loci (DMLs) identified in human IVD degeneration and human knee osteoarthritis (OA).

IVD degeneration (Current study) Knee OA[44]

Probe Associated gene Probe Associated gene

cg12697442 YAP1 cg09612099 YAP1
cg03646234 TMIE cg00153306 TMIE
cg23039660 FGFRL1 cg08521859 FGFRL1

cg16185996

cg04145890

cg18699025

cg07727358

cg19878849 NAA25 cg18700744 NAA25
cg14711690 ITPKB cg05306109 ITPKB
cg21580428 PCDHGA4 cg14566959 PCDHGA4

https://doi.org/10.1371/journal.pone.0222188.t003
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Biochemical characteristics of IVD degeneration, especially those of NP tissues, have been

characterized to represent the degradation of the extracellular matrix[9]. The biochemical

changes of the major components of the human NP (type II collagen and the proteoglycan

aggrecan), and also minor components, including collagen (types III, V, VI, IX-XII and XIV)

and small proteoglycans (lumican, biglycan, decorin and fibromodulin), during disc degenera-

tion have been well documented[9, 52]. However, the results of the current study showed no

significant changes in DNA methylation profiles in these major and minor matrix components

of human NP tissues between early and advanced disc degeneration.

Biologically, IVD cells, including NP cells, regulate the homeostasis of IVD tissues by main-

taining a balance between anabolism and catabolism[9]. Therefore, an imbalance between ana-

bolic and catabolic pathways is considered to be responsible for the onset and progression of

IVD degeneration.

The progression of IVD degeneration is characterized by increased extracellular matrix

degradation by locally produced matrix metalloproteinases (MMPs) and ADAMTSs (a disinte-

grin and metalloproteinase with thrombospondin motifs), which enzymatically degrade colla-

gens and aggrecan. Importantly, the expression of those matrix-degrading enzymes can be

stimulated by locally produced pro-inflammatory cytokines, such as interleukin-1β (IL-1β)

and tumor necrosis factor-α (TNF-α)[51, 53–55]. However, the current study showed that

MMPs, ADAMTSs, and proinflammatory cytokines were not differentially methylated in the

advanced IVD degeneration stage compared to those in the early stage.

Activation of nuclear factor-κB (NF-κB), which plays a central role in inflammation

through its ability to induce transcription of proinflammatory genes, including TNF-α, IL-1β,

IL-6 and IL-8[56], has been shown to increase disc degeneration by upregulating the expres-

sion of matrix-degrading enzymes, such as MMPs and ADAMTSs[57]. Interestingly, we iden-

tified three hypermethylated genes in the advanced stage of disc degeneration (CARD14[58],

EFHD2 and RTKN2[59]) that are involved in the regulation of the NF-κB pathway. Also,

hypermethylated genes associated with the MAPK signaling pathway such asMAPKAPK5[60,

61] and PRKCZ[62] that have the potential to regulate multiple catabolic molecules were

identified.

Importantly, the Wnt signaling pathway has also been reported to be associated with extra-

cellular matrix metabolism by regulating pro-inflammatory stimuli. Our results showed that

WNT5A, one of the Wnt proteins family, was differentially methylated in advanced stage

degenerated IVD tissues. Wnt proteins are a major family of signal molecules that regulate cell

biological and developmental processes[63]. Wnt proteins and the Wnt signaling pathway

have also been implicated in the regulation of inflammatory processes in osteoarthritis and

disc degeneration[64–67]. Among Wnt proteins, Wnt-5a, a representative ligand that activates

the β-catenin independent pathway in Wnt signaling, is involved in the pathogenesis of osteo-

arthritis (OA)[65, 66, 68].

Using immunohistological analysis, Li et al. reported that Wnt-5a was expressed in human

NP tissues and that its expression was significantly elevated in degenerated human NP tissues

[65]. Interestingly, recent studies showed that Wnt/β-catenin signaling pathway was activated

by YAP1, a downstream nuclear effector of the Hippo signaling pathway[69, 70], which was

also identified to be differentially methylated in the current study.

The results of the current study suggest the possibility that genes for catabolic molecules,

including pro-inflammatory cytokines and matrix-degrading enzymes, may not be differen-

tially methylated during disc degeneration in humans. However, DNA methylation may be

differentially regulated in genes associated with signaling pathways, such as NF-κB, MAP-

K-ERK and Wnt signaling pathways, that are located upstream to the gene transcription of

these catabolic molecules.
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It is well known that the anabolic regulators of human IVD cells include polypeptide

growth factors, such as IGF-1, transforming growth factor-β (TGF-β), and the bone morpho-

genetic proteins (BMPs)[71, 72].

SMADS, the main signal transducers for receptors of TGF-β[73], play important roles in

stimulating cell proliferation and IVD cell matrix metabolism. We found that SMAD3 was dif-

ferentially methylated in the IVD degeneration stage compared to that at the early stage. A pre-

vious study showed that TGF-β upregulated aggrecan and sulfated glycosaminoglycans

(sGAG) synthesis [64]. sGAG synthesis was recently reported to be stimulated by the SAMD3

signaling pathway in the regulation of expression of β-1,3-glucuronosyltransferase 1 (GlcAT-

1), a key enzyme that catalyzes glycosaminoglycan (GAG) synthesis[74, 75]. This suggests that

SMAD3 may be implicated in IVD degeneration. Additionally, a differential methylation level

of other genes that regulate TGF-β signaling, such asMECOM and ELAC2, was also identified

in our study.

Interestingly, other important growth factor-related genes, such as IGFBP4 and FGFBP2,
were found to be differentially methylated in the advanced IVD degeneration stage compared

with the early stage. From these results, we can speculate that DNA methylation profiles may

be differentially regulated, not only in catabolic factors, but also in anabolic factors, such as

growth factors, that can regulate cell proliferation and extracellular matrix metabolism of the

human NP.

Our results also showed that several enzymes that catalyze the biosynthesis of sulfated gly-

cosaminoglycans (GAGs) of proteoglycans, including CHST1, EXTL3 and SLC26A2, were dif-

ferentially methylated in the advanced stage of human disc degeneration compared to those in

the early stage.

In our study, three genes associated with the regulation of Hedgehog (Hh) signaling were

also found to be differentially methylated in the advanced IVD degeneration stage, including

SUFU[76–78], TTCIB[79] and IQCTH[80]. Hh signaling plays pivotal roles in regulating nor-

mal chondrocyte growth and differentiation. Lin et al. recently reported that a higher level of

Hh signaling in chondrocytes is responsible for the severe osteoarthritis phenotype, suggesting

that Hh signaling is associated with the severity of OA[81]. Furthermore, Sonic hedgehog

(Shh), secreted by NP cells, is essential for cell proliferation in the growing disc and differentia-

tion in the developmental stage of the mouse IVD[82]. Therefore, our results also suggest that

changes in methylation profiles related to the hedgehog pathway may be responsible for the

development of disc degeneration.

The GO enrichment analysis of differentially methylated genes further revealed significant

GO terms for biological processes associated with cell adhesion; hemophilic cell adhesion

through plasma membrane adhesion molecules and cell-cell adhesion through plasma mem-

brane adhesion molecules. Cell-matrix interactions of NP cells, as well as chondrocytes, play

crucial roles in regulating several functions, including cell survival and matrix metabolism, act-

ing through anabolic and catabolic signaling pathways through integrin and other ECM recep-

tors[83–86]. The results of the current study suggest that differential methylation loci may not

accumulate in ECM molecules and/or catabolic molecules themselves, but would rather accu-

mulate in the molecules associated with cell-matrix and/or cell-cell adhesion that are related to

the major signaling pathways relevant to the process of human disc degeneration.

Human IVDs and articular cartilage share remarkably similar anatomical composition, bio-

chemical features and molecular processes of matrix degeneration. Genetically, these two

matrix degenerative states also have common susceptibility alleles, such as single-nucleotide

polymorphism rs143383 in the 5’ untranslated region of GDF5 and asporin D14 triplet repeat

[87]. Therefore, we compared the DNA methylation profiles of human IVD degeneration

(data from the current study) with those from a previous study of human knee OA[44]. The
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results of this analysis showed that 2.7% (6/220) of DMLs overlapped between these two dis-

eases. The overlapping genes include YAP1[69, 70] and FGFRL1[88–91], which have been

reported to be associated with the pathogenesis of disc degeneration and OA. Although

these two diseases share common pathological features, the DNA methylation profiles were

very different. The authors speculate that, in addition to the genetic background, anatomical

differences in the mobile joint structure of IVDs and knee joints would contribute to differ-

ences in DNA methylation profiles between these two diseases during the process of tissue

degeneration.

There were some limitations to this study. First, IVD samples with early stage disc degener-

ation were difficult to obtain from spine surgeries. Most samples of MRI grades I to III were

obtained from spinal trauma surgeries of relatively young patients. Because of the small num-

ber of samples, IVDs with Pfirrmann MRI grades I to III were all grouped as early stage degen-

eration. Differences in DNA methylation patterns among these three grades, which would be

associated with the initiation of human disc degeneration, should be evaluated in a future

study. Second, because the radiological, biochemical and histological features of degenerative

changes in human NP tissues were well characterized[9], human NP tissues were isolated and

processed for DNA methylation analysis in this study. On the other hand, AF tissues are also

known to show degenerative changes, including irregularity of the lamella and collagen degen-

eration[9]. Therefore, it would also be of great importance to evaluate the DNA methylation

profile of human AF tissues between early and advanced stages of disc degeneration in a future

study. Third, recent epigenetic studies have shown that age and gender are significantly associ-

ated with the changes in DNA methylation profiles [92–95]. Since differences in age and gen-

der inequality exist between ED and AD group, there would be the possibility that these two

factors may have potential to affect the DNA methylation profiles of human IVD degeneration

in this study. Forth limitation of this study is that the expression of individual hypomethylated

and hypermethylated genes was not examined in this study. It has been reported that gene

transcription is also influenced by the gene features (CpG-dense promotors or gene body)

where methylation occurs[13]. Therefore, the genome-wide gene expression analysis, such as

RNA sequencing would be needed for further evaluating the function of DNA methylation in

the process of human IVD degeneration in a future study.

Conclusion

We conducted, for the first time, a genome-wide DNA methylation profile comparative study

and observed significant differences in DNA methylation profiles between early and advanced

stages of human IVD degeneration.

The overview of the DNA methylation profile in the current study revealed that DMLs were

identified in many genes associated with known molecules that have been reported to be rele-

vant to IVD degeneration. Importantly, changes in DNA methylation profiles were also found

in genes that regulate the major signaling pathways, such as NF-κB, MAPK, and Wnt signal-

ing, that are well known to be responsible for the pathogenesis of human disc degeneration.

According to the GO analysis, DMLs tended to accumulate in molecules associated with

cell adhesion, suggesting that diverse signaling pathways that regulate the cell-ECM or cell-cell

interactions that orchestrate cell survival and matrix metabolism may be implicated in the pro-

cess of human IVD degeneration.

Since the results of this study are still preliminary in a small number of samples, the evalua-

tion of gene and protein expression in addition to a genome-wide DNA methylation profiles

in an increasing number of samples would be needed to elucidate the pathological mechanism

of human IVD degeneration in a future study.
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