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ABSTRACT
Heavy metal contamination has severe impacts on the natural environment. The currently existing 
physico-chemical methods have certain limitations, restricting their wide-scale application. The use 
of biological agents like bacteria, algae, and fungi can help eliminate heavy metals without 
adversely affecting flora and fauna. Due to their inherent ability to withstand adverse environ
mental conditions, nowadays, mycoremediation approaches are receiving considerable attention 
for heavy metal removal from contaminated sites. In this review, we emphasised the role of white 
rot fungi in remediation of heavy metal along with different factors influencing biosorption, effects 
on exposed fungi, and the mechanisms involved. Bibliometric analysis tools have been applied to 
literature search and trend analysis of the research on white rot fungi-mediated heavy metal 
removal. Annual growth rates and average citations per document are 5.08% and 35.48, respec
tively. Phanerochaete chrysosporium, Pleurotus ostreatus, and Trametes versicolor have been widely 
explored for the remediation of heavy metals. In addition to providing some prospects, the review 
also highlighted a few limitations, including inconsistent removal and effects of environmental 
factors influencing the functioning of white rot fungi. Overall, white rot fungi have been found to 
have immense potential to be widely utilised for sustainable remediation of heavy metal- 
contaminated environments.
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1. Introduction

Continuously rising human population and industrial 
development has led to massive wastewater production, 
causing deterioration of soil, water, and atmosphere 
(Ahmed et al. 2021). The wastewater originating from 
agrochemical, electroplating, mining operations and ore 
processing, plastics, textiles, fertiliser, and pesticide 
industries are laden with different non-biodegradable 
heavy metals having toxicity, carcinogenicity, and reac
tivity (Santos et al. 2021; Ab Rhaman et al. 2021; Xiong et 
al. 2023; Waqas and Ahmad 2024). In addition, several 
geogenic factors also contribute to the release of heavy 
metals in different ecosystems (Rajan and 
Nandimandalam 2024). Different heavy metals of envir
onmental concern are lead, nickel, iron, zinc, cobalt, 
copper, chromium, cadmium, arsenic, and manganese 
(Singh and Singh 2018; Al-Huqail and El-Bondkly 2022; 
El-Bondkly and El-Gendy 2022; Razzak et al. 2022). After 
being released into the environment, heavy metals have 

long been recognised to exert undesirable effects on 
human health, plants, and microbial communities. 
Thus, the need to develop an efficient technology for 
their successful elimination from contaminated sites is 
evident (Abd Elnabi et al. 2023; Ghuge et al. 2023; Kou 
et al. 2023).

Different approaches in the physical, chemical, 
and biological categories have been demon
strated to significantly remove heavy metals 
from contaminated sites (Topare and 
Wadgaonkar 2023). Physical methods of removal 
involve the application of processes like flotation, 
membrane filtration, and sedimentation (Xiang 
et al. 2022; Peyravi and Rezaei 2023; Schlebusch 
et al. 2023), whereas chemical methods employ 
the process of ion exchange, solvent extraction, 
precipitation, coagulation, and adsorption (Lee 
et al. 2023; Lin et al. 2023; Skotta et al. 2023). 
Since physico-chemical methods produce large 
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amounts of secondary sludge, require strict oper
ating conditions, are expensive, not ecologically 
sound, and suffer from the limitations of safe dis
posal, biological agent-based removal of heavy 
metal is regarded as a promising approach 
(Rastegari et al. 2019). The biological method of 
heavy metal removal is based on the application 
of live as well as dead plants, bacteria, algae, and 
fungi (Ahmad et al. 2023; Chen et al. 2023; Maity 
et al. 2023; Paranjape and Sadgir 2023; Sharma 
et al. 2023). In contrast to other microorganisms, 
fungi (especially white rot fungi) are considerably 
remarkable agents for the removal of heavy 
metals because of the synthesis of chitin in their 
cell walls (Tamjidi et al. 2023), degradation of 
lignin and other chemically similar organic con
taminants, dependence on copper and manga
nese during biodegradation (Baldrian 2003), easy 
growth on lignocellulose-based substrates 
(Sharma et al. 2020), suggesting potential role in 
waste valorisation (Dhiman et al. 2024), and char
acteristic nature of membrane containing phos
pholipid, sterol, and protein (Ayele et al. 2021). 
Also, different functional groups such as PO4

3– 

(phosphate), –NH2 (amino), and –OH (hydroxyl) 
in these fungal cell walls contribute substantially 
to heavy metal sequestration (Racić et al. 2023).

Recent years have witnessed the attention of 
researchers towards the application of white rot 
fungi for the removal of heavy metals with con
siderable success due to ease in cultivation and 
high biomass produced on a wide range of sub
strates, enhanced surface area-to-volume ratio, 
and most strikingly the presence of polymers sup
porting the binding of metals (Baldrian 2003). The 
white rot fungi consisting of basidiomycetes 
members are represented by genera including 
Ganoderma lucidum, Irpex lacteus, Phanerochaete 
chrysosporium, Phlebia brevispora, Pleurotus ostrea
tus, Polyporus versicolor, Stropharia rugosoannu
lata, and Trametes versicolor (Yetis et al. 1998; 
Sharma et al. 2020; Alshiekheid et al. 2023; Tan 
et al. 2023). The essential mechanisms of heavy 
metal removal by fungi include biosorption, 
synthesis of surfactants, mineralisation, and preci
pitate formation, in addition to varied extracellu
lar and intracellular enzymatic processes (Figure 1; 
Ghosh et al. 2023). The removal of heavy metals 
by white rot fungi is influenced by many factors 

including pH, time, fungal strains, nutrient composi
tion, abundance of oxygen, temperature, biomass, 
initial concentration of heavy metals in a given envir
onment, organic compounds, and availability of com
peting ions in the medium (Sing and Yu 1998; 
Bayramoğlu et al. 2003; Hanif and Bhatti 2015; 
Noormohamadi et al. 2019; Latif et al. 2023). 
However, the microorganisms face several challenges 
that hamper their bioremediation potential of heavy 
metals. Therefore, there is a need to collate the 
information on white rot fungi-mediated remediation 
of heavy metals from contaminated aqueous and 
terrestrial ecosystems.

A systematic review covering the information 
related to white rot fungi use in sustainable reme
diation of heavy metals in the knowledge of 
authors is lacking. Therefore, the objective of the 
present review was to collate the information and 
discuss the emerging potential of using different 
white rot fungi to remove heavy metals and other 
relevant contaminants. Moreover, emphasis has 
been given to exploring the mechanisms involved 
in the remediation of heavy metals, such as sorp
tion, precipitation, accumulation, and the effect of 
environmental factors on heavy metal-induced 
changes, apart from the possibilities and asso
ciated limitations from the current perspective. 
For a systematic literature search and 
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Figure 1. An overview of important mechanisms responsible for 
the heavy metal removal by white rot fungi.
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presentation of the research trends, bibliometric 
analysis tools were also used to carry out this 
review.

2. Methodology: bibliometric analysis

To observe the trends in research concerned with 
heavy metal removal using white rot fungi during 
the last three decades (1995–2024), we performed 
a bibliometric analysis using the search query “white 
rot fungi” AND “heavy metal” in the “Web of Science 
Core Collection” and “Scopus” databases by following 
Singh et al. (2023). This analysis helps overview the 
research trends and find possible gaps for future 
research in particular areas. The “bibliometrix” pack
age in R (ver. 4.1.0) was used for the bibliometric 
analysis (Aria and Cuccurullo 2017). The search query 
yielded 128 and 129 documents for the Web of 
Science and Scopus databases, respectively, pub
lished until the first quarter of 2024. Annual scientific 
production for the selected search string is presented 
in Figure 2 which depicts the growth of the research 
field over the last three decades. To further present 
the research trend, we preferred the keyword-plus 
(ID) data from the Web of Science search results, as 
it covers a wide range of publications indexed after 
a rigorous process. Word cloud diagram, keyword co- 
occurrence network plot, strategic thematic map, 
multiple-correspondence analysis (MCA), and the
matic evolution plots have been used for presenting 
the research trend on the selected topic using the 

bibliometrix package (Aria and Cuccurullo 2017). The 
main information of the bibliometric analysis is pre
sented in Table S1. In brief, a total of 128 documents 
(108 articles, 19 reviews, and 1 conference abstract) 
from 83 sources with 550 keywords plus (ID) and 426 
authors’ keywords were obtained for the search query 
“(TITLE-ABS-KEY (‘white rot fungi’) AND (‘heavy metal’) 
PUBYEAR > 1995)”. The annual growth rate and cita
tions per document for the current search were 5.08% 
and 35.48, respectively. 

3. Research trends in heavy metal remediation 
using white rot fungi

The first document on heavy metal remediation 
using white rot fungi was published in 1996. 
However, the field started getting increased atten
tion from researchers in 2011 (9 documents pub
lished) onwards (Figure 2). In 2023, a total of 16 
papers were published related to the use of white 
rot fungi for heavy metal remediation. Moreover, 
four documents have already been published in 
the first quarter of 2024, which reveals an increasing 
attention of researchers. Out of the total publica
tions, 50%–60% of the documents have been pub
lished during the last 10 years. This reflects the 
increased attention this research field has received 
in the last few years. Table S2 lists the top 10 
countries, institutions, authors, and journals/sources 
that publish research on using white rot fungi for 
heavy metal remediation from contaminated sites. 
Among the top countries publishing research on 
this topic, China stands first with a frequency of 
100 documents published till the first quarter of 
2024, followed by India (48), Turkey (41), Italy (28), 
and Pakistan (27) (Table S2). Interestingly, the 
Turkish researchers had initiated pioneer work on 
this research topic. However, the field has recently 
received wider attention among the research com
munities in South Asian countries. These findings 
are in coherence with the top researchers and insti
tutions focusing on different dimensions of utilising 
white rot fungi for heavy metal remediation (Table 
S2). Among the top sources (journals) publishing 
research on white rot fungi as heavy metal biore
mediation agents, Bioresource Technology ranks first 
by publishing seven documents up till the first 
quarter of 2024, followed by Chemosphere (6), 
Journal of Hazardous Materials (5), Environmental 
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Figure 2. Cumulative number of documents related to use of 
white rot fungi for heavy metal remediation published during 
the last three decades (1995 to 2024) in web of science core 
collection and Scopus databases (data source: Scopus 2024; Web 
of Science Core Collection 2024).
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Science and Pollution Research (5), and Ecotoxicology 
and Environmental Safety (3).

Based on the Web of Science Keyword-plus data
sets, Figure 3 represents the focus areas of white rot 
fungi for heavy metal remediation. It can be seen that 
degradation/biodegradation, removal, biosorption, 

wastewater, and polyaromatic hydrocarbons are the 
top five most frequent words (>15 frequencies), which 
have been considerably explored in recent years 
(Figure 3). Heavy metals-degradation-wastewater 
(green), white rot fungi-Phanerochaete chrysosporium- 
Trametes versicolor (red), removal-biosorption- 
cadmium (blue), and mechanism-accumulation 
(magenta) form four different but interrelated clusters 
for overall research on white rot fungi-mediated 
metal remediation (Figure 4). Further, phytoremedia
tion of organic pollutants and heavy metals by using 
bacteria and fungi constituted the motor and niche 
themes whereas agricultural wastes, contaminated 
soil, microbial biomass, maturity and sludge stability, 
identification, and protection were observed in the 
emerging/declining themes in the thematic map 
(Figure 5). It reflects the research focus on the identi
fication of new species of white rot fungi and sludge 
management for the sustainable remediation of 
heavy metals.

A conceptual structure map based on the multiple 
correspondence analysis revealed the formation of 

Figure 3. Word cloud diagram based on keyword plus database 
depicting the focus areas of research related to white rot fungi 
for heavy metal remediation. The size of words represents the 
frequency of occurrence in the literature search (data source: 
Web of Science Core Collection 2024).

Figure 4. Keyword co-occurrence network map of research on heavy metal remediation using white rot fungi. The texts represent the 
nodes, whereas threads/edges represent the interconnections of different keywords. The size of texts and strength of threads/edges 
are based on the frequency and interconnectedness of the keywords. Assemblages of similar nodes are represented by similar colors 
and the cluster is named based on the larger node with maximum interconnecting threads/edges (data source: Web of Science Core 
Collection 2024).
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two distinct clusters related to the application of 
white rot fungi in the remediation of heavy metals 
from aqueous solution (blue cluster) and soil (red) 
ecosystems (Figure 6). These observations corrobo
rate with the co-occurrence network plot. The two 
dimensions of these clusters cumulatively cover  
~48% of the contribution of the research on this 
topic. The thematic evolution plot (Figure 7) reveals 
that during the initial study period (1996–2011), the 
focus was mainly on using white and brown-rot fungi 
to remove heavy metals from wastewater via accu
mulation and biosorption. These fields further diver
sify towards the sorption/adsorption of heavy metals 
and dyes from aqueous solutions and contaminated 
soils using different fungal species (e.g. Lentinula 
edodes, Phanerochaete chrysosporium, Trametes versi
color) and enzymes (e.g. laccases) for their sustainable 
remediation during the recent period i.e. 2020– 
onwards (Figure 7). Convergence of wastewater, 
microbial biomass, and heavy metal nodes (1996– 
2011) towards heavy metals (2012–2020) and then 
its divergence towards the soil, heavy metals, 

bioremediation, and laccases further revealed the 
emergence of research on the enzymatic remediation 
of heavy metals in the recent years (Figure 7), which is 
also depicted in conceptual structure plots (Figure 6).

4. Management of heavy metal contaminated 
sites

4.1. Physico-chemical methods

Many physico-chemical methods have been used to 
remove heavy metals from a contaminated environ
ment. Among physico-chemical methods, adsorption 
is the most commonly employed technique because 
of easy handling, ease of access, cost-effective nature, 
efficacy, and good efficiency (Mudhoo et al. 2012). 
The phenomenon of adsorption is based on the 
adherence of a substance to different phases. It has 
been found to be effective for organic contaminants 
and inorganic contaminants, including heavy metals 
(Jadoun et al. 2023). Recently, the retention of differ
ent heavy metals on zeolites employing the 

Figure 5. Strategic thematic map of research on heavy metal remediation using white rot fungi. It represents the conceptual evolution 
of the topic by distributing the keywords in different themes/quadrants based on the centrality (horizontal x-axis) and density (vertical 
y-axis). Here, centrality represents the frequency of linkages between different clusters (themes), whereas density represents the 
frequency of internal links within a cluster (theme). The quadrants of the thematic map have intuitive importance. They are named 
motor themes (1st upper right), niche themes (2nd upper left), emerging or disappearing themes (3rd lower left), and basic themes (4th 

lower right) in an anti-clockwise manner (data source: Web of Science Core Collection 2024).
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phenomenon of adsorption has been reviewed by 
Velarde et al. (2023). Membrane filtration is another 
technique widely utilised to separate heavy metals 
like arsenic, mercury, lead, and cadmium from 

contaminated water. Different forms of membrane 
filtration currently in use are nanofiltration, ultrafiltra
tion, microfiltration, and reverse osmosis, with a quite 
success in the area of water decontamination and 

Figure 6. Conceptual structure plot using multiple correspondence analysis (MCA) based on keyword plus database related to the 
topic of heavy metal remediation using white rot fungi (data source: Web of Science Core Collection 2024).

Figure 7. Thematic evolution map of the research topic “heavy metal remediation using white rot fungi” based on keyword plus 
database of web of science core collection for the time period 1995 to 2024. The evolution map is presented in three time periods, viz., 
1995 to 2011 representing the initial 15 years of research, followed by 2012 to 2020 highlighting the last 10 years, and 2021 to 2024 
representing the focus of research in the last four to five years. The map showed the convergence and divergence of different research 
areas within the given time periods (data source: Web of Science Core Collection 2024).
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salinity removal (Monachan et al. 2022; Samavati et al.  
2023). Chemical precipitation is classified as hydro
xide, sulphide, and chelating agent, one of which is 
the conventional heavy metal removal during waste
water purification. The process effectively removed 
heavy metals, including zinc, lead, cobalt, copper, 
chromium, nickel, and iron (Fei and Hu 2023). The 
process encompasses the generation of insoluble pre
cipitate of target heavy metal by amendment of pre
cipitants and pH modifications followed by separation 
using sedimentation and filtration depending on the 
conditions (Chen et al. 2018; Benalia et al. 2022; Liu 
et al. 2023). However, as mentioned earlier, the phy
sico-chemical approaches have several challenges 
related to optimised working conditions, environ
mental factors, cost-effectiveness, etc., limiting their 
broader uses. It paves the way to explore the biologi
cal approaches for the sustainable remediation of 
heavy metals from contaminated sites.

4.2. Biological methods based on white rot fungi

Researchers have continuously searched for new bio
logical agents to eliminate hazardous heavy metals 
negatively affecting diverse environmental com
plexes. Biological methods of heavy metals are con
sidered quite appealing because of their non-toxicity, 
inexpensive in nature, effective for low concentration, 
ease of handling and renewable property of biosor
bent, high volume contaminant treatment in short 
duration, increased surface binding and accumulation 
as well as the most characteristically the generation of 
substantial amount of active biomass (Lo et al. 2014; 
Sharma and Malaviya 2016; Yin et al. 2019; Kumar and 
Dwivedi 2021) to be employed further for sequestra
tion of contaminants other than heavy metals in 
native as well as chemically modified form. For exam
ple, Phanerochaete chrysosporium, a white rot fungus, 
has been suggested for the removal of more than 
90% lead from contaminated environments having 
50 mg/L concentration through the mechanisms 
involving both extracellular surface retention as well 
as intracellular accrual (Huang et al. 2017). 
Phanerochaete chrysosporium assisted removal of cad
mium and nickel has shown adsorption efficiencies 
equivalent to 96.23% and 89.48%, whereas the 
adsorption capacities were registered as 71.43 mg/g 
and 46.50 mg/g, respectively, suggesting the suitabil
ity of white rot fungi (Noormohamadi et al. 2019).

The experimental investigations of Wollenberg 
et al. (2021) have documented the uranium 
sequestration capacities for Schizophyllum com
mune and Pleurotus ostreatus in the order of 
463.2 ± 38.1 μmol/g and 441.8 ± 79.4 μmol/g indi
cating opportunities in cleaner production technol
ogy. Sharma et al. (2022) have explored the 
efficiency of white rot fungus identified as Phlebia 
floridensis for removing mercury in a batch culture 
system at a specified temperature. The fungus hav
ing a tolerance up to 100 μmol/L was able to 
remove 70%–84% of mercury depending upon 
the initial concentration encompassing both intra
cellular accumulation and surface adsorption, 
thereby advocating the employment for the treat
ment of wastewater laden with mercury. The con
tribution of Lentinus crinitus for removing heavy 
metals from tannery, galvanic effluent, and syn
thetic medium has been elucidated by Osório da 
Rosa et al. (2022). The fungus was able to reduce 
the concentration of lead to 85.29% from synthetic 
medium, whereas removal of higher than 98% was 
recorded for iron, chromium, and aluminium pre
sent in tannery wastewater, hence verifying an 
important strategy for the bio-removal.

The investigations of Sharma et al. (2023) have vali
dated the applicability of white rot fungi, namely 
Phlebia brevispora, Phlebia floridensis, and 
Phanerochaete chrysosporium for the removal of nickel, 
cadmium, and lead from industrial wastewater maxi
mally up to 99% as confirmed through atomic absorp
tion spectrophotometer (AAS) and energy-dispersive 
X-ray spectroscopy, hence pointing towards the appli
cation as reasonable biosorbent. Further, the study 
revealed the induction of deformities and uneven 
development of fungal mycelia exposed to heavy 
metals in wastewater. The suitability of two white rot 
fungi, including Pleurotus ostreatus and Agaricus bis
porus, for successful biosorption of heavy metals such 
as lead, mercury, and cadmium has recently been sug
gested (Sarwar et al. 2023). Pleurotus ostreatus proved 
to be a better mycofiltration candidate with the sorp
tion potential 9–189 mg/g and 1–21.4 mg/g for lead 
and cadmium, respectively, compared to A. bisporus. In 
contrast, considerable mercury removal, ranging from 
0.6 to 10 mg/g was noticed for A. bisporus. Additionally, 
the bio-removal by candidate white rot fungi reflected 
enhancement in mycofiltration with the temperature 
rise.
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4.3. Advantages of white rot fungi over other 
biological and physico-chemical methods

Some of the well-known characteristics of white rot 
fungi include their growth on lignin-rich substrates, 
high biomass production, tolerance to heavy metals, 
ease in cultivation, ability to degrade a wide range of 
agro-wastes (Dhiman et al. 2024) and organic con
taminants using enzymatic systems such as laccase, 
lignin peroxidase, and manganese peroxidase. White 
rot fungi grow profusely on lignin-rich substrate and, 
therefore, can be employed not only for the manage
ment of the massive amount of lignocellulosic waste 
generated globally, through the improved biosynth
esis of lignocellulolytic enzymes (Huang et al. 2024), 
but also for the synthesis of biocomposites (Saini et al.  
2024). Further, white rot fungi play an important role 
in the cycling of heavy metals through the binding 
and release process. White rot fungi are considered as 
efficient degraders of lignin-based substrates and 
hence would be envisaged to induce a negligible 
effect on agroecosystems. In addition, because of 
a large amount of biomass production, white rot 
fungi would remove metal and other contaminants 
more effectively in comparison to other biological 
and physico-chemical treatment methods. White rot 
fungi can be quickly grown on lignin-based substrates 
for heavy metal removal, in contrast to the require
ment for high chemical doses in chemical treatment 
processes. The used biomass can be regenerated mul
tiple times for further use as a biosorbent. The white 
rot fungus Phanerochaete chrysosporium has been 
most widely utilised to remove heavy metals (Chen 
et al. 2022) because of ease of cultivation, availability, 
and increased biomass production. Recent studies 
have indicated a significant contribution of yeast 
(class ascomycetes) and other filamentous fungi in 
eliminating heavy metals (Kumar and Dwivedi 2021; 
Jamir et al. 2024).

The type of heavy metal removed by white rot 
fungi and other fungal groups is determined by the 
nature of the cell wall, the chemical composition of 
extracellular matrices, enzymes produced, surface 
charge, biomass, contact duration, and most strikingly 
the presence of competing cations and anions (Li 
et al. 2020; Zhao et al. 2020; Yildirim et al. 2022). The 
removal of heavy metals for valence and ionic states is 
determined by their interaction with cell wall 

constituents. Thus, the highly negatively charged 
cell wall will attract more positively charged metal 
ions. Overall, the higher the degree of ionisation and 
valence, the greater attractive forces would be 
expected with the resultant removal of heavy metals. 
Apart from the valence state, ionic state, and type of 
element, the concentration of metal ions, the dose of 
fungal biomass, and duration of contact also regulate 
the process of heavy metal removal. The property of 
single heavy metal removal and sorption by fungus in 
a mixture of heavy metals differs (Gola et al. 2016). 
A list of different white rot fungi showing heavy metal 
sequestration is presented in Table 1.

5. Effect of heavy metals on white rot fungi

Exposure to heavy metals induces different antiox
idant defence enzymes, including catalase, super
oxide dismutase, and glutathione transferase, in 
addition to crucial molecules of glutathione, ascor
bate, oxalate, laccase, and phenolic constituents in 
white rot fungi (Jarosz-Wilkołazka et al. 2006; Chen 
et al. 2014). For instance, catalase directs the con
version of hydrogen peroxide to water and oxygen 
(Nandi et al. 2019). Superoxide dismutase defends 
the cell against reactive oxygen species (Fujii et al.  
2022). In addition, different enzymes are known to 
facilitate the oxidation and reduction of heavy 
metals, thereby protecting against cellular damage. 
As a general rule, the elevation in stress response in 
the presence of rising heavy metal content results in 
the increment of antioxidant activities. Nevertheless, 
such modulations may vary regarding selected fun
gal strains, culture conditions, and metal content 
(Xu et al. 2021). Noteworthy, the effect of heavy 
metal dose and treatment duration on antioxidant 
defence responses as reflected by variations in the 
level of superoxide dismutase, catalase, peroxidase, 
glutathione, reactive oxygen species, and malon
dialdehyde was reported by Chen et al. (2014). 
Such responses, however, may be more complex 
for a given white rot fungus in the presence of 
more than one contaminant of either organic or 
inorganic nature (Feng et al. 2018; Guo et al.  
2018). The induction of oxidative stress led by 
heavy metals promotes the increased expression of 
an array of genes encoding extracellular enzymes, 

592 V. K. SINGH AND R. SINGH



facilitating the degradation of organic contaminants 
(Liu et al. 2020). Reduction in dry weight and rise in 
lipid peroxidation as measured through estimation 
of malondialdehyde content of white rot fungus 
Pleurotus ostreatus with the rise in soil cadmium 
content, thereby suggesting inhibitory action, has 
been well acknowledged recently (Dou et al. 2023). 
In addition, the elevation in the level of cadmium 
led to a substantial increment in superoxide dismu
tase and peroxidase in the fruiting body. The most 
notable enzymes in white rot fungi contributing to 
metal leaching are lignin peroxidase, manganese 
peroxidase, laccase, and CYP450. A list of enzymes 
released by white rot fungi that help remediate 
heavy metals is presented in Table 2.

6. Mechanisms of heavy metal remediation

Although several mechanisms have been proposed 
for removing heavy metals (Figure 1), biosorption is 
the primary method (Sharma et al. 2021). The heavy 
metals interaction with constituents of the cell wall 
and plasma membrane helps organisms to cope with 
the negative consequences (Figure 8). The biosorp
tion may involve three distinct steps, including rapid 
adherence, gradual mobilisation from the outer to the 
internal environment, and eventually, the attainment 
of the equilibrium stage (Lu et al. 2020). The interac
tion of heavy metals with different functional groups 
present in the fungal cell proteins, fatty molecules, 
and carbohydrates can be satisfactorily revealed by 
using Fourier transform infrared (FTIR) spectroscopy 

Table 1. Application of white rot fungi for the remediation of heavy metals from the contaminated sites.
S. No. Name of fungi Heavy metal Remarks References

1 Phlebia brevispora and 
Phlebia floridensis

Pb, Cd, and Ni Nearly complete removal of Ni, and Cd in comparison to 12% to 98% 
removal of Pb.

Sharma et al. 
(2023)

2 Pleurotus ostreatus Cu, As, Cd, and Pb The content of metal accumulation increased with the rise in substrate and 
varied according to the strain used.

Atila and 
Kazankaya 
(2023)

3 Trametes pubescens Zn Zn removal increased with the elapse of time. The study revealed 67.1% 
removal in 120 hours with sorption capacity as 44.7 mg/g.

Farhadi et al. 
(2023)

4 Trametes pubescence Ni and Pb Nearly 100% removal of Pb and 9% removal of Ni at 1,000 mg/L 
concentration was observed. Both live and dead biomass accumulated 
metals.

Enayatizamir et al. 
(2020)

5 Phanerochaete 
chrysosporium

Cd2+ and Ni2+ The response surface method was employed for optimization in terms of 
pH, temperature, contact time, and initial metal content. The Cd and Ni 
accumulation were found as 96.23% and 89.48% at a concentration of 
25 mg/L and 16 mg/L, respectively, under defined conditions.

Noormohamadi 
et al. (2019)

6 Phanerochaete 
chrysosporium

Pd The removal efficiency was determined in the range of 22–128 Pd mg/g of 
fungal biomass and involved the generation of Pd nanoparticles by the 
process of biomineralization.

Tarver et al. 
(2019)

7 Pleurotus ostreatus 
HAAS

Pb, Cd, and Cr The order of metal removal was noted as Pb > Cd > Cr. Also, the oxalic acid 
secreted by the white rot fungus reduced the content of heavy metal by 
chelation.

Yang et al. (2017)

8 Pleurotus ostreatus Cr(III), Cd(II), and Cu(II) Optimum adsorption occurred in the pH range 4–5 with flow rate 2.5 mL/min. Kocaoba and 
Arısoy (2011)

9 Immobilized 
Pycnoporus 
sanguineus

Cd The uptake enhanced with the rise in pH, temperature, and initial 
concentration. The sorption by selected fungus was endothermic and 
spontaneous process.

Mashitah et al. 
(2008)

10 Phanerochaete 
chrysosporium and 
Funalia trogii

Cu The pH 5.0 was optimum for adsorption and did not depend on 
temperature between 20–45 °C. Live biomass proved to be superior in 
comparison to dried one. Under optimized condition, the biosorption by 
both live and dead biomass ranged from 40%–60%.

Sibel et al. (2005)

11 Trametes versicolor Cu2+, Pb2+, and Zn2+ Maximum sorption was recorded at the pH range 4 to 6. Temperature 
variation between 15–45 °C did not influence sorption.

Bayramoğlu et al. 
(2003)

12 Trametes versicolor Cd Nearly complete Cd removal was achieved within first two hours involving 
energy independent sorption process with the rate equivalent to nearly 
2 mg Cd per g biomass.

Jarosz-Wilkołazka 
et al. (2002)

13 Pycnoporus sanguineus Pb, Cu, and Cd Biosorption was suggested as complex phenomenon. The biosorbent 
developed can be used for multiple removal experiment after 
regeneration.

Zulfadhly et al. 
(2001)

14 Trametes versicolor Cd Sorption capacities for live and dead immobilized fungal biomass  
was determined in the order of 102.3 ± 3.2 mg Cd(II)/g and  
120.6 ± 3.8 mg Cd(II)/g with the attainment of sorption equilibrium in 
one hour.

Arıca et al. (2001)

15 Phanerochaete 
chrysosporium

Cu The fungus removed 3.9 mmol of Cu per gram dry weight. The maximum 
adsorption by fungal mycelia was observed at pH range near 6.0. The 
fungus proved better sorbent in comparison to resin.

Sing and Yu 
(1998)
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Table 2. A list of enzymes released by the white rot fungi that help leach and remove heavy metals from contaminated sites.
S. No. White rot fungi Name of enzyme Leaching/removal of heavy metal References

1 Ganoderma 
multipileum

Laccase More than 94% of 100 μg/mL hexavalent chromium was reduced to trivalent 
chromium.

Alshiekheid 
et al. (2023)

2 Phanerochaete  
chrysosporium

Lignin peroxidase, Mn 
peroxidase

Nearly 50% gold recovery was attained in the presence of white rot fungus. Hein et al. 
(2023a)

3 Phanerochaete 
chrysosporium

Lignin peroxidase, Mn 
peroxidase

Approximately 45% gold was recovered after oxidation of ore. Hein et al. 
(2023b)

4 Phanerochaete 
chrysosporium

Laccase, lignin 
peroxidase, Mn 
peroxidase

Copper leaching ascribed to fungal enzymes and organic acids was recorded as 54%. Liu et al. (2022)

5 Pleurotus florida Laccase The biological activity of laccase was found to be responsible for biosorption and 
leaching of copper and iron from print circuit boards under submerged conditions.

Kaur et al. 
(2022)

6 Trametes 
pubescence

Laccase Laccase released from white rot fungus assisted the biosorption of lead and nickel. Khozani et al. 
(2021)

7 Phanerochaete 
chrysosporium

Lignin peroxidase, Mn 
peroxidase, laccase

Treatment with the white rot fungus for 14 days led to 60.96% removal of copper in 
comparison to the control. The leaching was also facilitated by release of different 
organic acids such as oxalic, citric, and gluconic acid.

Liu et al. (2020)

8 Trametes hirsuta Laccase Nearly absolute removal of hexavalent chromium was observed. Liu et al. (2020)
9 Phanerochaete 

chrysosporium
Not specified Arsenic, zinc, lead, chromium, cobalt, nickel etc. removal. Park and Liang 

(2019)
10 Phanerochaete 

chrysosporium
Lignin peroxidase, Mn 

peroxidase, laccase
Fungal treatment was responsible for the leaching of 18% of iron from pyrite. The 

leaching was ascribed to the combined action of enzyme, hydrogen peroxide, and 
organic acids.

Yang et al. 
(2018)

11 Phanerochaete 
chrysosporium

CYP450 The inhibitor-induced reduction in the removal of cadmium suggested the role of 
enzyme CYP450 in heavy metal sequestration.

Zhang et al. 
(2015)

12 Phanerochaete 
chrysosporium

Lignin peroxidase, Mn 
peroxidase

The presence of white rot fungus improved the recovery of gold. Ofori-Sarpong 
et al. (2010)
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Figure 8. Mechanism of heavy metal removal by white rot fungi and effect on cellular processes. HMr: Heavy metal reduced; HMo: 
Heavy metal oxidized; SOD: Superoxide dismutase; POD: Peroxidase; CAT: Catalase; LiP: Lignin peroxidase; MnP: Manganese 
peroxidase; ROS: Reactive oxygen species. Variations in circle color depict changes in the type of heavy metal.
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(Rudakiya et al. 2018). The release of organic com
pounds such as oxalic acid by Pleurotus ostreatus 
HAAS in response to lead and chromium stress has 
been considered to play an important role in the chela
tion of heavy metals and subsequent sequestration as 
evidenced by reduction in soluble fraction is elucidated 
(Yang et al. 2017). The induced biosynthesis of exopo
lysaccharide in white rot fungi harbouring diverse 
functional groups (e.g. amide, phosphoryl, and sulph
hydryl) upon exposure to heavy metal stress is promis
ing in the field of bioremediation (Wang et al. 2015). It 
mediates heavy metal removal through the phenom
ena of ion exchange, complex formation, and precipi
tate generation on its exterior cell components (Wang 
et al. 2015). Another strategy suggested for heavy 
metal remediation adopted by the white rot fungus 
Pleurotus ostreatus HAU-2 is intracellular bioaccumula
tion, indicating its role in the cleansing of the contami
nated environments, including soil (Li et al. 2017).

The intracellular accumulation may be linked to the 
association of short peptides, including metallothio
nein and glutathione, with heavy metals followed by 
mobilisation in the vacuole and subsequent vacuole 
transport facilitated by microtubules (Xu et al. 2014; 
Brunsch et al. 2015; Schlunk et al. 2015).

7. Factors influencing white rot fungi assisted 
remediation

Various factors including substrate, tolerance of test 
fungus, the toxicity and content of heavy metals, 
presence of chelating ions, and the amount of com
peting ions influence the removal of heavy metals by 
white rot fungus. In addition, several environmental 
factors, including pH, temperature, initial metal con
centration, contact duration, media composition, 
competing ions, biomass, shaking versus non- 
shaking, redox status, whether immobilised or not, 
live or dead, and oxygen availability considerably 
govern the detoxification and remediation of heavy 
metal contaminated environment by white rot fungi 
(Figure 9; Bayramoğlu et al. 2003; Javaid et al. 2011; 
Priyanka and Dwivedi 2023). Changes in pH favour the 
alterations in charge on the cell exterior as well as 
the level of ionisation (Aksu 2005). The reduction in 
the sorption of heavy metals at higher pH has been 
attributed to precipitation and net charge modifica
tion (Dönmez and Aksu 2002; Bayramoglu et al. 2005). 

The rise in the percent removal of heavy metals with 
the increase in biomass and shaking up to a certain 
extent, followed by saturation, was reported by Javaid 
et al. (2011). The increase in biomass offers abun
dance in available binding sites rendering improved 
interaction with heavy metals. Similarly, the biomass 
agitation process exposes maximum-binding sites to 
associate with heavy metals of interest. Therefore, the 
optimisation of process parameters is one of the cru
cial factors for the sequestration of target heavy 
metals or complexes thereof from the contaminated 
sites.

Most of the studies have reported the potential of 
white rot fungi in the removal of heavy metals from 
aquatic ecosystems (Arıca et al. 2001; Yang et al. 2017; 
Noormohamadi et al. 2019; Sharma et al. 2022) in com
parison to soil ecosystems (Novotný et al. 2000). Most of 
the studies on soil decontamination are confined to 
laboratory studies. However, for treatment, the fixed 
amount of soil is liquefied with liquid culture and inocu
lated with spore to observe the removal of heavy metals 
in comparison to appropriate control conditions (He 
et al. 2022). The treatment of heavy metal contaminated 
aquatic environment involved fungal growth in 
a suitable medium followed by the adjustment of pH, 
temperature, shaking condition, and contact duration 
for the optimal removal (Sharma et al. 2020).

Factors 
influencing 

removal 

Time

pH

Temperature

Heavy metal 
concentration

Fungal 
biomass

Shaking rate

Figure 9. Factors influencing heavy metal removal by white rot 
fungi.

MYCOLOGY 595



Overall, the challenges of bioremediation using 
white rot fungi can be envisaged as follows: a) 
slow biological activity, b) reduced activity of 
microbes under field conditions, c) requirement 
of specific substrates in some cases for efficient 
sequestration, and d) strain specificity for target 
heavy metals. Thus, a particular microbe cannot 
be equally effective for all types of heavy metals 
in a contaminated environment.

8. Conclusions and future perspectives

Heavy metal contamination around the globe has 
significantly affected the integrity of aquatic and ter
restrial environments, posing immense risks to human 
health manifested in the form of myriads of diseases. 
So far, different physico-chemical strategies have 
been employed for the decontamination of sites 
affected by heavy metals. Nevertheless, those relying 
on biological methods have drawn significant interest 
because of process efficiency, low cost, chemical-free 
nature, and environment friendliness. Plethora of 
white rot fungi have successfully been demonstrated 
to sequester the hazardous heavy metals from con
taminated aqueous and terrestrial environments due 
to easy growth on simple substrates and high bio
mass production. The important mechanism under
lying heavy metal elimination involves surface 
binding through adsorption, intracellular accumula
tion, precipitation, mineralisation, and complexation 
with exopolysaccharides. Heavy metal removal is gov
erned by several factors, such as pH, temperature, 
agitation, media composition, biomass, competing 
ions, etc. Therefore, clean technology is fundamental 
to optimising process conditions for maximising 
heavy metal removal. Most of the studies pertaining 
to the role of white rot fungi in heavy metal remedia
tion have been conducted under laboratory condi
tions. Nevertheless, success at the laboratory level 
would certainly promote collaboration between 
industry and policymakers. Future research on heavy 
metal removal by white rot fungi needs to focus on 
the following aspects:

● Each kind of contaminated site could not be 
remediated effectively with the same fungus. 
The efficiency of a given white rot fungus for 
heavy metal removal may differ for aquatic and 
terrestrial environments, thus, demanding 

exhaustive research work to translate the full 
potential.

● A particular white rot fungus may not always be 
suitable for all heavy metals existing in the envir
onment; therefore, searching for new fungi and 
detailed mechanisms involved should be priori
tised to improve the effectiveness of the process. 
The research should be done on the isolation of 
white rot fungi showing tolerance to a wide 
range of organic contaminants such as pesti
cides, herbicides, and petroleum products; emer
ging contaminants such as endocrine disruptors, 
pharmaceuticals; and inorganic contaminants 
such as heavy metals as the environment is 
often enriched with complex pollutants.

● Some white rot fungi may show better efficiency 
in heavy metal removal programmes while work
ing in association with the bacteria. The applica
tion of a consortium of white rot fungi alone or 
with bacteria, another approach, may aid in the 
effectiveness of decontamination. The applica
tion of consortia could be a viable option for 
the sustainable management of inorganic resi
dues and organic contaminants.

● The pre-adaptation of a particular white rot fun
gus to a range of heavy metals could offer new 
directions in decontamination. Also, the isolation 
of fungus tolerant to multiple heavy metals could 
provide better opportunities in the field of 
bioremediation.

● Growth optimisation for successful remediation 
of heavy metal contaminants under natural con
ditions must be studied extensively.

● Despite large in vitro evidence of efficient reme
diation capabilities of white rot fungi, success at 
the industrial scale is still awaited. Modifying 
biomass using heat or chemical treatment to 
increase the surface-binding sites could be con
sidered a vital remediation strategy.

● Noteworthy, the development of genetically 
modified strains with improved enzyme 
expression and tolerance to multiple metals 
is another area of interest in translating the 
potential of ligninolytic fungi. Genetically 
engineered white rot fungi can be a better 
candidate for bioremediation of heavy metals; 
however, the study on genetically modified 
white rot fungi is still in its infancy. The 
major objective of harnessing the potential 
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of white rot fungi lies in the efficient seques
tration of heavy metal without compromising 
the metal detoxification phenomena. 
However, strict regulatory laws would be 
required for the application of genetically 
modified organisms to avoid plausible envir
onmental and health risks.
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