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Introduction
Successful spatial navigation is required for many everyday tasks: 
animals have to find food and shelter and remember where and 
how to find these, humans need to navigate to work, home or to 
the supermarket. Since natural environments are inherently het-
erogeneous and subject to continuous change, animal brains have 
evolved robust and flexible solutions to solve challenges in spatial 
navigation.

In the mammalian brain, and to some extent also the avian 
brain (Bingman and Sharp, 2006; Colombo and Broadbent, 
2000), the hippocampus has long been recognised to play a cen-
tral role in place learning, memory and spatial navigation, based 
on the behavioural effects of lesions and other manipulations of 
the hippocampus (Morris et al., 1982, 1986, 1990) and based on 
the spatial tuning of certain hippocampal neurons, so-called 
place cells (Jeffery, 2018; Moser et  al., 2017; O’Keefe, 2014; 
O’Keefe and Dostrovsky, 1971). Studies combining hippocam-
pal manipulations with behavioural testing in rodents have 
revealed that the hippocampus is particularly important for 
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shown on watermaze and virtual delayed-matching-to-place tasks by rats and humans, respectively, if complemented with map-like place representations. 
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prediction error and may account for flexible, trial-specific, navigation to familiar goal locations, as required in some arm-maze place memory tasks, although 
it does not capture one-trial learning of new goal locations, as observed in open field, including watermaze and virtual, delayed-matching-to-place tasks. 
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flexible spatial navigation based on rapid allocentric place 
learning, in which places are learned based on their relationship 
to environmental cues (Bast et  al., 2009; Eichenbaum, 1990; 
Morris et al., 1990; Steele and Morris, 1999).

Animal experiments on spatial navigation have been comple-
mented by tools from theoretical and computational neurosci-
ence. Many theoreticians have targeted spatial navigation 
problems, either trying to reproduce behaviours (Banino et al., 
2018; Dayan, 1991) or to explain properties of neurons that show 
spatial tuning, including hippocampal place cells (Banino et al., 
2018; Fuhs and Touretzky, 2006; O’Keefe and Burgess, 1996; 
Samsonovich and McNaughton, 1997; Widloski and Fiete, 2014). 
Some have also studied the functional properties of network rep-
resentations of neural computations. For example, exploring how 
static attributes such as place coding can lead to or be integrated 
within network dynamics (Kanitscheider and Fiete, 2017), or 
have probed the storage capacity of spatial representations 
(Battaglia and Treves, 1998).

In a spatial navigation context, most real-world situations 
involve choosing a behavioural response that leads to a goal 
location associated with a reward. These could be direct 
rewards, such as food, or escape from an unpleasant situation, 
for example, escape from water in the watermaze. Successful 
navigation requires animals to distinguish diverse cues in their 
environment, to encode their own current position, to access a 
memory of where the goal is, to choose an appropriate trajec-
tory, and to recognise the goal and its vicinity. Learning how to 
reach a goal location is a problem that, in principle, fits very 
well within a reinforcement learning (RL) context. RL com-
monly refers to a computational framework that studies how 
intelligent systems learn to associate situations with actions in 
order to maximise the rewards within an environment (Sutton 
and Barto, 2018). When applied to spatial navigation, a RL 
model can be used to infer how neuronal representations of 
space, as revealed by electrophysiological recordings, may 
serve to maximise reward (Banino et  al., 2018; Corneil and 
Gerstner, 2015; Dollé et al., 2018; Foster et al., 2000; Gerstner 
and Abbott, 1997; Russek et al., 2017). RL models have led to 
numerous successes in understanding how biological networks 
could produce observed behaviours (Frankenhuis et al., 2019; 
Haferlach et al., 2007), yet there are still substantial challenges 
in using RL approaches to account for animal behaviour, such 
as hippocampus-dependent flexible navigation based on rapid 
place learning.

The aim of this article is to review RL models that may 
account for hippocampus-dependent rapid place learning, espe-
cially as seen in the watermaze delayed-matching-to-place 
(DMP) task. We will especially focus on an exemplar approach 
to this problem proposed by Foster et al. (2000). In the section 
‘Flexible hippocampal spatial navigation’, we review briefly 
some key experimental findings on the involvement of the hip-
pocampus in spatial navigation tasks in the watermaze, high-
lighting its particular importance in rapid place learning. The 
section ‘RL for spatial navigation’ contains an overview of the 
key concepts in RL. The section ‘A model-free agent using an 
actor–critic architecture’ describes the first part of the model by 
Foster et al. (2000), an RL architecture that provides a compu-
tational approach to how a place can become associated with 
actions to pursue a reward. We present a detailed description of 
the computations underlying the behaviour of the model and 

their possible biological substrates, which we hope may make 
the model more accessible to neuroscientists without a strong 
neurocomputational background. Then, we focus on two mini-
mal extensions to this architecture that enable adaptation to a 
changing reward location. The first one involves a map-like 
representation of location that enables vector-based navigation 
and was proposed by Foster et  al. (2000); we show that this 
extension can reproduce key measures of rapid place learning 
performance on the DMP task, including sharp latency reduc-
tions from trial 1 to 2 (Steele and Morris, 1999), and also the 
more recent finding that rats show search preference for the cor-
rect location within one trial (Bast et  al. (2009), see section 
‘Map-like representation of locations for goal-directed trajecto-
ries’). The second uses ideas drawn from hierarchical RL 
(Botvinick et  al., 2009; Schweighofer and Doya, 2003), in 
which adding layers of control allows the agent more flexible 
behaviours. We discuss details of these computations, their cor-
respondence to neurobiological findings, and the plausibility of 
their implementation, in particular, to account for rapid place 
learning within an artificial watermaze set-up (see section 
‘Hierarchical control to flexibly adjust to task requirements’). 
In the ‘Conclusion’ section, we emphasise some of the compu-
tational principles that we propose hold particular promise for 
neuropsychologically realistic models of rapid place learning in 
the watermaze.

Flexible hippocampal spatial 
navigation
Humans and other animals show remarkable flexibility in spatial 
navigation. In this context, flexibility refers to the ability to 
adjust to a changing environment, such as the variation in the 
goal or start location (Tolman, 1948). Watermaze tasks, in which 
rodents learn to find a hidden escape platform in a circular pool 
of water surrounded by spatial cues (Morris, 2008), have been 
important tools to study the neuropsychological mechanisms of 
such flexible spatial navigation in rodents. In the original task, 
the platform location remains the same over many trials and days 
of training. The animals can incrementally learn the place of the 
hidden platform using distal cues surrounding the watermaze and 
then navigate to it from different start positions (Morris, 1981). 
Learning is reflected by a reduction in the time taken to reach the 
platform location (‘escape latencies’) across trials and a search 
preference for the vicinity of the goal location when the platform 
is removed in probe trials.

Rapid place learning can be assessed in the watermaze 
through the DMP task, where the location of the platform remains 
constant during trials within a day (typically four trials per day), 
but is changed every day (Figure 1(a); Bast et al., 2009; Steele 
and Morris, 1999). A key observation from the behaviour of rats 
on the DMP task is that a single trial to a new goal location is 
sufficient for the animal to learn this location and subsequently to 
navigate to it efficiently (Steele and Morris, 1999). This phenom-
enon is therefore commonly referred to as ‘one-shot’ or ‘one-
trial’ place learning. Such one-trial place learning is reflected by 
a marked latency reduction between the first and second trials to 
a new goal location (Figure 1(b)), with little further improvement 
on subsequent trials, and by a marked search preference for the 
vicinity of the correct location when trial 2 is run as probe (Figure 
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1(c)) with the platform removed (Bast et al., 2009). Buckley and 
Bast (2018) reverse-translated the watermaze DMP task into a 
task for human participants, using a virtual environment pre-
sented on a computer screen, and have shown that human partici-
pants exhibit similar one-trial place learning to rats.

On the incremental place learning task in the watermaze, hip-
pocampal lesions are known to disrupt rats’ performance (Morris 
et  al., 1982), slowing down learning (Morris et  al., 1990) and 
severely limiting rats’ ability to navigate to the goal from variable 
start positions (Eichenbaum, 1990). However, rats with partial 
hippocampal lesions sparing less than half of the hippocampus 
can show relatively intact performance on the incremental place 
learning task (De Hoz et al., 2003; Moser et al., 1995), and even 
rats with complete hippocampal lesions can show intact place 
memory following extended incremental training (Bast et  al., 
2009; Morris et al., 1990). Rats can also show intact incremental 
place learning on the watermaze with blockade of hippocampal 
synaptic plasticity if they received pretraining (Bannerman et al., 
1995; Inglis et al., 2013). These findings suggest that incremental 

place learning, although normally facilitated by hippocampal 
mechanisms, can partly be sustained by extra-hippocampal 
mechanisms.

In contrast to incremental place learning, rapid place learning, 
based on one or a few experiences, may absolutely require the 
hippocampus, with extra-hippocampal mechanisms unable to 
sustain such learning (Bast, 2007). Studies in rodents have shown 
that spatial navigation based on one-trial place learning on the 
DMP watermaze task is highly sensitive to hippocampal dysfunc-
tion that may leave incremental place learning performance in the 
watermaze relatively intact.

Specifically, one-trial place learning performance on the 
watermaze DMP test is severely impaired, and often virtually 
abolished, by complete and partial hippocampal lesions (Bast 
et al., 2009; De Hoz et al., 2005; Morris et al., 1990), as well as 
by disruption of hippocampal plasticity mechanisms (Inglis 
et al., 2013; Nakazawa et al., 2003; O’Carroll et al., 2006; Pezze 
and Bast, 2012; Steele and Morris, 1999; also compare similar 
findings by Bast et al. (2005) in a dry-land food-reinforced DMP 
task) or by aberrant hippocampal firing patterns (McGarrity 
et  al., 2017). Rats with hippocampal lesions and NMDA 
(n-methyl-d-aspartate) receptor blockade show similar swim 
paths on trial 1 and trial 2 to the same goal location, swimming in 
circles over large areas of the watermaze surface (Redish and 
Touretzky, 1998; Steele and Morris, 1999), suggesting that they 
do not have, or cannot access, information about the recent goal 
location and/or the history of their positions.

Consistent with findings in rats that watermaze DMP perfor-
mance is highly hippocampus-dependent, human participants’ 
one-trial place learning performance on the virtual DMP task is 
strongly associated with theta oscillations in the medial temporal 
lobe (including the hippocampus, Bauer et al., 2020). Overall, the 
findings reviewed above suggest that the DMP paradigm is a 
more sensitive assay of hippocampus-dependent navigation than 
incremental place learning paradigms, as good performance on 
the DMP task may absolutely require the hippocampus, with 
extra-hippocampal mechanisms unable to sustain such learning 
(Bast, 2007). In the following sections, we will review some RL 
approaches that link spatial representations in the hippocampus 
with successful navigation. We will focus on the performance 
and limitations of these methods in accounting for navigation 
based on rapid, one-trial, hippocampal place learning, especially 
as assessed by the watermaze and virtual DMP tasks in rodents 
and humans, respectively.

RL for spatial navigation
Typical RL problems involve four components: states, actions, 
values and policy (Sutton and Barto, 2018), as shown in Figure 
2(a). In spatial navigation, states usually represent the agent loca-
tion, but can be extended to describe more abstract concepts such 
as contexts or stimuli (Sutton and Barto, 2018). Actions are deci-
sions to transition between states (i.e. a decision to move from 
one location to another). Values quantify the mean expected 
reward to be obtained under a given state or action. Rewards are 
scalars usually given at certain spatial locations, mimicking goal 
locations in navigation tasks. The value function can be a func-
tion of (i.e. dependent upon) the state alone, in which case it 
refers to the discounted total amount of reward that an agent can 
expect to receive in the future from a current state s  at time t . 

Figure 1.  One-shot place learning by rats in the delayed-matching-to-
place (DMP) watermaze task. (a) Rats have to learn a new goal location 
(location of escape platform) every day and complete four navigation 
trials to the new location on each day. (b) The time taken to find the 
new location reduces markedly from trial 1 to 2, with little further 
improvements on trials 3 and 4, and minimal interference between 
days. (c) When trial 2 is run as a probe trial, during which the platform 
is unavailable, rats show marked search preference for the vicinity of 
the goal location. To measure search preference, the watermaze surface 
is divided into eight equivalent symmetrically arranged zones (stippled 
lines in sketch), including the ‘correct zone’ centred on the goal 
location (black dot). The search preference corresponds to time spent 
searching in the ‘correct zone’, expressed as a percentage of time spent 
in all eight zones together. The chance level corresponds to 12.5%, 
corresponding to the rat spending the same time in each of the eight 
zones depicted in the sketch. These behavioural measures highlight 
successful one-shot place learning. Figure adapted from Figure 2 in 
Bast et al. (2009).
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Alternatively, the value can also refer to the state–action pair, in 
which case it refers to the value of taking a particular action at a 
certain state. The value function is given by

V s E r r r s st t t t( ) = | =1
2

2+ + + + +γ γ 

	 (1) 

In equation (1), the value of state s , V s( ) , is computed by 
summing all future rewards rj  that will be received at time j , 
j0  discounted by a factor γ , which quantifies the extent to 

which immediate rewards are favoured compared to delayed ones 
of the same magnitude. E[ ]⋅  refers to the expectation, which sums 
the possible rewards depending on their associated probability. A 
policy is a probability distribution over the set of possible actions. 
This defines which actions are more likely to be chosen in a certain 
location and has to be learned in order to maximise the value func-
tion (i.e. to maximise the expected amount of reward).

Mathematically, the problem can be represented as a Markov 
decision process, equipped with transition probabilities between 
states that shapes the way actions change states and a reward 
function that maps states to reward (see, for more details, 
Howard, 1960). In a spatial navigation context, the transition 
probabilities typically depend on the spatial structure of the 

environment, and the latter can also vary temporally in certain 
contexts, as routes might open or close on particular occasions, 
for example. The probabilities of transition between states/loca-
tions in an environment and the rewards available at every loca-
tion form a model of the environment.

In model-free RL (Figure 2(b), right), the model is unknown 
and the agent must discover its environment, and associated 
rewards, and learn how to optimise behaviour on the fly, through 
trial and error. Conversely, in model-based RL approaches 
(Figure 2(b), left), the agent has access to the model, from which 
a tree of possible chains of actions and states can be built and 
used for planning. In this way, the best possible chain of actions 
can be defined, for example, using Dynamic Programming, 
which selects at every location the optimal action, using one-step 
transition probabilities (Sutton and Barto, 2018).

We can assess whether humans and animals use model-free or 
model-based strategies by comparing their performance to both 
types of agent on a two-step decision task (Da Silva and Hare, 
2019; Daw et al., 2011; Miller et al., 2017). In this task, partici-
pants first choose between two states, both of which afterwards 
lead to final states with different probabilities, making one transi-
tion ‘rare’ and the other ‘common’. The final states have unbal-
anced reward probability distributions (see, for example, Figure 
1(a) in Miller et al., 2017, for a diagram of the task). Investigating 
how subjects adjust to rare transition outcomes indicates whether 
they have access to the model or not. A model-free agent will 
adjust its behaviour only based on the outcome, whereas a model-
based agent will adjust also according to the probability of this 
transition. Both humans and animals show behavioural correlates 
of model-based and model-free agents (Daw et  al., 2011; 
Gershman, 2017; Keramati et al., 2011; Miller et al., 2017; Yin 
and Knowlton, 2006).

Model-based approaches require the calculation and storage of 
the transition probability matrix and tree-search computations 
(Huys et  al., 2013). As the number of states can be very high, 
depending on the complexity of the problem and the precision 
required, model-based methods are usually computationally costly 
(Huys et al., 2013). However, as they contain exhaustive informa-
tion about the available routes between states, they are more flex-
ible towards changing goal locations than model-free approaches 
(Keramati et  al., 2011). A study of spatial navigation in human 
participants showed that, although paths to the goal were shorter, 
choice times were higher in trials when the behaviour matches that 
of a model-based agent compared to trials where it matches that of 
a model-free agent (Anggraini et al., 2018). In studies involving 
rats in a T-maze, vicarious trial and error (VTE) behaviour, short 
pauses that rats make at decision points, tend to get shorter with 
repetitive exposure to the same goal location (Redish, 2016). 
Experimental studies suggest that VTE behaviour reflects simula-
tions of scenarios of future trajectories in order to make a decision 
(Redish, 2016), which would correspond to a model-based 
approach of task solving (Penny et al., 2013; Pezzulo et al., 2017). 
This suggests that model-based strategies require more processing 
time than model-free strategies, which is thought to represent 
‘planning’ time (Keramati et al., 2011).

The control of behaviour could be coordinated between 
model-free and model-based systems, either depending on uncer-
tainty (Daw et al., 2005), depending on a trade-off between the 
cost of engaging in complex computations and the associated 
improvement in the value of decisions (Pezzulo et al., 2013), or 
depending on how well the different systems perform on a task 

Figure 2.  Basic principles of reinforcement learning (RL). (a) Key 
components of RL models. An agent in the state st  (which in spatial 
context often corresponds to a specific location in the environment) 
associated with the reward rt  takes the action at  to move from one 
state to another within its environment. Depending on the available 
routes and on the rewards in the environment, this action leads to 
the reception of a potential reward rt+1  in the subsequent state (or 
location) st+1 . (b) Model-free versus model-based approaches in RL. 
In model-free RL (right), an agent learns the values of the states on 
the fly, that is, by trial and error, and adjusts its behaviour accordingly 
(in order to maximise its expected rewards). In model-based RL (left), 
the agent learns or is given the transition probabilities between states 
within an environment and the rewards associated with the states (a 
‘model’ of the environment), and uses this information to plan ahead 
and select the most successful trajectory.
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(Dollé et al., 2018). Moreover, the state and action representa-
tions that enable solution of a task seem to dynamically evolve on 
the timescale of learning in order to adjust to the task require-
ments (Dezfouli and Balleine, 2019). When the task gives an illu-
sion of determinism – for example, when the task is overtrained 
– the neural representations and the behaviour shift from model-
based, purposeful, behaviour, to habitual behaviour, which is 
faster but less flexible to any change (Smith and Graybiel, 2013). 
When the situation is inherently stochastic, for example, when 
the task evolves to incorporate more steps and complexity, the 
neural representations and behaviour evolve to incorporate the 
multi-step dependencies, and simultaneously prune the tree of 
possible outcomes depending on the most likely scenarios 
(Tomov et al., 2020). The adaption of neural representations to 
task demand suggests that a continuum of state and action repre-
sentations for behavioural control, between the two extremes of 
model-based and model-free systems, exists in the brain (Dezfouli 
and Balleine, 2019).

The rapidity with which rats adjust to a changing goal loca-
tion in the DMP task (one exposure only, as discussed in section 
‘Flexible hippocampal spatial navigation’) indicates that some 
kind of ‘model’ is being used to enable adaptive route selection. 
In fact, a model-based approach has recently been proposed to 
solve a range of spatial learning tasks including the watermaze 
DMP task (Dollé et al., 2018). Dollé et al. (2018) investigated the 
interaction between model-free and model-based strategies using 
a model-free controller to gate interactions between the two. The 
controller learns to select one of the two strategies depending on 
the reward in the current task. The model reproduced the flexibil-
ity towards new goal locations in the watermaze DMP task, 
through the gating mechanism, which switched to the model-
based strategy for this particular task.

Generally, current model-based approaches, including the one 
proposed by Dollé et  al. (2018), have several limitations in 
accounting for watermaze DMP task performance in a neuropsy-
chologically realistic way. First, unlike what would be expected 
based on model-based mechanisms, rats do not reach optimal tra-
jectories in the DMP task, as reflected by the observation that 
escape latencies on trials 2 to 4 remain higher than would typi-
cally be observed following incremental place learning in the 
watermaze (compare Morris et  al. (1986), Steele and Morris 
(1999) and Bast et al. (2009)) and than would be expected from a 
model-based agent (Sutton and Barto, 2018). Findings in humans 
by Anggraini et  al. (2018) suggest that participants that used 
more model-based approaches more often took the shortest path 
to goal locations. Second, classical model-based approaches are 
currently mostly implemented in discrete state space, although 
they can be approximated to continuous spaces (Jong and Stone, 
2007). The size of the graph to model the environment, requiring 
a high number of states for fine discretisation to mimic continu-
ity, and the width and depth of the trees to search at possible 
decision points (e.g. at the start location) that would be required 
to account for such behaviours (every possible trajectory) sug-
gest that a long planning time would be required at a start of 
every trial (Keramati et  al., 2011), which does not fit with the 
behaviour of rats and human participants, who take off virtually 
immediately at the start of the second trial to the new goal loca-
tion on the DMP task in the watermaze and virtual maze, respec-
tively (Buckley and Bast, 2018; Steele and Morris, 1999). Dollé 
et al. (2018) overcome this problem using an approximation: the 
chosen trajectory between the current position and the goal 

location is in fact the trajectory between their respective closest 
nodes within the graph. Overall, this suggests that the control in 
the watermaze DMP task cannot be explained by a model-free 
RL mechanism alone, but also is unlikely to be fully 
model-based.

Lying in between model-free and model-based approaches, 
the successor representation (SR; Dayan, 1993) enables more 
flexibility than model-free computational approaches, but with-
out the heavy computational requirement of a model-based agent 
(Ducarouge and Sigaud, 2017). In the SR, the link between two 
states depends on how many times the agent can expect to visit 
one state when starting from the other in the future. It is therefore 
a predictive representation of space occupancy. Properties of 
place cell firing, such as shaping of the activity profile by changes 
in the environment, have been linked to key features of the SR 
(Gershman, 2018; Stachenfeld et al., 2017). The SR can be com-
puted not only from the transition probability matrix, but also by 
online learning, usually through counting the occupancy of states 
(Dayan, 1993; Russek et al., 2017). Connecting place cells, using 
this representation, within an attractor network allows one to 
generate trajectories from any starting location to any goal loca-
tion within a maze (Corneil and Gerstner, 2015). The SR can be 
adapted to a continuous state representation (Barreto et al., 2017; 
Jong and Stone, 2007). However, the SR still represents a com-
plex state representation, since the size of the SR matrix is similar 
to the size of the model-based representation. In the following 
section, we present two minimal extensions to a model-free 
architecture that enable flexibility. We will provide an in-depth 
discussion of the underlying computations and of their possible 
neurobiological substrates.

A model-free agent using an  
actor–critic architecture

An actor–critic network model for 
incremental learning

Learning through temporal-difference error.  Temporal-differ-
ence (TD) learning refers to a class of model-free RL methods that 
improve the estimate of the value function using successive com-
parison of its value, called the TD error (this approach is com-
monly referred to as ‘bootstrapping’). In traditional TD learning, 
the agent follows a fixed policy and discovers how good this policy 
is through the computation of the value function (Sutton and Barto, 
2018). Conversely, in an actor–critic learning architecture, an 
agent explores the environment and progressively forms a policy 
that maximises expected reward using a TD error. Interactions with 
the environment allow simultaneous sampling of the rewards 
(obtained at certain locations) and of the effect of the policy (when 
there is no reward, the effect of a policy can be judged depending 
on the difference in value between two consecutive locations), 
thereby appraising predictions of values and actions, so that both 
can be updated accordingly. The ‘actor’ refers to the part of the 
architecture that learns and executes the policy, and the ‘critic’ to 
the part that estimates the value function (Figure 3(a)).

Foster et  al. (2000) proposed an actor–critic framework to 
perform spatial learning in a watermaze equivalent (Figure 3(a)). 
The agent’s location is represented through a network of units 
mimicking hippocampal place cells, which have a Gaussian type 
of activity around their preferred location (the further the agent is 
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from the place cell’s preferred location, the less active the unit 
will be). Each place cell projects to an actor network and a critic 
unit, or network in other related models, for example, in Frémaux 
et al. (2013), through plastic connections (respectively denoted 
Zt  and Wt  in Figure 3(a)).

The actor network activity defines which action is optimal, 
with each unit in the network coding for motion in a particular 
direction, together covering a 360° angle. In Foster et al. (2000), 
this angular direction is quantised, whereas in Frémaux et  al. 
(2013), using a more detailed spiking neuron model, the action 
network codes for continuous movement directions (although 
finely quantised in numerical simulations). The action is chosen 
according to the activity of the actor, so that directions corre-
sponding to more active cells are prioritised. In Foster et  al. 
(2000), the action corresponding to the maximum of a softmax 
probability distribution of the activities is selected. In Frémaux 
et al. (2013), the activities of the units of the network are used as 
weights to sum all possible directions, giving rise to a mean vec-
tor that defines the chosen direction. If the motion leads to the 
goal location, a reward is obtained. In the case of computational 
models of the watermaze task, the reward is only delivered when 
the agent is within a small circle representing the platform (see 
Figure 3(a)). This reward information, encoded within the envi-
ronment is used along with the difference in the successive critic 
activities to compute the TD error δ t , via

δ γt t t tr s V s V s= 1 1+ +( ) + ( ) − ( ) 	 (2)

In equation (2), the reward r st( )+1  along with the discounted 
value of the new state γV st( )+1  is compared to the prior predic-
tion V st( ) . The TD error contains two pieces of information: it 
reflects both how good is the decision that was just taken and the 
accuracy of the critic at estimating the value of the state.

To reduce the TD error, the model simultaneously updates 
the connections weights Zt  and Wt  via defined learning rules in 
order to improve the actor and the critic. The learning rule 
updates the connection weights according to the current error 
and the place cell activity, such that the probability of taking the 
same decision in the current state/location increases if it leads to 
a new position that has a higher value, and decreases otherwise 
(see Doya, (2000), for learning rules). Using the model proposed 
by Foster et  al. (2000), we can reproduce their finding that 
within a few trials, the agent reaches the goal using an almost 
optimal path, reflected by low latencies to reach the goal, in a 
watermaze-like environment (Figure 3(b)). The full model can 
be found in Supplemental Appendix A (available at: https://jour-
nals.sagepub.com/doi/suppl/10.1177/2398212820975634), 
‘Actor–critic equations, based on Foster et al. (2000)’.

Important variables for learning: discount factor for value 
propagation and spatial scale of place cells representations 
for experience generalisation.  The previous section illustrated 
how place cells can be integrated into a network for spatial navi-
gation through the association of values and actions within an RL 
framework. A benefit of this approach is that (1) it allows for 
relatively fast learning, within only a few trials, agents reach 
‘short’ average escape latencies and (2) the agent obtains infor-
mation about which action could lead to the goal from variable 
and distal start positions. These two properties rely on two major 

Figure 3.  (a) Classical actor–critic architecture for a temporal-
difference (TD) agent learning to solve a spatial navigation problem 
in the watermaze, as proposed by Foster et al. (2000). The state 
(location of the agent ( ( ), ( ))x t y t ) is encoded within a neural network 
(in this case, the units mimic place cells in the hippocampus). State 
information is fed into an action network, which computes the best 
direction to go next, and to a critic network that computes the value 
of the states encountered. The difference in critic activity along with 
the reception or not of the reward (given at the goal location) are used 
to compute the TD error δt , such that successful moves (that lead 
to a positive TD error) are more likely to be taken again in the future 
and less likely otherwise. Simultaneously, the critic’s estimation of the 
value function is adjusted in order to be more accurate. These updates 
occur through changing the critic and actor weights, respectively 
Wt  and Zt . The goal location, marked as a circle within the maze, 
is the only location in which a reward is given. (b) Performance of 
the agent, obtained by implementing the model from Foster et al. 
(2000). The time that the agent requires to get to the goal (‘Latencies’, 
vertical axis) reduces with trials (horizontal axis) and reaches almost a 
minimum (after trial 5). When the goal changes (on trial 20), the agent 
takes a very long time to adapt to this new goal location.

https://journals.sagepub.com/doi/suppl/doi
https://journals.sagepub.com/doi/suppl/doi
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components that enable learning and influence the learning speed 
(i.e. how fast latencies reduce).

First, the TD error allows to ‘back-propagate’ value informa-
tion from successive states, with the speed of this back propaga-
tion modulated by the discount factor γ . The update of the state 
value V st( )  and of the policy at state st , after having moved to 
the new state st+1 , depends on the TD error. Let us consider the 
latter, defined by equation (2): the TD error is the difference 
between the received reward and the discounted value at the next 
state (given by r s V st t( ) ( )+ ++1 1γ , the first two terms in equation 
(2)), and the value at the current state (V st( ) , the last term in 
equation (2)). Note that the update of the state value is performed 
‘in the future’ for ‘the past’: the value underlying the decision 
taken at time t  will only be updated at time t +1 . Moreover, the 
extent to which the future is taken into account is modulated by 
the parameter γ .

Let us consider the extreme cases. If γ = 0 , the only update 
takes place when the reward is found, and the location updated is 
the one immediately prior to the reward. All the other locations, 
which do not precede the reward reception, will never be associ-
ated with a non-zero value. If γ =1 , the state value V st( )  will be 
updated until it is equal to V st( )+1 . This leads to a constant value 
function over the maze (i.e. all locations have the same value). In 
both cases, the value function being uniform, the actor computes 
all actions as equally good (except very near the goal in the case 
where γ = 0 ), as it moves through the environment. Therefore, 
only intermediate values of γ  allow the model to learn, and its 
value defines how fast it learns. Ideally, one wants to adjust the 
discount factor γ  in order to maximise the slope of the value 
function, so that the policy is ‘concentrated’ on the optimal 
choice, and to obtain a uniform slope across the space, as this 
guarantees that the agent has good information on which to base 
its decision from any location within the environment.

Second, the spatial scale of the place cell representation, 
determined by the width of these neurons’ place fields, strongly 
affects speed and precision of place learning. The state represen-
tation through place cells enables the generalisation of learning 
from a single experience across states, that is, to update informa-
tion on many locations based on the experience within one par-
ticular location. Every update amends the value and policy for all 
states depending on the current place cell activity, such that more 
distal locations are less concerned by the update than proximal 
ones. The spatial reach of a particular update increases with the 
width of the place cell activity profiles. This process speeds up 
learning, because when the agent encounters a location with sim-
ilar place cell representation to those already encountered, the 
prior experiences have already shaped the current policy and 
value function and can be used to inform subsequent actions.

Let us consider the extreme cases. If the width is very small, 
the agent cannot generalise enough from experience, and this 
considerably slows down learning, as the agent must comprehen-
sively search the environment in order to learn. At the opposite 
extreme, if the activity profile is very wide, generalisation occurs 
where it is not appropriate: for example, at opposite ends of the 
goal, when the best actions to choose would be opposite to each 
other, as at the North end it would be best to go South, whereas at 
the South end, it would be best to go North. The optimal width, 
therefore, lies in a trade-off between speed of learning and preci-
sion of knowledge: it should be scaled to the size of the environ-
ment in order to speed up learning and is constrained by the size 

of the goal. Optimising these parameters allows one to reduce the 
number of trials to obtain good performance. Supplemental 
Appendix B (available at: https://journals.sagepub.com/doi/supp
l/10.1177/2398212820975634), ‘Actor–critic component: effect 
of changing the place cell activity width and the discount factor 
on incremental learning towards the goal location’, shows how 
changing these parameters affects learning.

Along the hippocampal longitudinal axis, places are repre-
sented over a continuous range of spatial scales, with the width of 
place cell activity profiles gradually increasing from the dorsal 
(also known as septal) towards the ventral (also known as tempo-
ral) end of the hippocampus in rats (Kjelstrup et al., 2008). A 
recent RL model suggests that smaller scales of representation 
would support the generation of optimal path length, whereas 
larger scales would enable faster learning, defining a trade-off 
between path optimality and speed of learning (Scleidorovich et  
al., 2020). In Figure 6 of Supplemental Appendix B (available at: 
https://journals.sagepub.com/doi/suppl/10.1177/2398212820975
634), ‘Actor–critic component: effect of changing the place cell 
activity width and the discount factor on incremental learning 
towards the goal location’, for the actor–critic model, we also see 
that a wide activity profile of place cells leads to suboptimal 
routes, characterised by escape latencies that stay high.

Bast et al. (2009) found that the intermediate hippocampus is 
critical to maintain DMP performance in the watermaze, particu-
larly search preference. Moreover, the trajectories used by rats in 
the watermaze DMP task are suboptimal, that is, path lengths are 
higher, compared to the incremental learning task (compare 
results in Morris et al. (1990), Steele and Morris (1999) and Bast 
et al. (2009)). These findings may partly reflect that place neu-
rons in the intermediate hippocampus, which show place fields of 
an intermediate width and, thereby, may deliver a trade-off 
between fast and precise learning, are particularly important for 
navigation performance during the first few trials of learning a 
new place, as on the DMP task. Another potential explanation for 
the importance of the intermediate hippocampus is that this 
region combines sufficiently accurate place representations, pro-
vided by place cells with intermediate-width place fields, with 
strong connectivity to prefrontal and subcortical sites that sup-
port use of these place representations for navigation (Bast, 2011; 
Bast et al., 2009), including striatal RL mechanisms (Humphries 
and Prescott, 2010). With incremental learning of a goal location, 
spatial navigation can become more precise, with path lengths 
getting shorter and search preference values increasing (Bast 
et  al., 2009). Interestingly, the model by Scleidorovich et  al. 
(2020) suggests that such precise incremental place learning per-
formance may be particularly dependent on narrow place fields, 
which are shown by place cells in the dorsal hippocampus 
(Kjelstrup et al., 2008). This may help to understand why incre-
mental place learning performance has been found to be particu-
larly dependent on the dorsal hippocampus (Moser et al., 1995).

Using eligibility traces allows to update past decisions 
according to the current experience.  The particular actor–
critic implementation proposed by Foster et  al. (2000) and 
described above involves a one-step update: only the value and 
policy of the state that the agent just left are updated. The weight 
associated to the value of the following state for any update 
depends on γ , as described in the previous section. However, 
past decisions sometimes affect current situations, and one-step 

https://journals.sagepub.com/doi/suppl/doi
https://journals.sagepub.com/doi/suppl/doi
https://journals.sagepub.com/doi/suppl/doi
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updates only improve the last choice and estimate. This can be 
addressed by incorporating past decisions when performing the 
current update, weighted according to an eligibility trace (Sutton 
and Barto, 2018). Eligibility traces keep a record of how much 
past decisions influence the current situation. This makes possi-
ble to update value functions and policies from previous states of 
the same trajectory according to the current outcome.

The most commonly known example of the use of eligibility 
traces is TD( )λ  learning, which updates the value and policy of 
previous states within the same trajectory according to the out-
come observed after a certain subsequent period, weighted by a 
decay rate λ . λ  refers to how far in the past the current situation 
affects previous states’ value and policy. One extreme is TD( )0  
in which the only step updated is the state the agent just left, as 
described in the section ‘An actor–critic network model for incre-
mental learning’. When λ  increases towards 1 , more events 
within the trajectory are taken into account, and the method 
becomes more reminiscent of a Monte-Carlo approach (Sutton 
and Barto, 2018), where all the states and actions encountered 
during the trial are updated at every step. In Scleidorovich et al. 
(2020), the authors show that the optimal value of λ  depends on 
the width of the place cell activity distributions: for wide place 
fields, adding eligibility traces does not speed up learning much 
(i.e. reducing the number of trials needed to reach asymptotic 
performance), but it does for narrower place fields.

Striatal and dopaminergic mechanisms as candidate sub-
strates for the actor and critic components.  In the RL litera-
ture, the ventral striatum is often considered to play the role of the 
‘critic’ (Humphries and Prescott, 2010; Khamassi and Humphries, 
2012; O’Doherty et al., 2004; Van Der Meer and Redish, 2011). 
The firing of neurons in the ventral striatum ramps up when rats 
approach a goal location in a T-maze (Van Der Meer and Redish, 
2011), consistent with the critic activity representing the value 
function in actor–critic models of spatial navigation (Foster et al., 
2000; Frémaux et al., 2013). Striatal activity also correlates with 
action selection (Kimchi and Laubach, 2009) and with action-spe-
cific reward values (Roesch et al., 2009; Samejima et al., 2005).

In line with the architecture proposed in the model by Foster 
et al. (2000) (Figure 3(a)), there are hippocampal projections to 
the ventral and medial dorsal striatum (Groenewegen et al., 1987; 
Humphries and Prescott, 2010). Studies combining watermaze 
testing with manipulations of ventral and medial dorsal striatum 
support the notion that these regions are required for spatial navi-
gation. Lesions of the ventral striatum (Annett et al., 1989) and of 
the medial dorsal striatum (Devan and White, 1999) have been 
reported to impair spatial navigation on the incremental place 
learning task. In addition, crossed unilateral lesions disconnect-
ing hippocampus and medial dorsal striatum also impair incre-
mental place learning performance, suggesting 
hippocampo-striatal interactions are required (Devan and White, 
1999). To our knowledge, it has not been tested experimentally if 
there is a dichotomy between ‘actor’ and ‘critic’. The experimen-
tal evidence outlined above is consistent with both actor and 
critic roles of the striatum (Van Der Meer and Redish, 2011), but 
whether distinct or the same striatal neurons or regions act as 
actor and critic needs to be addressed.

Li and Daw (2011) address a related dichotomy in a study on 
human participants who have to choose between two arms associ-
ated with reward probabilities on a bandit task. The participants are 

given the outcomes of their decision after their choice: namely, 
how much they win and how much they would have won if they 
had selected the other arm. Li and Daw (2011) compare two ways 
of updating the weights which determine which arm to choose: one 
compares the reward to the predicted value (‘value update’), and 
the other one compares the reward to the forgone reward (‘policy 
update’). They show that striatal BOLD activity correlates more 
with ‘policy’ than ‘value’ update, and correlates positively with the 
chosen reward and negatively with the reward that was not chosen. 
They also show correlation with a value-based decision variable, 
the difference between the action value of the chosen and the not 
chosen arm. The translation of their analysis to spatial navigation 
in the watermaze is not straightforward. First, in the two armed 
bandit task, there are no states, but only actions. Although the 
design of the analysis by Li and Daw (2011) allows one to disen-
tangle the rewards from the predicted values, it does not allow one 
to separate action from state value in a spatial navigation context, 
if it makes sense at all to separate the two. In spatial navigation, as 
states can be passed through to reach any goal, it seems to be more 
efficient not to separate actions and values. However, it is interest-
ing to see an experimental set-up aimed at testing such a dichoto-
moty. Perhaps, an architecture such as SARSA 
(State–Action–Reward–State–Action, Sutton and Barto, 2018), in 
which the values of a state–action pair are learned instead of the 
values of states only, could be considered, as it unites the actor and 
critic computation within the same network.

Phasic dopamine release from dopaminergic midbrain projec-
tions to the striatum has long been suggested to reflect reward 
prediction errors (Glimcher, 2011; Schultz et  al., 1997), which 
correspond to the TD error in the model in Figure 3(a), and dopa-
mine release in the striatum shapes action selection (Gerfen and 
Surmeier, 2011; Humphries et  al., 2012; Morris et  al., 2010). 
Direct optogenetic manipulation of striatal neurons expressing 
dopamine receptors modified decisions (Tai et al., 2012), consist-
ent with the actor activity in actor–critic models of spatial navi-
gation (Foster et  al., 2000; Frémaux et  al., 2013). Moreover, 
6-hydroxydopamine lesions to the striatum, depleting striatal 
dopamine (and, although to a lesser extent, also dopamine in 
other regions, including hippocampus) impaired spatial naviga-
tion on the incremental place learning task in the watermaze 
(Braun et al., 2012). These findings suggest that aspects of the 
dopaminergic influence on striatal activity could be consistent 
with the modulation of action selection by the TD errors in an 
actor–critic architecture.

However, although there is long-term potentiation (LTP) like 
synaptic plasticity at hippocampo-ventral striatal connections, 
consistent with the plastic connections between the place cell 
network and the critic and actor in the model by Foster et  al. 
(2000), a recent study failed to provide evidence that this plastic-
ity depends on dopamine (LeGates et  al., 2018). Absence of 
dopamine modulation of hippocampo-striatal plasticity contrasts 
with the suggested modulation of connections between place cell 
representations and the critic and actor components by the TD 
error signal in the RL model. Thus, currently available evidence 
fails to support one key feature of the architecture described in 
section ‘An actor–critic network model for incremental learning’ 
(Foster et al., 2000).

Requirement of hippocampal plasticity.  In the implementa-
tion of the model described above, plasticity takes place within 
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the feedforward connections from the place cell network model-
ling the hippocampus and the actor and critic networks that, as 
discussed above, could correspond to parts of the striatum. The 
model does not capture the finding that hippocampal NMDA 
receptor-dependent plasticity is required for incremental place 
learning in the watermaze if rats have not been pretrained on the 
task (Morris et al., 1986, 1989; Nakazawa et al., 2004).

The agent is less flexible than animals in adapting to 
changing goal locations.  When the goal changes (on trial 20 in 
Figure 3(b)), the agent takes many trials to adapt and takes more 
than 10 trials to reach asymptotic performance levels (also see 
Figure 4(a) in Foster et al., 2000). The high accuracy, but limited 
flexibility with overtraining, are well-known features of TD RL 
methods (e.g. discussed in Botvinick et al., (2019); Gershman, 
(2017); Gershman et  al., (2014); Sutton and Barto, (2018)). 
These cached methods have been proposed to account for the 
progressive development of habitual behaviours (Balleine, 2019). 
TD learning is essentially an implementation of Thorndike’s law 
of effect (Thorndike, 1927), which increases the probability of 
reproducing an action if it is positively rewarded. In the RL 
model discussed above (Figure 3(a)), a particular location, repre-
sented by activities of place cells with overlapping place fields, is 
associated with only one ‘preferred action’, due to the unique 
weights that need to be fully relearned when the goal changes. 
Therefore, the way actions and states are linked only allows navi-
gation to one specific goal location.

The model produces a general control mechanism, that, in this 
example, makes it possible to generate trajectories to a particular 
goal location. This control mechanism could be integrated within 
an architecture that allows more flexibility, for example, the goal 
location may be represented by different means than a unique 
value function computed via slow and incremental steps from 
visits to single goal locations. The next section considers how the 
RL model of Figure 3(a) can be used, along with a uniform rep-
resentation of both the agent and the goal location, to reproduce 
the flexibility shown by rats and humans towards changing goal 
locations in the watermaze DMP task.

Map-like representation of locations for goal-
directed trajectories

The RL architecture discussed above (Figure 3(a)) cannot repro-
duce rapid learning of a new location as observed in the DMP 
watermaze task, but instead there is substantial interference 
between successive goal locations, with latencies increasing 
across goal locations and only a gradual small decrease in laten-
cies across the four trials to the same goal location (see Foster 
et al., (2000), Figure 4(b)). To reproduce flexible spatial naviga-
tion based on one-trial place learning as observed on the DMP 
task, Foster et al. (2000) proposed to incorporate a coordinate 
system into their original actor–critic architecture (Figure 4(a)). 
This coordinate system is composed of two additional cells X  
and Y  that learn to estimate the real coordinates x  and y  
throughout the maze. These cells receive input from the place 
cell network through plastic connections W Wt

x
t
y, . The connec-

tions evolve dependent on a TD error that represents the differ-
ence between the displacement estimated from the coordinate 
cells and the real displacement of the agent. The weights between 

Figure 4.  (a) Architecture of the coordinate-based navigation system, 
which was added to the actor–critic system shown in Figure 3(a) to 
reproduce accurate spatial navigation based on one-trial place learning, 
as observed in the watermaze DMP task (Foster et al., 2000). Place cells 
are linked to coordinate estimators through plastic connections W Wt

x

t

y, .  
The estimated coordinates ˆ ˆX Y,  are used to compare the estimated 
location of the goal ˆ ˆX Ygoal goal,  to the agent estimated location ˆ ˆX Yt t,  in 
order to form a vector towards the goal, that is being followed when 
choosing the ‘coordinate action’ acoord . The new action acoord  is integrated 
into the actor network described in Figure 3(a). (b, c) Performance of 
the extended model using coordinate-based navigation. (b) Escape 
latencies of the agent when the goal location is changed every four 
trials, mimicking the watermaze DMP task. (c) ‘Search preference’ for 
the area surrounding the goal location, as reflected by the percentage 
of time the agent spends in an area centred on the goal location when 
the second trial to a new goal location is run as probe trial, with the 
goal removed (stippled line indicates percentage of time spent in the 
correct zone by chance, that is, if the agent had no preference for 
any particular area), computed for the second and the seventh goal 
locations. One-trial learning of the new goal location is reflected by the 
marked latency reduction from trial 1 to trial 2 to a new goal location 
(without interference between successive goal locations) and by the 
marked search preference for the new goal location when trial 2 is run 
as probe. The data in (b) were obtained by computing the model in 
(Foster et al., 2000) and the data in (c) by adapting the model in order 
to reproduce search preference measures when trial 2 was run as a probe 
trial. The increase in search preference observed between the second 
and seventh goal location is addressed in the section ‘Limitations of the 
model in reproducing DMP behaviour in rats and humans’.
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place cells and the coordinate cells are reduced if the estimated 
displacement is higher than the actual displacement and 
increased if it is lower, so that the estimated coordinates progres-
sively become consistent with the real coordinates (see Figure 8 
in Supplemental Appendix D (available at: https://journals.sage-
pub.com/doi/suppl/10.1177/2398212820975634), ‘Hierarchical 
model – equations’).

Foster et al. (2000) added an additional action to the set of 
actions already available. Instead of defining movement in spe-
cific allocentric directions, as the other action cells do, going 
North, East and so on, that we will refer to as ‘allocentric direc-
tion cells’, the coordinate action cell acoord  points the agent in the 
direction of the estimated goal location. The estimates of x  and 
y  are used to compare the agent’s estimated position  X Yt t,  to 

the estimated goal location  X Ygoal goal,  (which is stored after the 
first trial of every day) in order to form a vector leading to the 
estimated goal location (Figure 4(a)).

The agent very quickly adapts to new goal locations, repro-
ducing performance similar to rats and humans on the watermaze 
(Figure 1) and virtual (Buckley and Bast, 2018) DMP task, 
respectively. Using the model of Foster et al. (2000), we can rep-
licate their finding that the model reproduces the characteristic 
pattern of latencies shown by rats and human on the DMP task, 
that is, a marked reduction from trial 1 to 2 to a new goal location 
and no interference between successive goal location (Figure 
4(b)). Moreover, extending the findings of Foster et al. (2000), 
we find that the model also reproduces markedly above-chance 
search preference for the vicinity of the goal location when trial 
2 to a new goal location is run as probe trial where the platform 
is removed (Figure 4(c)).

Limitations of the model in reproducing DMP behaviour in 
rats and humans.  The ‘coordinate’ approach relies on compu-
tational ‘tricks’ that are required to make the approach work, but 
for which plausible neurobiological substrates remain to be iden-
tified. Early in training, movement of the agent is based on activ-
ity of the ‘allocentric direction cells’, which are used to lead the 
exploration of the environment. This exploratory phase allows 
learning of the coordinates. As the estimated coordinates  X Y,  
become more consistent with the real coordinates, the coordinate 
action acoord  becomes more reliable, as it will always lead the 
agent in the direction of the goal. During the first trial to a new 
goal location, the coordinate action cell encodes random dis-
placement, until the goal is found and its estimated location is 
stored. During this trial, the coordinate action is not reinforced, a 
trick that prevents its devaluation. On the subsequent trials, the 
coordinate action encodes the displacement towards the stored 
estimated goal location (as described before) and is reinforced. 
Therefore, the probability of choosing the coordinate action grad-
ually becomes one, and it comes to be the only action followed.

One consequence of this is that, unlike in rats and people, the 
agent’s performance both in terms of latency reduction and in 
terms of search preference gradually improves across successive 
new goal locations (see Figure 4(b) and (c)). The gradual improve-
ment of latency reductions and search preferences contrasts with 
behaviour shown by rats (Figure 1 and see Figure 3(b) and (c) in 
Bast et al. (2009) for search preference across days) and human 
participants (Buckley and Bast, 2018). More specifically, in the 
model, latency reductions from trial 1 to 2 gradually increase 
across successive new goal locations, and the latencies on trial 2 
to 4 to a new goal location gradually decrease (Figure 4(b)). In 
contrast, rats basically reach asymptotic performance levels with 

no systematic increases in latency reductions from trial 1 to 2 or 
decreases in latency values on trial 2 to 4 after a few successive 
goal locations; in the example shown in Figure 1(b), asymptotic 
performance levels are reached from about day 4. It should also be 
noted that the overall latency reductions across the first few loca-
tions in rats is likely to mainly reflect procedural learning, with 
rats learning that they cannot escape by climbing the wall of the 
pool or by diving. Human participants on the virtual DMP task, 
who do not need to learn the task requirements because they 
receive task instructions, show virtually asymptotic latency and 
path lengths values from the first new goal locations, with hardly 
any improvements across successive goal locations (Buckley and 
Bast, 2018). Moreover, search preference for the correct location 
substantially increases across successive probe trials in the model 
(Figure 4(c)), whereas in rats and humans, search preference 
remains stable across successive new goal locations on the DMP 
task (Bast et al., 2009; Buckley and Bast, 2018).

In addition, the random search during trial 1 in the model is 
inconsistent with the finding that rats on the DMP task (but not 
human participants (Buckley and Bast, 2018)) tend to go towards the 
previous goal location on trial 1 to a new goal location (Pearce et al., 
1998; Steele and Morris, 1999; and our own unpublished observa-
tions); in addition, both rats and human participants show systematic 
search patterns on trial 1 (Buckley and Bast, 2018; Gehring et al., 
2015). The random search in the model during trial 1 leads to con-
sistently and similarly high trial 1 latencies (Figure 4(b)). In contrast, 
in rats, trial 1 latencies are more variable (Figure 1(b)); this partly 
reflects procedural learning across the first few new goal locations, 
which results in reductions of trial 1 latencies, and the different spa-
tial relationship between the start location and the previous and cur-
rent goal location affecting trial 1 latencies (e.g. if the current goal 
location lies on the path from the start location to the previous goal 
location, rats are more likely to ‘bump’ into the current goal location 
on trial 1, leading to lower trial 1 latencies). The adjustment of the 
policy when the predicted goal is not encountered is not addressed in 
the current approach, a point that section ‘Hierarchical control to 
flexibly adjust to task requirements’ will address.

The model’s actor–critic component and striatal contribu-
tions to DMP performance.  Given the association of actor–
critic mechanisms with the striatum (Joel et al., 2002; Khamassi 
and Humphries, 2012; O’Doherty et al., 2004; Van Der Meer and 
Redish, 2011), the actor–critic component in the model is consis-
tent with our recent findings that the striatum is associated with 
rapid place learning performance on the DMP task. More specifi-
cally, using functional inhibition of the ventral striatum in rats, we 
have shown that the ventral striatum is required for one-trial place 
learning performance on the watermaze DMP task (Seaton, 2019); 
moreover, using high-density electroencephalogram (EEG) 
recordings with source reconstruction in human participants, we 
found that theta oscillations in a circuit including both temporal 
lobe and striatum are associated with one-trial place learning per-
formance on the virtual DMP task (Bauer et al., 2020).

The model suggests that, after a few trials, once the action 
probability for the coordinate action has reached the value 1, the 
movement is predefined by following a vector pointing to the goal 
location. The critic becomes inconsistent, as the action now does 
not follow the gradient of the value function anymore, and, there-
fore, there is no control over the behaviour by the TD error. The 
continued association of the striatum with DMP performance, 
beyond the first few trials, is consistent with the role of the 

https://journals.sagepub.com/doi/suppl/doi
https://journals.sagepub.com/doi/suppl/doi
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striatum as the ‘actor’ (Van Der Meer and Redish, 2011), and the 
model would suggest that the striatum reads out estimated loca-
tions and computes a vector towards the estimated goal location.

Neural substrates of the goal representation and hippocam-
pal plasticity required for rapid learning of new goal loca-
tions.  Notwithstanding some limitations, findings with this 
model support the important idea that, embedded within a model-
free RL framework, a map-like representation of locations within 
an environment may allow computations by the agent to produce 
efficient navigation to new goal locations within as little as one 
trial. This idea is also present in recently proposed agents that are 
capable of flexible spatial navigation based on a RL system com-
plemented by path integration mechanisms to derive a grid-like 
map of the environment (which resembles entorhinal grid cell 
representations) that can be used to compute trajectories from the 
agent’s location to the goal (Banino et al., 2018) and has also lead 
the watermaze DMP task to be solved using a graph search algo-
rithm in Dollé et al. (2018). The findings of goal-vector cells in 
the bat hippocampus (Sarel et al., 2017) and of ‘predictive reward 
place cells’ in mouse hippocampus (Gauthier and Tank, 2018) 
support the idea implemented in the model that consistency of 
representations – unified representations of goals and locations 
across tasks and environment – could help goal-directed naviga-
tion. In particular, egocentric boundary encoding neurons have 
been found in the striatum of rats, although in the dorso-medial 
striatum (Hinman et al., 2019). As rats navigate in the watermaze 
using surrounding cues, these cells could inform striatal naviga-
tion in the DMP task (Bicanski and Burgess, 2020).

In the extension to the classical TD architecture (Foster et al., 
2000), the encounter with a new goal location does not involve a 
change in place cell representation, and the formation of the mem-
ory of the new goal location is not addressed. Experimental evi-
dence suggests that a goal representation could lie within 
hippocampal representations themselves (Gauthier and Tank, 
2018; Hok et al., 2007; McKenzie et al., 2013; Poucet and Hok, 
2017). McKenzie et al. (2013) studied hippocampal CA1 represen-
tations during learning of new goal locations in an environment 
where previous places were already associated with goals. They 
showed that neurons coding for existing goals would also encode 
new goal locations and that these representations progressively 
separate with repetitive learning of the new goal location, but 
maintain an overlap of representations between all goal locations. 
Moreover, Hok et  al. (2007) observed an increase in firing rate 
around goal locations outside of place cells’ main firing field, and 
Dupret et al. (2010) showed that learning of new goal locations by 
rats in a food-reinforced dry-land DMP task is associated with an 
increase in the number of CA1 neurons that have a place field 
around the goal location. Furthermore, Dupret et al. (2010) showed 
that both this accumulation of place fields around the goal location 
and rapid learning of new goal locations is disrupted by systemic 
NMDA receptor blockade. These findings suggest that goal repre-
sentation can be embedded within the hippocampus, that new goal 
locations are represented within similar networks as previous goal 
locations, and that the hippocampal remapping emerging from new 
goal locations is linked to behavioural performance and may 
depend on NMDA receptor-mediated synaptic plasticity.

In line with this suggestion, studies, combining intra-hip-
pocampal infusion of an NMDA receptor antagonist with behav-
ioural testing and electrophysiological measurements of 

hippocampal LTP, showed that hippocampal NMDA receptor-
dependent LTP-like synaptic plasticity is required during trial 1 
for rats to learn a new goal location in the watermaze DMP task 
(Steele and Morris, 1999) and in a dry-land DMP task (Bast et al., 
2005). LTP-like synaptic plasticity may give rise to changes in 
place cell representations (Dragoi et al., 2003), which could con-
tribute to changes in hippocampal place cell networks associated 
with the learning of new goal locations (Dupret et al., 2010).

Map-like representations of locations, integrated within a RL 
architecture, may be part of neural mechanisms that enable flex-
ibility to changing goal locations in the watermaze DMP task. 
Cartesian coordinates are convenient here because the task is 
implemented within an open-field arena, however they do not 
seem to provide a biologically realistic implementation of spatial 
navigation problems in general. For example, they do not allow 
navigation in an environment with walls, for which geodesic 
coordinates would be more appropriate (Gustafson and Daw, 
2011). Moreover, the approach described here does not address 
how the goal representation comes about, and the model does not 
specify how the policy adjusts when the agent does not encounter 
the predicted goal. The next section describes how a hierarchical 
architecture can provide a solution to this problem.

Hierarchical control to flexibly adjust to task 
requirements

The actor–critic approach described in section ‘An actor–critic 
network model for incremental learning’ requires many trials to 
adjust to changes in goal locations partly because there is only 
one possible association between location and action, which 
depends upon a particular goal (section ‘The agent is less flexible 
than animals in adapting to changing goal locations’). However, 
brains are able to perform multiple tasks in the same environ-
ment. Those tasks often involve sequential behaviour at multiple 
timescales (Bouchacourt et al., 2019). Pursuing goals sometimes 
requires following a sequence of subroutines, with short-term/
interim objectives, themselves divided into elemental skills 
(Botvinick et  al., 2019). Hierarchically organised goal-directed 
behaviours allow computational RL agents to be more flexible 
(Botvinick et al., 2009; Dayan and Hinton, 1993).

In the watermaze DMP task, rats tend to navigate to the previ-
ous goal location on trial 1 with a new goal location (Pearce 
et al., 1998, Steele and Morris, 1999, and our own unpublished 
observations) and then find out that this remembered goal loca-
tion is not the current goal. This suggests that preexisting goal 
networks can flexibly adjust to errors and are linked to control 
mechanisms over shorter timescales that allow movement reali-
sation in order to navigate to the new goal location. The critic 
controls the selection of direction at every time step, finely cho-
sen to mimic the generation of a smooth trajectory. The critic sits 
at an intermediary level of control. It does not perform the lower 
level of the control, the motor mechanisms responsible for the 
generation of the limb movements, but also does not control the 
choice or retrieval process of the goal that is being pursued. The 
critic allows progressive decisions in order to reach one particu-
lar goal (Van Der Meer and Redish, 2011).

We hypothesised that the computation of a goal prediction error 
within a hierarchical architecture could enable flexibility towards 
changing goal locations. We implemented a hierarchical agent, but 
the architecture itself does not perform hierarchical learning. In 
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Botvinick (2012), agents are trained to find subroutines, for exam-
ple, through looking for bottleneck states in a graph. In our imple-
mentation, we simply added a layer, which selects which one of the 
subroutines is most suited for the current situation.

In our implementation of a hierarchical RL architecture to allow 
for flexible one-trial place learning, we consider familiar goal loca-
tions, that is, although the goal location changes every four trials, 
the goal locations are always chosen from a set of eight locations 
where the agent has learned to navigate to the goal during a pre-
training period. This contrasts with the most commonly used 
watermaze DMP procedure where the goal locations are novel (e.g. 

Bast et al., 2009; Steele and Morris, 1999), although there are also 
DMP variations where the platform location changes daily, but is 
always chosen from a limited number of platform locations 
(Whishaw, 1985). Pretrained, familiar, goal locations are also a fea-
ture of delayed-non-matching-to-place (DNMP) tasks in the radial 
maze (e.g. Floresco et al., 1997; Lee and Kesner, 2002), where rats 
are first pretrained to learn that food can be found in any of eight 
arms (i.e. these are familiar goal locations); after this, the rats are 
required to use a ‘non-matching-to-place’ rule to chose between 
several open arms during daily test trials, based on whether they 
found food in the arms during a daily study or sample trial: arms 
that contained food during the sample trial will not contain food 
during the test trial and vice versa. Based on work by Schweighofer 
and Doya (2003), we propose that the agent’s behaviour could be 
shaped by the chosen policy depending on how confident the agent 
is about the policy leading to the goal.

The agent learns different policies and value functions using 
the model described in section ‘An actor–critic network model 
for incremental learning’, each of them associated with one of 
eight possible goal locations presented in the DMP task (which 
would be at the centre of the eight zones shown in Figure 1(c)). 
After multiple trials necessary to learn the actor and critic weights 
(as presented in section ‘An actor–critic network model for incre-
mental learning’) for each goal location, the policies and value 
functions associated with each one of them are stored. We refer to 
the value and associated policy as a ‘strategy’. The choice of a 
strategy depends on a goal prediction error δ δ δt

G
t t

j= −  (see 
Figure 5(a)). The goal prediction error is used to compute a level 
of confidence that the agent has in the strategy it follows. When 
the strategy followed does not lead to the goal, the confidence 
level decreases, leading to more exploration of the environment 
until the goal is discovered. Once the goal is discovered, the strat-
egy that minimises the prediction error is selected. Figure 5(b) 
represents the latencies of the agent. The agent can quickly adapt 
to changing goal locations, as reflected by the steep reduction in 
latencies between trial 1 and 2 of the new goal location.

Prefrontal areas have been proposed to carry out meta-learn-
ing computations, integrating information over multiple trials to 
perform computations related to a rule or a specific task (Wang 
et al., 2018). Neurons in prefrontal areas seem to carry goal infor-
mation (Hok et al., 2005; Poucet and Hok, 2017), and their popu-
lation activity dynamic correlates with the adoption of new 
behavioural strategies (Maggi et  al., 2018). In previous work, 
prefrontal areas have been modelled as defining the state–action–
outcomes contingencies according to the rule requirement (Daw 
et  al., 2005; Rusu and Pennartz, 2020). Moreover, prefrontal 
dopaminergic activity affects flexibility towards changing rules 
(Ellwood et al., 2017; Goto and Grace, 2008), and frontal dopa-
mine concentration increases during reversal learning and rule 
changes (Van Der Meulen et al., 2007). Therefore, the goal pre-
diction error that shapes which goal location is pursued accord-
ing to our hierarchical RL model could be computed by frontal 
areas from dopaminergic signals.

Limitations in accounting for open-field DMP perfor-
mance.  We present this approach as an illustration of how a 
hierarchical agent could be more flexible by separating the com-
putation of the choice of the goal from the computation of the 
choice of the actions to reach it. However, the model has several 

Figure 5.  (a) Hierarchical RL model. The agent has learned the critic 
and action connection weights ( Z j  and W j , respectively) for each 
goal j  red circles around the maze. The actor and critic networks 
together, as represented in Figure 3(a), form the strategy j . A goal 
prediction error δG  is used to compute a confidence parameter σ ,  
which measures how good the current strategy is in reaching the 
current goal location. The confidence level shapes the degree of 
exploitation of the current strategy β  through a sigmoid function 
of confidence. When the confidence level is very high, the strategy 
chosen is closely followed, as shown by a high exploitation parameter 
β . On the contrary, a low confidence level leads to more exploration 
of the environment. (b) Performance of the hierarchical agent. The 
model is able to adapt to changing goal locations, as seen in the 
reduction of latencies to reach the goal.
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features that limit its use to provide a neuropsychologically plau-
sible explanation of the computations underlying DMP perfor-
mance in the watermaze and related open-field environments. 
First, the agent has to learn beforehand the connections between 
place cells and action and critic cells that lead to successful navi-
gation towards every possible goal location of the maze. This 
would involve pretraining with the possible goal locations, 
whereas the agent would fail to learn a completely new goal loca-
tion within one trial (i.e. return to a location that contained the 
goal for the very first time). Hence, the model can be considered 
as a model of one-shot recall, rather than one-shot learning. This 
cannot account for the one-trial place learning performance 
shown by rats and human participants on DMP tasks towards new 
goal locations, rather than familiar ones (Bast et al., 2009; Buck-
ley and Bast, 2018). One discrepancy between the model’s 
behaviour and rats can be seen during the first few trials, in which 
the agent automatically shows adaptation to the new goal loca-
tion (as reflected by sharp latency reductions from trial 1 to 2; 
Figure 5(b)), whereas rats need a few trials to learn the task (Fig-
ure 1(b)). However, the hierarchical RL model may account for 
one-trial place learning performance on the DMP task when the 
changing goal locations are familiar goal locations, that is, 
always chosen from a limited number of locations (Whishaw, 
1985, see the third point below).

Second, if the agent does not find the goal in the location to 
which its current strategy leads, it starts exploring the maze ran-
domly until it finds the current goal location and selects a strat-
egy that predicted it the best. This results in consistently high 
latencies during the first trial of every new goal location (Figure 
5(b)). In contrast, the trial 1 latencies of rats are more variable 
(Figure 1(b)), for reasons considered in the section ‘Map-like 
representation of locations for goal-directed trajectories’ (last 
paragraph). On probe trials, removing the goal location would 
lead the agent to start exploring, therefore failing to reproduce 
the search preference as shown in open-field DMP tasks in the 
watermaze (Bast et al., 2009), virtual maze (Buckley and Bast, 
2018) and in a dry-land arena (Bast et al., 2005). Interestingly, 
this suggests that rats may not show search preference during 
probe trials when they are tested on a DMP task variant that uses 
familiar goal location (Whishaw, 1985) and, therefore, may be 
solved by a hierarchical RL mechanism.

Third, a lesion study (Jo et al., 2007), as well as our own inac-
tivation studies (McGarrity et al., 2015), in rats indicate that pre-
frontal areas are not required for successful one-shot learning of 
new goal locations, or the expression of such learning, in the 
watermaze DMP task, and frontal areas were also not among the 
brain areas where EEG oscillations were associated with virtual 
DMP performance in our recent study in human participants 
(Bauer et  al., 2020). This contrasts with the hierarchical RL 
model, which implicates ‘meta-control’ processes that may be 
associated with the prefrontal cortex. However, on a DMP task 
variant that uses familiar goal location (Whishaw, 1985) and, 
therefore, may be solved by this hierarchical agent, prefrontal 
contributions may become more important, a hypothesis that 
remains to be tested. This suggests that the two DMP variants may 
rely on different neuro-behavioural mechanisms. Interestingly, the 
prefrontal cortex and hippocampo-prefrontal interactions are 
required for one-trial place learning performance on radial-maze 
(Floresco et al., 1997; Seamans et al., 1995) and T-maze (Spellman 
et al., 2015) DNMP tasks, which involve daily changing familiar 

goal locations and, hence, may be supported by hierarchical RL 
mechanisms similar to our model (see section ‘Hierarchical con-
trol to flexibly adjust to task requirements’). Moreover, on the 
T-maze DNMP task, Spellman et al. (2015) found that hippocam-
pal projections to the medial prefrontal cortex are especially 
important during encoding of the reward-place association, but 
less so during retrieval and expression of this association. This is 
partly in line with the behaviour of the model, as the goal predic-
tion error is important to select the appropriate strategy when the 
agent finds the correct goal location during the sample trial. 
However, hippocampal-prefrontal interactions are not yet consid-
ered in the model.

Fourth, hippocampal plasticity is required in open-field DMP 
tasks (Bast et  al., 2005; Steele and Morris, 1999). The current 
approach suggests that the adaptation necessary during trial 1 
gives rise to the selection of a set of actor and critic weights that 
lead to the goal through the computation of a goal prediction 
error. The model does not explain how the computation of the 
goal prediction error would be linked to hippocampal mecha-
nisms. It is possible that a positive prediction error would make 
the current event (being in the right goal location) salient enough 
to affect its neural representation to stay in memory, for example. 
In a spatial navigation task in which rats had to remember reward 
locations chosen according to different rules, McKenzie et  al. 
(2014) have shown that hippocampal representations are hierar-
chical depending on the task requirement: if the context was 
determining the reward location, the context would be the most 
discriminant factor within hippocampal representations. Recent 
work by Sanders et al. (2020) suggests that hierarchical inference 
could be used to explain remapping processes. It may be that a 
hierarchical representation of the task within the hippocampus 
could help adaptation to new goal locations through remapping 
processes. Hok et  al. (2013) found that prefrontal lesions 
decreased variability of hippocampal place cell firing and 
hypothesised that this was linked to flexibility mechanisms and 
rule-based object associations (Navawongse and Eichenbaum, 
2013) within hippocampal firing patterns. This finding shows 
that the prefrontal cortex can modulate hippocampal place cell 
activity. If the goal prediction error is coded by the prefrontal 
cortex, these findings imply that the goal prediction error could 
act on hippocampal representations in order to incorporate new 
task requirements (e.g. information about the new goal location) 
and modify expectations.

A potential account of arm-maze DNMP performance?  
Although the hierarchical RL approach may be limited in 
accounting for key features of performance on DMP tasks using 
novel goal locations, it may have more potential in accounting 
for flexible trial-dependent behaviour displayed by rats on 
DNMP tasks in the radial arm maze, which involve trial-depen-
dent choices between familiar goal locations. DNMP perfor-
mance in radial-maze tasks requires NMDA receptors, including 
in the hippocampus, during pretraining, although after pretain-
ing, and contrary to the watermaze (Steele and Morris, 1999) and 
event arena DMP tasks (Bast et al., 2005), rats can acquire and 
maintain trial-specific place information independent of hippo-
campal NMDA receptor-mediated plasticity, even though the 
hippocampus is still required (Caramanos and Shapiro, 1994; Lee 
and Kesner, 2002; Shapiro and O’Connor, 1992). The hierarchi-
cal RL architecture may account for this phase of acquisition of 
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arm-reward association via pretraining to the eight possible goal 
locations, via the formation of actor and critic weights of every 
strategy. However, the plasticity considered in the hierarchical 
model is more consistent with changes in hippocampal-striatal 
connections, whereas the model does not address the role of plas-
ticity within the hippocampus during this phase. Moreover, the 
hierarchical RL model also fits with the requirement of the pre-
frontal cortex for flexible spatial behaviour on arm-maze tasks, 
as described in the previous section.

However, to test if a hierarchical RL architecture can repro-
duce behaviour on DNMP arm-maze task, our implementation of 
a hierarchical RL model outlined above (see Figure 5(a)) would 
need to be adapted to the arm-maze environments, to the DNMP 
rule and to an error measure of performance that is typically used 
in arm-maze tasks (Floresco et al., 1997; Seamans et al., 1995). 
The goal prediction error would drive exploration to other arms 
and provide a long-term control allowing to carry memories of 
previously visited goals.

Conclusion
We presented an actor–critic architecture, which leads to action 
selection based on the difference of estimated rewards to be 
received. The model (Foster et al., 2000) uses an estimate of the 
value function over the maze to drive behaviour, through a critic 
network that receives place cell activities as input. It can success-
fully learn to select which action is best through an actor network, 
which also receives place cell input and is trained to follow the 
gradient of the value function from the critic difference in succes-
sive activities. This agent can follow trajectories towards a particu-
lar, fixed, goal location, that corresponds to the maximum of the 
value function. However, when the goal location changes, the 
model needs many trials to adjust in order to accurately navigate to 
the new goal, which is in marked contrast with real DMP perfor-
mance of rats (Figure 1(b)) and humans (Buckley and Bast, 2018).

To account for one-trial place learning performance on the 
DMP task, a possible extension to the actor–critic approach is to 
learn map-like representation of locations throughout the maze 
that facilitate the direct comparison between the goal location 
and the agent’s location. This enables the computation of a goal-
directed displacement towards any new goal location throughout 
the maze and reproduces flexibility shown by humans and ani-
mals towards new goal location, as reflected by sharp latency 
reductions from trial 1 to 2 to a new goal location and marked 
search preference for the new goal location when trial 2 is run as 
probe (Figure 4(b) and (c)).

Given that the striatum has been associated with actor–critic 
mechanisms (Joel et al., 2002; Khamassi and Humphries, 2012; 
O’Doherty et al., 2004; Van Der Meer and Redish, 2011), using an 
actor–critic agent for flexible spatial navigation is consistent with 
empirical evidence associating striatal regions with place learning 
performance on both incremental (Annett et al., 1989; Braun et al., 
2010; Devan and White, 1999) and DMP (Bauer et al., 2020; 
Seaton, 2019) tasks. However, contrasting with the coordinate 
extension to the actor–critic architecture, experimental evidence 
suggests that goal location memory may lie within hippocampal 
place cell representations (Dupret et al., 2010; McKenzie et al., 

2013) and that one-trial place learning performance on DMP tasks 
in rats requires NMDA receptor-dependent LTP-like hippocampal 
synaptic plasticity (Bast et al., 2005; Steele and Morris, 1999).

Finally, we illustrated how flexibility may be generated through 
hierarchical organisation of task control (Balleine et  al., 2015; 
Botvinick et al., 2009; Dayan and Hinton, 1993). In an extension of 
Foster et al. (2000), we separated the selection of the goal from the 
control of the displacement towards it by means of a different read-
out of the TD error by the different control systems. The agent first 
learns different ‘strategies’, each of which correspond to a different 
critic-actor component that leads to one of the possible goal loca-
tions. The critic and actor are used to perform the displacement to 
the goal location. An additional hierarchical layer is added to com-
pute a goal prediction error which compares location of the goal 
predicted from the strategies to the real goal location and selects a 
strategy accordingly. The agent follows its strategy depending on a 
confidence parameter that integrates goal prediction errors infor-
mation over multiple trials. This hierarchical RL agent can adapt to 
changing goal locations, although these goal locations need to be 
familiar, whereas in open-field DMP tasks, the changing goal loca-
tions are new (Bast et al., 2005, 2009). However, the hierarchical 
RL approach may be more suitable to account for situation when 
trial-specific memories of familiar goal location need to be formed, 
as on arm-maze DNMP tasks (section ‘A potential account of arm-
maze DNMP performance?’)

To conclude, elements of an actor–critic architecture may 
account for some important aspects of rapid place learning per-
formance in the DMP watermaze task. Together with a map-like 
representation of location, an actor–critic architecture can sup-
port the efficient, fast, goal-directed computations required for 
such performance, and a hierarchical structure is useful for effi-
cient, distributed, control. Future models of hippocampus-
dependent flexible spatial navigation should involve LTP-like 
plasticity mechanisms and goal location representation within the 
hippocampus, which have been implicated in trial-specific place 
memory by substantial empirical evidence.
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