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The past year has seen significant advances in the field of protein 
translocation: the roles of the signal recognition particle and its receptor 
have been understood in greater detail; many membrane components 
responsible for translocation have been identified; and insight has been 

gained into how proteins cross membranes. 
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Introduction 

Eukaryotic cells contain numerous organelles, each en- 
veloped by its own membrane. A membrane must form 
an effective sea wall of sorts, separating organelle from 
cytosol. But as no organelle is entirely self-sufficient (or, 
to strain the metaphor, an island), the membrane sur- 
rounding it must also be permeable, allowing the entry 
and exit of various ions, sugars, nucleotides and proteins. 
Every organelle, for instance, must import proteins that 
are synthesized in the cytosol. Import is a two-step pro- 
cess. First, proteins must be targeted to their destination. 
Then, they must cross the membrane (or, more specifi- 
cally, the membrane permeability must be modified to 
allow the selective vectorial transport of the proteins). 
Those proteins that will become integral to the mem- 
brane must, further, become stitched into the bilayer in 
their proper topography. 
Over the past 20 years we have learned a great deal about 
the first step, protein targeting [ 11. A signal in the primary 
amino acid structure of the protein (the signal sequence) 
is known to be both necessary and sufficient to target the 
protein. Once this signal is synthesized, a cytosolic factor 
called signal recognition particle (SRP) binds to it, as well 
as to the ribosome. Protein translation is inhibited until 
the SRP interacts with a receptor (SRP receptor) on the 
endoplasmic reticulum (ER). The signal sequence is then 
displaced from the SRP in steps requiring GTP hydrolysis, 
protein synthesis proceeds and the nascent polypeptide 
translocates across the membrane (though not necessar- 
ily in that order). 
Our knowledge of the second step, how secretory pro- 
teins cross the membrane and how integral membrane 
proteins are stitched into the bilayer, is considerably 
more limited. For instance, three different techniques 
(genetics, biochemical fractionation and chemical cross- 
linking) identified three disparate, non-overlapping sets 
of molecules considered key to translocation. In addition, 

no overlap was found between the molecular machinery 
identified in prokaryotes, yeast or mammals, even though 
there is conservation of function between them. Dur- 
ing the past 2 years, however, investigators have added 
new techniques to their arsenal, such as membrane solu- 
bilization and reconstitution, electrophysiology and fluo- 
rescence. This article reviews some of the consequences 
of this work. Among the significant advances have been 
a greater appreciation for the ubiquitous role of SRP and 
the membrane proteins involved in translocation as well 
as new insights into the mechanisms by which proteins 
cross membranes. 

Targeting proteins to the membrane 

SRP was originally fractionated from mammalian cytosol 
as a complex of six proteins [ 21 and a 7s RNA [3] that 
is essential to translocation [4]. SRP fulfilled three func- 
tions in vitro binding signal sequences [5,6]; inhibiting 
the translation of nascent polypeptides containing signal 
sequences [4]; and interacting with a cognate receptor 
(the SRP receptor) on the membrane of the ER, which re- 
leased the block of protein synthesis [ 7,8]. Each of these 
functions has been mapped to a separate discrete region 
of the SRP using biochemical fractionation [9]. Most of 
the current experimental questions can be divided into 
spectic categories. Does translation arrest occur in viz& 
How does SRP (or, more specifically, the 54kDa subunit 
of SRP) recognize signal sequences (whose structures are 
extremely diverse)? How does SRP interact with its recep- 
tor? Is there an SRP in yeast or bacteria? What is the role 
of GTP? 

Our knowledge about SRP has recently increased thanks 
to evidence for its role in yeast, Escbericbia coli and 
Bacillus subtdis and detailed analyses of the functional 
roles for its different subunits and membrane-bound re- 
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ceptor. Signal sequences specilically bind !o the 54 kDa 
subunit of SRP, which has been functionally and struc- 
turally divided into two regions [lO,ll]: SRP54G, with a 
GTP-binding site, and SRP54M, a methionine-rich domain 
that is responsible for binding to the 7s RNA and can be 
croLslinked to signal sequences [12,13]. In the absence 
of the GTp-binding domain, the SRP54M is sufficient 
for binding signal sequences [14*] and for reconstitu- 
tion into a SRP( - 54G) which is competent for binding 
signal sequences and arrest of protein synthesis [IS*]. 
Although SRP( - 54G) bound signal sequences [15*], 
chemical modifications of the SRP54G [9,14=] blocked 
binding, suggesting a role in regulation of the binding of 
signal sequences [ 14.1. SigniIicantly, this SRP( - 54G) did 
not promote protein transkxation and its block of pro- 
tein synthesis was not reversed by SRP receptor [15*]. 
This result is particularly sign&ant in light of the ob- 
servation that SRP54G is highly homologous to the GTP- 
binding domains of the SRP receptor [lO,ll]. The role 
of GTP in n-an&cation [16-181 has yet to be fully elu- 
cidated. However, by combining site-directed mutations 
in the GTP-binding domain with biochemical reconsti- 
tution in a mammalian system, it has become possible 
to dissect and identify discrete steps in the process of 
SRP-SRP receptor binding and signal sequence displace- 
ment [l!?] . This approach holds great promise for iden- 
tifying the role(s) of GTP in translocation. 

Although SRP was readily identiIied in biochemical assays 
in mammalian systems, it was undetectable in yeast or 
bacterial transport or genetic assays. However, sequence 
analysis revealed homologues of the 7s RNA, the 54kDa 
subunit and the SRP receptor in yeast [20-251, E. coli 
[ 11,26,27] and B. subtil& [28*]. The role of SRP in 
protein translocation in these systems has now been 
substantiated. In E. co& the homologue of SRP54 (flh) 
was specifically crosslinked to signal sequences [29*] 
and shown to be essential for efficient protein translo- 
cation in vivo [30=]. The E. coli llh was substituted for 
mammalian SRP54 in reassembling a reconstituted SRP 
[31*]. This hybrid complex bound signal sequences and 
arrested translation as efficiently as native SRP. Elongation 
arrest, however, wasnot relieved by SRP receptor. (It re- 
mains to be seen if the E. coli homologue of the SRP 
receptor or other proteins in the E. cofi plasma mem- 
brane can serve this role.) 

Protein secretion in B. subtil&was blocked when the 7s 
RNA homologue was deleted, and secretion was restored 
with the expression of either human SRP 7s RNA or the E. 
wli homologue [ 28.1. In Saccbaromycer cerevtXae, pro- 
tein translocation was compromised for some but not all 
proteins when SRP is deleted [ 24,25,32]. Recently, homo- 
logues of SRPl9 [33*,3&l and SRP receptor [35=] were 
studied in yeast. Mutations in all these proteins produced 
similar phenotypes, suggesting that they work together. 

SRP causes complete translation arrest in a heterologous 
system of wheat germ cytosol and mammalian mem- 
branes [4]. It mediates transient pausing in a homolo- 
gous mammalian system [36]. Examination of its role in 
translation arrest in vivo has been signi.iicantly facilitated 
by the identiiication of homologues for SRP in yeast. 

Mutations of the 7s RNA of Yarrowia l@olyticu selec- 
tively inhibited the synthesis of only secretory proteins. 
As untmnslocated precursors were not observed in the 
cytosol, this mutated SRP may still function to arrest 
translation of secreted proteins, but fail to allow the 
proteins to translocate [37a,38*]. The size of nascent 
proteins aifects the ability of SRP to induce translation 
arrest. Small proteins (up to 85 amino acids) translocate 
without the assistance of SRP [39]. Translation of larger 
proteins (up to 17kDa), was arrested by SRP, suggesting 
that SRP binds to numerous sites on the nascent chain 
[40.]. Progress has also been made in identifying the 
minimal peptide length for insertion in the membrane, 
which should help identify the steps in peptide dissoci- 
ation from SRP and translocation across the membrane 
[41*]. 

Membrane components 

It was originally thought that many different pro- 
teins made up the ‘translocon’, or were involved in 
the membrane components that mediate transloca- 
tion. Ribophorins [42], signal sequence receptor (SSR) 
[43], translocating chain associated membrane protein 
(TRAM) [44*] and a 205kDa protein [45*] have all 
been identified by chemical cross-linking. Alternatively, 
in E. coli Set Y [46] and in S. cerevtie SecGl, 62 
and 63 [47,48] and Sec70, 71 and 72 [49’] have been 
identified with genetic selection schemes. Biochemical as- 
says have determined that the signal peptidase complex 
[ 501 and oligosaccharyltransferase [ 511 act on translocat- 
ing chains, suggesting that they are intimately involved 
in translocation. Finally, the observation that proteins 
translocate across the ER co-translationally [52,53] has 
inspired the hunt for a ribosome receptor. 
Fortunately, there has been considerable consolidation 
of candidate proteins during the past year. Some of 
the progress was the consequence of biochemistry. 
For example, the ribophorins were demonstrated to 
be the oligosaccharyltransferase [54’-57’1. Other ad- 
vances came from the hybridization of approaches. The 
previously identified yeast proteins Secblp, Sec62p and 
BiP were chemically crosslinked to nascent translocating 
chains [58m,59’]. Mutations in either SEC7j2 or SEC63 
decreased the crosslinking of translocating chains to 
SecbIp. A mammalian homologue of SecGIp was recently 
identified crosslinked to translocating chains [6@]. The 
consolidation of the results from mammals and yeast may 
be further extended based on the observation that this 
protein also has moderate homology to the E. coli pro- 
tein, Set Y [60*,61*]. 
The role of cytosolic factors in translocation was es- 
tablished because of the availability of a biochemical 
assay for fractionating and reconstituting translocation 
[62]. The list of potential membrane components has 
grown over the past few years in the absence of a similar 
technique for fractionating membrane proteins. The abil- 
ity to solubilize, fractionate and reconstitute membranes 
that still translocate [63-65] is a powerful tool for test- 
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ing proteins [ 66*]. ER membranes were solubilized and 
a potential component, SSR, was depleted before recon- 
stitution of membrane proteins. These membranes were 
still fully competent to translocate. Translocation was to- 
tally blocked when SRP receptor was depleted from the 
membranes, demonstrating the power of this technique 
[66=]. It has been used to demonstrate that TRAM is re- 
quired for protein translocation [44*]. 
The roles of other proteins were illuminated during the 
past year. The signal peptidase was demonstrated to have 
most of its mass and putative active sites on the lumenal 
side of the ER [ 67#]. This suggests that signal peptide 
cleavage occurs in the lumen. The identification of the 
ribosome-binding protein(s) has yet to be clarified. After 
the report of a 180 kDa ER protein [ 681, other candidates 
have been suggested [ 69,70,71 l ,72] . It remains to be seen 
what role any or all of them serve in protein translocation. 

How do proteins cross the membrane? 

Membranes are impermeable to most charged molecules. 
Ions cross membranes through transmembrane aqueous 
pores, known as ion channels. Recent evidence sup- 
ports the idea [62] that proteins cross membranes by 
a similar mechanism. Large channels were observed in 
the ER when nascent translocating chains were released 
from the membrane-bound ribosomes; these channels 
remained open until the ribosomes dissociated from 
the membrane with high salt concentrations [73]. Thus, 
the channels are open while a chain is translocating, 
but relatively impermeable to ions until the nascent 
chain is released. Similarly, it has been observed that 
the mammalian homologue of SEC6lp associates tightly 
with ribosomes during translocation and remains after 
the release of the nascent chains until ribosomes are 
dissociated with high salt concentrations [60*]. These 
electrophysiological results parallel observations using 
a probe incorporated into nascent translocating chains 
whose fluorescence is affected by the hydrophobicity of 
their environment [74*]. While translocating across the 
membrane, the probe reports an aqueous environment. 
However, the fluorescence cannot be quenched by io- 
dide, again indicating that while a chain is tmnslocating, 
the channel is relatively impermeable to ions. This ap- 
proach was used to demonstrate further that the signal 
sequence, when in the context of a translocating protein, 
does not partition into the lipid bilayer. Moreover, there 
is a tight ion-impermeant junction between the ribosome 
and the membrane when a chain is translocating. 

These observations are consistent with results from other 
systems. First, channels very similar to those observed in 
the ER 1731 were observed in the plasma membrane of 
E. coli upon addition of very low ( < r&I) concentrations 
of signal sequences [ 75.1. This suggests the signal se- 
quence is a ligand that opens the protein-conducting 
channel. Likewise, a general increase of conductance 
was observed when pre-proteins were added to E. coli 
plasma membrane vesicles [76*]. Second, the conduc- 
tance of channels in the mitochondrial membrane was 

substantially reduced, or blocked, in the presence of a 
peptide resembling a mitochondrlal targeting signal, sug- 
gesting that the peptide is entering the channel and slow- 
ing the flow of ions [77*]. Third, when crosslinkers were 
incorporated into nascent chains, they could be linked to 
other transmembrane proteins but not to lipids, indicat- 
ing that proteins are shielded from the hydrocarbon core 
of the membrane [78*]. However, these results raise two 
immediate problems. First, if proteins are in an aqueous 
pore, what moves them across the membrane? Second, 
how do transmembrane proteins get out of the channel 
and into the bilayer? 

A Brownian ratchet has beeri proposed as the mecha- 
nism that moves proteins across membranes [79*]. The 
model assumes that proteins are in a protein-conduct- 
ing channel and the translocating chains see different 
chemical environments on the two different sides of the 
membrane. A protein in a channel should reptate back 
and forth from thermal energy. But, if a protein is modi- 
fied in the lumen of the ER (by addition of sugar groups 
or binding by lumenal contents) the protein will not be 
able to move out of the lumen., It would reptate back and 
forth until it finally crosses the membrane. Quantification 
of this model demonstrated that it can account for the ki- 
netics of protein translocation [79*]. It has also withstood 
a number of experimental tests: the lumenal protein BiE 
is one of the main proteins that can be cross-linked to a 
translocating chain [58=]; BIP is needed in reconstituted 
yeast ER vesicles for translocation [80*] and lumenal ER 
proteins are required in reconstituted mammalian micro- 
somes for unidirectional translocation [81*] ; addition of a 
glycosylation site to a short protein ensures the vectori- 
ality of transport [82*] ; once a chain is partially across 
the membrane, it will fully translocate in the absence 
of any additional energy source [ 83.1. It has been sug- 
gested that chaperone proteins may pull the nascent 
chain through the membrane [ 83*,840]. The Brownian 
ratchet is a mechanism for transducing chaperone bind- 
ing to protein movement. 

Integration of membrane proteins 

Little is known of the biogenesis of membrane proteins. 
One approach has been to screen for mutations in yeast 
that selectively block translocation of membrane proteins 
[49*,61*]. Alternatively, genetically engineered proteins 
were used to identify the regions that deiine a trans- 
membrane domain [85*,&l. Statistical studies of the dis- 
tribution of charges on either side of the transmembrane 
segment have supported the idea that an excess of 
positive charge determines the cytoplasmic side 1871. 
Experimental results have been ambiguous with some 
constructs consistent with the rule [88*]. However, other 
constructs indicate that the charged residues do not af- 
fect transmembrane orientation. This suggests that other 
features determine membrane topology [ 89.1. A differ- 
ent construct has been used to show that transmembrane 
segments insert independently with an innate transmem- 
brane orientation [90=,91*]. The observation that some 
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domains of a protein may not always be’ on the same 
side of the membrane has elicited the suggestion that 
there may be regulation of insertion of membrane seg- 
ments [ 92.1. 

Conclusion 

This year has seen ‘great advances in the study of protein 
transkxation. The functions of each of the subunits of 
SRP and the SRP receptor were further elucidated. The 
combination of genetics and chemical labeling provided 
critical evidence for identifying the key membrane com- 
ponents. These can now be tested with a biochemical 
technique for solubilization, fractionation and reconstitu- 
tion of membrane components that has proven its ability 
as a discriminating functional assay. Despite the identifi- 
cation of many new components, the overall picture of 
protein translocation has been simplified: functions have 
been identified for proteins; homologies between sys- 
tems have been recognized. Growing evidence has sup- 
ported the hypothesis that proteins translocate through 
protein-conducting channels that shield them from the 
hydrocarbon core of the bilayer. 
These advances, however, beg further questions. How are 
transmembrane proteins integrated into the bilayer? What 
determines that a sequence should be a transmembrane 
domain? Are transmembrane domains translocated with 
the same machinery as secretory proteins? Are transmem- 
brane segments sequentially inserted into the membrane, 
or are larger domains inserted? How do transmembrane 
segments partition from the translocation apparatus into 
the lipid bilayer? Are protein-conducting channels a gen- 
eral mechanism for protein movement across mem- 
branes, for example, in the transport of a-factor by S’T’E-6 
[93] or hemolysin by HlyB,D [ 94]? For that matter, are 
transmembmne aqueous pores a general mechanism for 
moving all hydrophilic molecules (sugars, amino acids 
and nucleotides) across membranes? While substantial 
progress has been made and many new issues are be- 
ing raised, it is p&haps significant to remember that 
even some of the most fundamental issues in protein 
translocation, such as identifying the essential physical 
characteristics that define a signal sequence, have yet to 
be resolved. 
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