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Purpose. To characterize the relative contributions of intraocular pressure (IOP) and intracranial pressure (ICP) on lamina
cribrosa (LC) behavior, specifically LC depth (LCD) and LC peak strain.Methods. An axially symmetric finite element model of
the posterior eye was constructed with an elongated optic nerve and retro-orbital subarachnoid space ensheathed by pia and
dura mater. -e mechanical environment in LC was evaluated with ICP ranging from 5 to 15mmHg and IOP from 10 to
45mmHg. LCD and LC peak strains at various ICP and IOP levels were estimated using full factorial experiments. Multiple
linear regression analyses were then applied to estimate LCD and LC peak strain using ICP and IOP as independent variables.
Results. Both increased ICP and decreased IOP led to a smaller LCD and LC peak strain. -e regression correlation coefficient
for LCD was −1.047 for ICP and 1.049 for IOP, and the ratio of the two regression coefficients was −1.0. -e regression
correlation coefficient for LC peak strain was −0.025 for ICP and 0.106 for IOP, and the ratio of the two regression coefficients
was −0.24. A stiffer sclera increased LCD but decreased LC peak strain; besides, it increased the relative contribution of ICP on
the LCD but decreased that on the LC peak strain. Conclusions. ICP and IOP have opposing effects on LCD and LC peak strain.
While their effects on LCD are equivalent, the effect of IOP on LC peak strain is 3 times larger than that of ICP.-e influences of
these pressure are dependent on sclera material properties, which might explain the pathogenesis of ocular hypertension and
normal-tension glaucoma.

1. Introduction

Glaucoma is the second leading cause of blindness world-
wide. Elevated intraocular pressure (IOP) is the major risk
factor for the development of glaucoma [1, 2]. High IOP
causes abnormal displacement and strain in the optic nerve
head (ONH), specifically within the load-bearing compo-
nent lamina cribrosa (LC). Excessive displacement and
strains in LC have been associated with optic nerve damage
including retinal nerve fiber layer thinning [3, 4], axonal
damage [5, 6], retinal ganglion cell damage [5, 7], and gene
expression alternations in the extracellular matrix [8].
However, 30–60% of glaucoma subjects have normal IOP
and are labeled normal-tension glaucoma [9, 10]. -is in-
dicates that other factors besides elevated IOP, such as

intracranial pressure (ICP), may contribute to the devel-
opment of glaucoma. In several retrospective studies,
glaucoma patients were found to have significantly lower
ICP than controls [11, 12]. In experimental studies, artifi-
cially lowering ICP in monkeys produced an optic neu-
ropathy that resembled glaucoma [13].

-e LC separates IOP compartment from ICP com-
partment, which creates a pressure differential across the LC
called translaminar pressure difference (TLPD) [14]. TLPD,
defined as the difference between IOP and ICP, assumes that
ICP and IOP produce equal and opposite biomechanical
effects on LC [15, 16]. Since the optic nerve subarachnoid
space is located along the periphery of LC, the loading effect
of ICP on LC is likely to be different from that of IOP. Hence,
we hypothesize that ICP and IOP affect LC depth (LCD) and
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LC peak maximum principal strain (hereafter referred to as
LC peak strain) differently. -e aim of this work was to
estimate and compare the relative contributions of ICP and
IOP on LCD and LC peak strain using the finite element
method.

2. Materials and Methods

2.1. Finite Element Model Construction. An axially sym-
metric finite element model of the posterior eye (Figure 1)
was constructed by modifying established models published
in literature [17, 18]. We extended the length of the optic
nerve (intraocular and intraorbital segments) to 9mm,
capturing the entire length of the central retinal vessel [19].
-e sclera was considered as a 0.78mm thick spherical shell
with an internal radius of 12.22mm [20]. We attenuated the
sclera down to a tapered edge with a thickness of 0.5mm and
a taper angle of 30° from the axis of symmetry, which then
formed a scleral canal with a diameter of 1.98mm at its
anterior opening [21]. -e perpendicular distance from the
scleral canal at its anterior opening to the lowest anterior LC
point (283 μm) was defined as LCD (Figure 1(b)). -e
prelaminar neural tissue, with a thickness of 0.22mm at the
equator, extended till the anterior surface of LC with a
contoured shape [17]. -e LC was modeled as a spherical
sector. -e diameter of the anterior LC surface was set as
2.07mm with thickness at the axis of symmetry as 0.3mm,
producing an anterior surface area of 3.46mm2 [22]. -e
postlaminar neural tissue below the LC, ensheathed by the
pia mater, had a diameter of 3.16mm and 2.7mm at 3mm
and 9mm posterior to the globe, respectively [23]. -e
thickness of the pia mater decreased from 0.14mm at the
junction of peripapillary sclera to 0.06mm at 0.5mm pos-
terior to the globe and remained constant thereafter [24].
-e thickness of dura mater decreased from 0.75mm at the
junction of the sclera to 0.4mm at 3mm posterior to the
globe and remained constant thereafter [25, 26]. -e sub-
arachnoid space between pia and dura mater was 0.36mm at
the junction of peripapillary sclera [25], increased to the
maximum width of 0.86mm at 3mm posterior to the globe,
and decreased to 0.52mm at 9mm posterior to the globe
[23]. -e central retinal vessel had an outer diameter of
0.14mm and a wall thickness of 0.03mm [27, 28].

-e material properties of sclera were adopted based on
the uniaxial tests by Schultz et al. [29]. A second-order
hyperelastic isotropic constitutive model was applied to fit
the test data (Figure 2). Its constitutive relation was rep-
resented by the following polynomial strain energy density
function U as

U � C10 · I1 − 3(  + C01 · I2 − 3(  + C11 · I1 − 3(  · I2 − 3( 

+ C20 · I1 − 3( 
2

+ C02 · I2 − 3( 
2
,

(1)

where Cij are the material coefficients determined from the
experimental data, while I1 and I2 are the first and second
invariants of the Cauchy–Green tensor, respectively.
I1 � λ21 + λ22 + λ23, and I2 � 1/λ21 + 1/λ22 + 1/λ23. λi was the
principal stretch ratio. -e calculated material constants

for the human sclera specimens were C10 � 0.582,
C01 � −0.381, C11 � −47069.119, C20 � 22867.828, and
C02 � 24265.006. For porcine sclera specimens, the fitted
material constants were C10 � 0.893, C01 � −0.755,
C11 � −4622.787, C20 � 2223.850, and C02 � 2413.072.

All other ONH components were assumed as isotropic,
linear-elastic, and incompressible materials with a Poisson’s
ratio υ� 0.49. Young’s modulus, as obtained from literature,
was 0.03MPa for both prelaminar and postlaminar neural
tissues, 0.3MPa for LC, 3MPa for pia mater, and 9MPa for
dura mater [17, 18, 30–32].

We applied an ICP ranging from 5 to 15mmHg to the
subarachnoid space, representing the ICP fluctuation within
the normal adults [33]. An IOP ranging from 10 to
45mmHg, representing the IOP fluctuation within the
glaucomatous patients, was applied along the interior sur-
face of the eye, i.e., prelaminar neural tissue [34]. Central
retinal arterial pressure was held constant at 55mmHg [35].
-e equator of eyeball in Figure 1(a) was constrained to
allow radial movement only, corresponding to anterior-
posterior restraint from the extraocular muscles.

-e ONH model was meshed using 4-node bilinear
axisymmetric quadrilateral shell elements with reduced
integration and hourglass control (CAX4R). A mesh con-
vergence test was conducted, and the minimummesh size of
20 μm was chosen. -e baseline model consisted of a total of
88,785 nodes and 87,060 elements. All simulations were
carried out using ABAQUS/Standard 6.13 (Simulia, Provi-
dence, RI, USA).

2.2. Full Factorial Experiment Design. We applied a mixed-
level full factorial experiment design using ICP and IOP as
independent variables. We considered three levels of ICP (5,
10, and 15mmHg) and four levels of IOP (5, 15, 25, and
45mmHg), which resulted in 12 simulation scenarios. Based
on the results of these 12 simulation scenarios, multiple
linear regression models were applied to quantitatively es-
timate the relative contributions of ICP and IOP on LCD
and LC peak strain. To avoid numerical artifacts, the peak
strain was defined as the average of strain values in the 5% of
the tissue volume with the highest strain. We calculated the
ratio of the two regression coefficients (ICP/IOP) for LCD
and LC peak strain to estimate the relative contributions of
ICP and IOP for these parameters. A ratio (absolute value)
larger than 1 indicates that the contribution of ICP is more
than that of IOP.

2.3. Influence of ICP and IOP Fluctuations. From the 12
simulation scenarios, we used 3 scenarios to assess the effects
of ICP increase or IOP decrease on LC anterior surface
displacement and LC peak strain. -e LC anterior surface
displacements were calculated at LC center and LC quarter-
point referenced to the anterior insertion point of LC. A
positive value indicates anterior shift while a negative value
indicates a posterior shift. -e baseline model was designated
as ICP at 5mmHg and IOP at 15mmHg.We determined LCD
and LC peak strain changes by inducing either 5mmHg ICP
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elevation (ICP� 10mmHg, IOP� 15mmHg) or 5mmHg
IOP reduction (ICP� 5mmHg, IOP� 10mmHg).

2.4. Influence of Sclera Material Property. -e influence of
sclera material property on ONH biomechanics was eval-
uated by changing the aforementioned human sclera ma-
terial properties to the porcine sclera material properties in
the full factorial experiments.

3. Results

3.1. Full Factorial Computational Experiments. -e LCD and
LC peak strains obtained from the 12 simulation scenarios
are listed in Tables 1 and 2. -e regression equations
modeled for LCD and LC peak strain using data listed below
show an excellent fitting (R2∼1):

LCD(µm) � 280.9− 1.047∗ ICP + 1.049

∗ IOP, R
2

� 0.9997 ,

LCpeak strain(%) � 0.775− 0.025∗ ICP + 0.106

∗ IOP, R
2

� 0.9994 .

(2)

3.2. Influence of ICP and IOP Fluctuations. Compared to the
baseline model, the model with 5mmHg ICP elevation and
the model with 5mmHg IOP reduction induced a similar
anterior LC shift as shown in Figure 3. Specifically, 5mmHg
ICP elevation resulted in an anterior shift of 5.2 μm at the
center and 3.6 μm at the quarter-point location. A 5mmHg
IOP reduction led to an anterior shift of 5.5 μm at the center
and 3.7 μm at the quarter-point location. -e LC shift in the
quarter-point compared to the LC shift in the center was
69.2% in the elevated ICP model and 67.3% in the decreased
IOP model, respectively.
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Figure 1: Geometry of the finite element model. (a) Full view. (b) Zoom-in view of the ONH.
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Figure 2: Material properties of sclera.

Table 1: LCD in the trial runs of full factorial simulation exper-
iment with human sclera material property.

LCD (μm) IOP (mmHg)
10 15 25 45

ICP (mmHg)
5 286.49 291.38 301.46 322.88
10 281.24 286.19 296.33 317.86
15 275.82 280.78 291.04 312.69

Table 2: LC peak strain in the trial runs of full factorial simulation
experiment with human sclera material property.

LC peak strain (%) IOP (mmHg)
10 15 25 45

ICP (mmHg)
5 1.67 2.21 3.29 5.46
10 1.58 2.10 3.14 5.27
15 1.52 2.00 3.01 5.10
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-e maximum principal strain probability distributions
of LC in the baseline model, the model with 5mmHg ICP
elevation, and the model with 5mmHg IOP reduction were
depicted in Figure 4(a). All distributions had a positive skew
with a tail extending to the right, and IOP reduction was
found to decrease the strain in LC dramatically compared to
ICP elevation. Figure 4(b) shows the scleral canal expansion
in three loading cases. -e baseline model induced a scleral
canal expansion of 10.4 μm, compared with 11.0 μm in the
model with elevated ICP and 7.2 μm in the model with
decreased IOP, respectively.

3.3. Effect of Scleral Property. -e results of LCD and LC
peak strain for the 12 simulation cases using porcine sclera
material property are listed in Tables 3 and 4. -e regression
equations modeled for LCD and LC peak strain also show an
excellent fitting (R2∼1):

LCD(µm) � 279.7− 1.045∗ ICP + 0.902∗ IOP,

R
2

� 0.9986 ,

LCpeak strain(%) � 0.818− 0.021∗ ICP + 0.124∗ IOP,

R
2

� 0.9996 .

(3)

Compared to models using human sclera material
property, models using the softer porcine sclera showed a
2–8 μm reduced LCD and 15–19% higher LC peak strain.
-e ratio of the two regression coefficients for LCD and LC
strain is summarized in Table 5. -e softer porcine sclera led
to an increased influence of ICP on LCD but a reduced
influence of ICP on LC peak strain.

4. Discussion

-e results from our experimental work show that both IOP
and ICP significantly influence the behavior of LC in dif-
ferent ways. We used LCD as a surrogate for the clinical

finding of optic disc cupping in glaucoma [3, 36] and LC
peak strain due to its association with glaucoma patho-
genesis [8, 37].

Our models show that in humans, IOP and ICP have an
equal but opposite effect on LCD which suggests that LCD is
determined by TLPD. -is is consistent with the observa-
tions in human subjects undergoing medically necessary
lumbar puncture, where it was shown that anterior LCD was
correlated with the TLPD, but neither ICP nor IOP alone
[15]. On the other hand, we found that the effect of ICP on
LC peak strain was 24% compared to the effect of IOP. To
verify our results, we calculated LC peak strain by applying
our regression model to experimentally measured IOP and
ICP datasets from prior publications [11, 12]. We found that
the glaucomatous group had a significantly higher strain
than the control group, which validates our model. A de-
tailed description of the data processing is available in the
Supplementary Material.

We found that a 5mmHg ICP elevation or 5mmHg IOP
reduction resulted in a similar anterior shift of LC. However,
a 5mmHg ICP elevation had much less influence on LC
strain than IOP reduction (5% decrease vs 24% decrease).
We also found that the quarter-point LC displacement was
2/3rd of central LC displacement for both ICP elevation and
IOP reduction (69.2% and 67.3%, respectively), which was
consistent with the experimental study by Yan et al. where
the value was between 66% and 69% [38].

Since the scleral in-wall hoop stress is believed to in-
fluence LC biomechanics, we studied the scleral canal ex-
pansion induced by the changes in IOP and ICP [5, 39]. We
found that decreased IOP reduces the scleral canal expan-
sion while elevated ICP increases the scleral canal expansion,
which explains the different contributions of ICP and IOP
on LC peak strain. Decreased IOP causes anterior LC shift
and scleral canal narrowing, both resulting in a reduced LC
strain. Increased ICP causes anterior LC shift but increased
scleral canal expansion. While the former leads to a de-
creased LC strain, the latter causes an increased LC strain.
-ese two opposite effects diminish the role of ICP on the LC
strain, thus resulting in a much smaller contribution of ICP
on LC strain compared to IOP.

We also found that sclera material property significantly
influences LCD and LC peak strain, consistent with recent
reports that scleral material property is an influential factor
in ONH biomechanics [40]. Aging results in an increased
scleral stiffness; for example, the stiffness of sclera at the age
of 80 is three times larger than that at the age of 40 [41]. We
found that for a given ICP and IOP, a stiffer sclera resulted in
a larger LCD and a smaller LC peak strain. -is is consistent
with previous studies that stiffer sclera (18.4MPa) induced
4 μm greater LCD compared to softer sclera (5.3MPa) [42]
and LC peak strain in the elderly decreased by 0.048%∼
0.062% each year [37].

We also found that scleral material property influences
the relative contributions of ICP and IOP on LCD and LC
peak strain. In human sclera, ICP and IOP have equivalent
effect on LCD, while in softer porcine sclera, the ICP
contributes 16% more than IOP. On the contrary, the ab-
solute ratio of the two regression coefficients (ICP/IOP) on
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Figure 3: LC anterior surface displacement (dashed black line at
one-half of the LC radius indicates the location of LC quarter-
point). ∗Units for IOP and ICP are mmHg.
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LC peak strain decreases from 0.24 in human sclera to 0.17 in
softer porcine sclera. -is suggests that as the human sclera
stiffens with age, the influence of IOP on LC strain decreases
compared to ICP. Considering ICP was also found to de-
crease with age, this finding may explain the increase of
normal-tension glaucoma incidence with age, such as from
0.2% in 43∼54 years age group 1 to 1.6% in group older than
75 years [9, 43]. Our findings also suggest that current
glaucoma treatment strategies focused on IOP reduction to
delay ganglion cell loss and progression of glaucoma, pre-
sumably by reducing LC strain [44].

-e unequal contribution of IOP and ICP on LC peak
strain can explain the increased incidence of glaucomatous

visual field defects seen in high-resistance wind instrument
players [45]. -e playing of high-resistance wind instrument
is similar to Valsalva maneuver. Zhang et al. showed ele-
vation of both IOP and ICP during the Valsalva maneuver;
however, ICP elevation is significantly higher compared to
IOP (10.5± 2.7mmHg vs. 1.9± 2.4mmHg) [46]. We propose
that players who develop optic nerve damage likely do so
because the LC strain increase caused by IOP elevation is not
compensated by the higher elevated ICP. Further, players at
a younger age with softer sclera may be at a higher risk for
glaucomatous damage due to a higher impact of IOP
compared to ICP.

Glaucomatous optic neuropathy is characterized by
pathologic cupping, indicating LC remodeling and pro-
gressive loss of retinal ganglion cell axon loss, which is
commonly seen in patients with elevated IOP [36]. However,
increased optic disc cupping may also be seen in other types
of optic neuropathies such as normal-tension glaucoma and
certain patients with other forms of optic neuropathy in the
absence of elevated IOP [47, 48]. Based on the result in this
work that ICP and IOP contributes equally on the LCD,
those optic disc cupping without elevated IOP may be at-
tributed to a decreased ICP.

Our study has several limitations. First, we used a
simplified geometric finite element model with tissue di-
mensions adopted from various studies.-us, our regression
models should be treated as generic rather than individual-
specific. We did not consider the influence of ONH geo-
metrical parameters such as radius of the eye and thickness
of sclera shell which have been shown to influence ONH
biomechanics [49]. On the contrary, based on Hua’s work,
the other geometrical parameters’ influence on the LC strain
is relatively negligible compared to that of sclera modulus;
thus, only the sclera modulus influence was investigated in
this work [40]. It was believed that our conclusion would be
still valid when a varied geometry of ONH was considered.

Second, we assumed linear-elastic and isotropic tissue
material property to simplify our model. Studies have shown
that collagenous tissues such as LC, sclera, and dura mater
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Figure 4: (a) Probability distribution of the maximum principal strain in LC. (b) Scleral canal expansion. ∗Units for IOP and ICP are mmHg.

Table 3: LCD in the trial runs of full factorial simulation exper-
iment with porcine sclera material property.

LCD (μm) IOP (mmHg)
10 15 25 45

ICP (mmHg)
5 284.13 287.91 296.27 315.29
10 278.92 282.78 291.21 310.23
15 273.46 277.39 285.90 305.06

Table 4: LC peak strain in the trial runs of full factorial simulation
experiment with porcine sclera material property.

LC peak strain (%) IOP (mmHg)
10 15 25 45

ICP (mmHg)
5 1.92 2.55 3.81 6.33
10 1.83 2.45 3.69 6.17
15 1.79 2.38 3.57 6.02

Table 5: Ratio of the two regression coefficients (ICP/IOP) in
absolute value.

Human sclera Porcine sclera
LCD 1.00 1.16
LC peak strain 0.24 0.17
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exhibit nonlinear and anisotropic behavior [50–52]. In our
future work, we plan to build more comprehensive models
incorporating material properties with nonlinear and an-
isotropic behavior.

Lastly, we studied the influence of acute changes in ICP
and IOP. Our results cannot be extrapolated to subjects with
chronic ICP changes or IOP changes, which presumably
results in tissue remodeling [36, 53].

5. Conclusion

We found that both ICP and IOP influence LC morphology
and biomechanics. While ICP and IOP have an equivalent
effect on LCD, the effect of IOP on LC peak strain is 3 times
larger than that of ICP. -e influences of these pressure are
dependent on sclera material properties, which might explain
the pathogenesis of ocular hypertension and normal-tension
glaucoma.
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