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ScienceDirect
Maintaining a precise calcium (Ca2+) balance is vital for cellular

survival. The most prominent pathway to shuttle Ca2+ into cells

is the Ca2+ release activated Ca2+ (CRAC) channel. Orai

proteins are indispensable players in this central mechanism of

Ca2+ entry. This short review traces the latest articles published

in the field of CRAC channel signalling with a focus on the

structure of the pore-forming Orai proteins, the propagation of

the binding signal from STIM1 through the channel to the

central pore and their role in human health and disease.
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History
In 2006, RNA interference (RNAi) approaches together

with human genetic linkage analysis identified a 33 kDa

(301 amino acids) cell surface protein genetically encoded

on chromosome 12 [1–3]. First described as CRACM1

and later named after the keepers of the gates of heaven

in Greek mythology – the Horae – this protein was then

referred to as Orai1 and proven as the pore forming unit of

one of the most prominent Ca2+ entry pathway – the Ca2+

release activated Ca2+ (CRAC) channel. The activation

process of CRAC channels is highly unusual as it involves

proteins residing within different cellular compartments:

STIM1 acting as the Ca2+ sensor in the ER (for a detailed

review on STIM proteins see Fahrner et al. within this

issue) and Orai1 as the pore-forming subunit in the

plasma membrane.

Importance
Ca2+ signalling through CRAC channels is a complex

network of intertwining pathways and tight regulation

of Ca2+ is vital for cellular survival. Ca2+-dysregulation has

been shown to be involved in several pathophysiological

cellular malfunctions. Serious clinical human phenotypes

result from loss-of-function or gain-of-function (LOF and
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GOF, respectively) mutations [4]. Initially discovered in

patients with severe combined immunodeficiency

(SCID; R91W mutation leading to lack of CRAC channel

function in T-cells [1]), Orai proteins have now been

associated with various diseases [5]. Several mutations

within transmembrane (TM) domains of Orai1 are the

cause for tubular aggregate myopathy (TAM) (TM1:

S97C, G98S, V107M TM2: L138F TM3: T184M

TM4: P245L; Table 1) [6–9]. A single nucleotide poly-

morphism in Orai1 (S218G [10�]) is associated with atopic

dermatitis and alterations in store-operated Ca2+ entry

(SOCE) via CRAC channels are related to end-stage

human failing myocardium [11]. It has also been shown

that Orai1–3 are upregulated in pregnancy and type

1 diabetes [12]. Accumulating evidence suggests that

altered Ca2+ influx due to oncogenic remodelling of Orai

proteins plays a critical role in cancer hallmarks like

unrestricted proliferation, resistance to cell death, metas-

tasis as well as tumour vascularization and antitumor

immunity (reviewed in Refs. [13,14]). Orai1 and Orai3

proteins have been related to tumorigenesis of breast

cancer as well as lung adenocarcinoma and play a role

in cell migration and metastatic invasiveness [14–21]. In

the context of breast cancer as well as prostate cancer

cells, altered expression levels of Orai channels remodels

the Ca2+ signalling pathways to avoid cell death [14].

Overexpression of Orai channels in prostate cancer has

been linked with a decreased risk of recurrence after

prostatectomy [22]. Angiogenesis, crucial for tumour

development, has been shown to be dependent on cal-

cium signalling [23]. SOCE is also responsible for the

secretion of vascular endothelial growth factor (VEGF)

[15,24]. Pharmacological inhibition of Orai can diminish

the growth of colorectal, breast, liver, melanoma and clear

cell renal cancer cells [15]. Understanding the molecular

architecture and choreography of CRAC channels, there-

fore, has significant potential for therapeutic applications.

Orai proteins
There are three highly conserved homologous proteins of

Orai1 known (Orai 1–3). They are located and distributed

uniformly in the plasma membrane and consist of four,

highly conserved transmembrane domains (Orai1: TM1–

4; aa92–106, aa118–140, aa174–197 and aa236–258) shar-

ing �81�87% sequence similarity within TM2-4 and

complete identity in the functionally critical TM1 helix.

Both N-terminal and C-terminal strands reside in the

cytoplasm (Figure 1a). The cytoplasmic strands exhibit

considerable sequence homology within the segments

concerned with direct STIM-Orai interaction. TM-

domains are connected via two extra- (loop1, loop3) as

well as one intracellular loop (loop2), showing isoform
www.sciencedirect.com
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Table 1

The effect of identified Orai1 mutations on channel function

Residue/mutationreference Location Channel behaviour Associated disease

K85E [61] N-terminus Inactive

R91W [1]

TM1

Inactive SCID

S97C [9] Constitutive TAM

G98C/D/P [38,62] Constitutive

G98R [63] Inactive CID; autoimmunity

G98S [8] Constitutive TAM

F99C/G/M/S/T/Y/W [38] Constitutive

V102A/C/G/S/T [64] Constitutive

V102I/L/M/V [64] Store-operated

E106Q [65] Inactive

V107M [8] Constitutive TAM

H134S/A/C/T/V/Q/E/M [37,60�]

TM2

Constitutive

H134K/W [60�] Inactive

A137V [37] Constitutive Colorectal tumor

L138F [6] Constitutive TAM

L174D [49]

TM3

Inactive

W176C [66] Constitutive

G183A [66] Inactive

G183D [37] Inactive Glioblastoma

T184M [7,8] Store-operated TAM

E190C [60�] Constitutive

S218G [10�]
Loop3

Store operated
Atopic dermatitisN223S [10�] Store operated

P245L [67] TM4 Constitutive Stormorken like syndrome

L261A V262N H264G K265A (ANSGA) [49]

C-terminus

Constitutive

L273S [68] Inactive

L273D [69] Inactive

L276D [70] Inactive

Most important currently identified mutations within Orai1 mentioned within this review, their location, resulting channel behaviour and associated

diseases are indicated. (SCID: severe combined immunodeficiency; TAM: tubular aggregate myopathy; CID: combined immunodeficiency).
specific characteristics and sequence deviations espe-

cially within the loop3 (Figure 1a). Much less is known

on the function of Orai2 and Orai3 compared to Orai1,

therefore this review mainly focuses on the most promi-

nent isoform, Orai1 (for a detailed review on Orai2 and

Orai3 see Ref. [25]). In humans the Orai1 protein is

expressed in a long (Orai1a) and a short (Orai1b) form

originating from alternative translation initiation at Met64
[26,27].

Orai1 structure
In 2012, against all expectations and countering the

prevailing evidence for a tetramer, the crystal structure

of the Drosophila melanogaster Orai (dOrai) showed that

the channel is hexameric [28]. The closed dOrai channel

structure has revealed that six monomers are arranged

around a central axis, in which TM1 of each subunit forms

the inner surface of the pore, thereby confirming earlier

studies that identified pore-lining residues [29]

(Figure 1a,b). TM2-4 are positioned in concentric rings

around this ion conducting pore [28]. dOrai proteins

exhibit close similarity (�73% in TM regions) to human

Orai1. This suggests and electrophysiological data

strongly implies that also human Orai1 proteins assemble
www.sciencedirect.com 
as hexamers [30,31]. Nonetheless, one should keep in

mind that the dOrai crystal has been achieved by using

various deletions and mutations, facilitating protein puri-

fication (reviewed in Ref. [32]). Store-dependent activa-

tion of CRAC channels involves direct binding of STIM1

to Orai1 as has been demonstrated by several groups

[29,32]. Although a binding of STIM1 to the Orai1 N-

terminus is still under debate, it has been shown via

progressive N-terminal deletions that this region is essen-

tial for STIM1 coupling and that isolated fragments are

able to bind to the STIM1 CAD domain [29,33,34]. Pre-

binding of STIM1 to the Orai1 C-terminus followed by

coupling to the Orai1 N-terminus in a stepwise manner

has been suggested by Niu et al. [35�]. A 17 residues long

conserved sequence, termed ‘extended transmembrane

Orai1 N-terminal’ (ETON, aa73–90) region is suggested

to be involved during STIM1/Orai1 activation [34].

Amino acid residues located within the ETON region

and at the beginning of TM1 (K85, S89, S90, R91) were

suggested to play important roles during STIM-Orai

coupling [1,33,34] (Figure 1a,b). Yet, a full picture of

the binding/activation mechanism between Orai1 N-ter-

minus and STIM1 is still missing. The about 6 Å narrow,

ion-conducting pore of the Orai channel is formed by
Current Opinion in Physiology 2020, 17:42–49
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Figure 1
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Schematic and structural representation of important domains in Orai1 proteins.

(a) Schematic representation of one hOrai1 monomer with important amino acids and regions highlighted. N-termini and C-termini are located

inside the cytosol and range from aa1–91 and aa259–301, respectively. The ETON region (aa73–90) is highlighted in orange. The four TM-domains

(TM1: aa92–106; TM2: aa118–140; TM3: aa174–197 and TM4: aa236–258) are connected via two extracellular loops (loop1 and loop3) and one

intracellular loop (loop2). Important hOrai1 residues and domains highlighted in yellow represent unpolar, green basic, blue acidic and red neutral/

polar side chains.

(b) Cross section through a 3D model of a hexameric hOrai1 channel, displaying two hOrai1 monomers facing each other with TM2-TM4

stabilizing the pore-forming TM1-helices. Important amino acid residues are highlighted as in (a). Additionally, side chains of amino acid residues

facing the ion-conducting pore (left) and side chains of residues within TM2 and TM3 (right) crucial for stability of TM domains are depicted. (PDB

number: 4HKR with adapted hOrai1 sequence described in Frischauf et al. [39]).

Current Opinion in Physiology 2020, 17:42–49 www.sciencedirect.com
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TM1 helices according to the dOrai crystal structure [28].

The channels entrance is surrounded by 6 highly con-

served glutamate residues (E106 - selectivity filter) result-

ing in a hydrophobic surrounding and concentrated neg-

ative charges attracting Ca2+ ions [36] (Figure 1b).

Residues within TM1 that are discussed to have specific

functions in channel gating are V102 (hydrophobic gate),

G98 (gating hinge), L95 as well as F99 (hydrophobic gate)

[32,36] (Figure 1a,b). Additionally, R91, together with the

formation of a water layer, may act as gate of the channel

[37]. V102 and F99 have been proposed to work in concert

forming a hydrophobic gate, as mutation to more polar

amino acids leads to leaky gates [38]. Within the extra-

cellular loop1 Frischauf et al. described a Ca2+ accumu-

lating region (CAR) that enhances permeation at physio-

logically low Ca2+ levels via three negatively charged

aspartates (D110, D112, D114) [29,39]. TM2-4 seem to

stabilize the channel by forming a second layer around the

central pore-forming TM1 helix [28]. Frischauf et al. [37]

also identified several mutations (e.g. H134A, A137V) in

TM2 affecting Orai channel gating. Especially the pow-

erful H134A gain-of-function mutation developed con-

stitutively active currents, completely independent of

STIM1 activation. Using combined approaches including

molecular dynamics simulations (MD-simulations),

electrophysiology and cysteine-crosslinking, H134A pro-

teins were shown to create hydrogen bonds between

amino acid side chains facing the channels pore (S90

and R91). Additionally, mutating H134 to alanine

decreases hydrophobic gating barriers by creating a chain

of water molecules through the channels pore.

The role of the intracellular loop2 in humans is not fully

clarified yet. It has been shown in Caenorhabditis elegans
that STIM1 binds to loop2, pointing to a different acti-

vation mechanism than in humans [40]. In addition, loop2

seems to be responsible for the different, isoform-specific

behaviour of human Orai1 and Orai3 proteins shown with

various N-truncated mutants that interact between resi-

dues Y80 in the N-terminus and N156 in loop2 [41].

Mutation of W176 to cysteine (W176C) and G183 to

alanine (G183A) within TM3 has dramatic effects on

gating and selectivity of the channel [34]. MD-simula-

tions have predicted that also residue E190 contributes to

selectivity and gating by reducing the number of water

molecules in this region when mutated to glutamine [42].

The E190 residue was also shown to be responsible for

the external pH sensitivity if Ca2+ is not present [43].

Niemeyer et al. discovered redox-dependent regulation of

Orai1 proteins which they attributed to the cysteine

195 residue (C195) close to the extracellular loop3 [44].

There is no corresponding C195 residue within Orai3,

which makes Orai3 isoforms insensitive to H2O2-induced

inhibition [44,45]. The extracellular loop3 exhibits the

lowest sequence-conservation among Orai isoforms.

Molecular modelling together with MD-simulations

identified loop3 as highly flexible region, electrostatically
www.sciencedirect.com 
interacting with amino acids in the loop1 CAR, thereby

modulating Ca2+ permeation [10�,39]. In loop3, only

Orai1 proteins contain an N-glycosylation site at position

223 (N223). Different glycosylation states of Orai1 might

manipulate SOCE-mediated Ca2+ signalling, thereby

playing a crucial role in pathophysiological processes

involved in diseases and cancer related aberrations

[46]. The outer shell of a hexameric Orai1 channel is

formed by TM4 [28]. Quite recently the Long lab crys-

tallized the open dOrai channel by taking advantage of

the H134A Orai1 gain-of-function mutation [37] (H206A

in dOrai) [47��]. The open crystal suggests conformational

changes and straightening of the TM4 and the extended

TM4 region (M4ext) upon channel opening. Addition-

ally, it has been shown that the open pore is dramatically

dilated, being �10 Å apart on the cytosolic end. A release

of cytosolic latches between P245 (P288 in dOrai) and the

C-terminally located SHK motif (aa263, 264 and 265 in

hOrai1) leading to a straightened TM4 helix, seems to

expose cytosolic docking sites for STIM1. The TM4

helix bends at position P245 which enables cytosolic

M4ext to point in opposite directions and interact through

coiled-coils. The M4ext segment is widely accepted to be

the major binding site for STIM1 and seems to be crucial

in stabilizing the closed state of the channel [33]. The C-

terminus is attached to TM4 via a flexible linker region

that is required for coupling between Orai1 C-terminus

and STIM1 [48]. Within this linker region one can find a

five amino acid long sequence (aa 261–265, LVSHK)

termed ‘nexus’ (Figure 1a). Mutation of these amino

acids from LVSHK to ANSGA led to a constitutively

active channel. Hydrophobic attachment of TM4 resi-

dues (L261, V262) to TM3 residue L174 is proposed by

Zhou et al. [49]. The cytosolic C-terminal strand of Orai is

predicted to arrange in paired structures by forming

coiled-coil interactions with other Orai1 subunits bending

in opposite directions. Two hydrophobic residues (L273,

L276) were shown to play significant roles during coiled-

coil formation, STIM-Orai binding as well as channel

activation [32,50,51] (Figure 1a,b).

STIM1/Orai1 binding
Two models have been proposed to describe STIM1

binding to the cytosolic Orai1 C-terminus. The dimeric

model postulates binding of a STIM1 dimer to a pair of

M4ext, based on an NMR solution structure where the

CC2 domains of CAD/SOAR fold as a binding pocket

[52]. This binding model is not easily reconciled with the

open dOrai structure. In the monomeric binding model, a

STIM1 dimer engages only one C-terminus of Orai1,

based on findings were a binding-deficient F394H

STIM1 mutant within a STIM1 dimer is still able to

activate Orai1 to its full extent [53]. With this model, one

could possibly explain how the free CAD/SOAR of the

dimer can crosslink Orai1 channels into clusters thereby

slowing their diffusion [54]. Still, both models can repre-

sent different stages in the CRAC activation process. In
Current Opinion in Physiology 2020, 17:42–49
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earlier studies it has been hypothesized that the Orai1 C-

termini straighten, which breaks their coiled-coil interac-

tion allowing for STIM1 binding [28]. Which conforma-

tional rearrangements take place within Orai upon STIM

binding, are only partially resolved. It is highly likely that

STIM1 binding to one or both Orai1 termini induces

signal propagation by exerting a force on the four TM

regions. By now, there are several mutations identified

that constitutively activate Orai1 — most of them located

within TM2 to TM4 (H134A, P245L, W176C, G183A,

ANSGA; Table 1) [7,37,49]. It is the prevailing view that

the closed channel is stabilized by multiple TM-interac-

tions which are released upon the signal from STIM1 to

open the gate allowing for Ca2+ influx.

Mechanisms of Ca2+ permeation
One essential characteristic of the CRAC channel is its very

high selectivity for Ca2+ over Na+ and its small unitary

current: features that point to an energetic barrier for ion

passage through the pore — either by repulsive forces or

purely by the narrow pore diameter (�039 nm) [29,36,55].

Therefore, conformational changes need to take place

within the pore to allow for Ca2+ influx. The group of

Prakriya has proposed a pore rotation model where torsion

of the TM1 helix is linked with conformational changes in

the Orai1 C-terminus upon STIM1 binding and channel

opening [56]. Hydrophobic side chains of pore-lining resi-

dues V102 and F99 create a barrier for ion permeation in the

closed state, which are rotated outwards (�20�) upon

STIM1 binding [38]. A recent study by Dong et al. [57�]
supports this ‘twist-to-open’ gating mechanism. By the use

of MD-simulations based on the dOrai structure they show

that coupling of TM1 to TM3 (R83-E149 and K85-E173) is

crucial for graded activation of Orai channels and that a

series of motions lead to channel opening without relaxing

structural integrity. Incontrast, Frischauf et al.have showna

small local widening of the pore (�1�2 Å) occurring during

channel opening, proposing two gates in both the hydro-

phobic and basic region of the pore [37]. In line, the open

dOrai crystal reveals a widening of the basic region in the

channels pore although the limited resolution may have

prevented the identification of a slight rotation of the pore

helix [47��]. A recent study combining crystallization and

cryo-electron microscopy compared the closed and open

state of the dOrai channel by use of the constitutively open

dOrai P288L (P245L in hOrai1) mutant that mimics the

action of STIM1 binding [58��]. They propose a model for

the conformational transduction pathway from the periph-

eral TM4 to the pore lining TM1 helix: Latched TM4

helices close the pore from the cytosolic side in closed

channel configuration and Ca2+ flux is blocked by positive

charge repulsion and anion plugs. Upon channel opening,

the basic section of TM4 helices moves outwards, facilitat-

ing Ca2+ permeation (anion recruitment model). Lui et al.
were not able to observe pore helix rotation comparing

closed and open states of Orai similar to the results of Hou

et al. [47��], although both groups used two different open
Current Opinion in Physiology 2020, 17:42–49 
Orai mutants (P245L and H134A, respectively). Nowa-

days, MD-simulations are widely used to gain mechanistic

insights into Orai channels, an approach that is in detail

reviewed in [59�]. Merging the two different gating models

is therefore tricky as the basis used for MD-simulations

differ (dOrai in Refs. [38,57�] and a modelled hOrai struc-

ture in Refs. [37,39]). Ultimately, an atomic-resolution

structure is needed for resolving the native behaviour of

human Orai1.

Perspectives/open questions
Undoubtedly, Orai1 TM domains are critically involved in

transmitting the STIM1 signal to the ion-conducting pore

[60�]. Discovering the exact, physiological mechanism of

the allosteric conformational switch necessary to convey

the signal from STIM1 binding to Orai1 channel opening is

an exciting focus for further research. Constitutively active

mutants within Orai1 can help to understand the transition

from the closed to the open channel may takes place. The

recent open dOrai crystal structure was achieved by intro-

ducing the H206A mutation (corresponding to H134A in

hOrai1) [47��]. Considering this structure one has to keep

two things in mind: (1) the relatively low sequence homol-

ogy between dOrai and hOrai1 of about 73% and evolu-

tionary divergence can lead to differences in structural and

functional characteristics as already shown for the C. elegans
Orai channel [40] and (2) STIM1 as physiological activator

of Orai1 is missing in the structure. A crystal structure of the

entire STIM1/Orai1 complex is required to clarify all

remaining open questions. Such a resolution of the CRAC

channel complex would also unravel the unique pore

opening mechanism of Orai1. This will resolve if either a

rotation of the TM1 helix is linked with conformational

changes upon STIM1 binding and channel opening as

proposed by Prakriya et al. [56] or if channel opening is

achieved via small local widening of the pore as described

by Frischauf et al. [37].

Additional proteins modulating STIM1/Orai1 function

even enhance the complexity of the CRAC channel

system and also have to be taken into account to gain a

thorough understanding of the native STIM1/Orai1 sys-

tem and its regulatory role in downstream signalling

pathways involved in human health and disease.
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