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Conjunction of standing wave 
and resonance in asymmetric 
nanowires: a mechanism for 
thermal rectification and remote 
energy accumulation
Yue-Yang Liu, Wu-Xing Zhou & Ke-Qiu Chen

As an important way to control and manage heat transport, thermal rectification has become an 
elementary issue in the field of phononics and plays a key role in the designing of thermal devices. 
Here we investigate systematically the standing wave and the accompanying resonance process 
in asymmetric nanowires to understand the standing wave itself and its great effect on thermal 
rectification. Results show that the standing wave is sensitive to both the structural and thermal 
properties of the material, and its great effect on enhancing the thermal rectification is realized not 
only by the energy-localization nature of the standing wave, but also by the resonance-caused large 
amplitude and high energy of the standing wave.

Heat, whether in the form of energy or acting as a signal, is increasingly influential in modern indus-
tries and technologies. The need to control and manage heat has continuously driven us to look for new 
methods and new materials for that purpose. In contrast to heat-conducting applications that require 
materials with high thermal conductivity, and thermoelectric applications that require materials with 
low thermal conductivity, applications where heat is to be processed as information1 require materials 
with asymmetric thermal conductivities, i.e., a strong heat conduction ability in one direction and a 
weak heat conduction ability in the opposite direction. Theoretically, such thermal rectification effect 
has been found in nonlinear lattices/chains2–12, hybrid structures13–21, three-terminal junctions22–24 and 
diversiform asymmetric single-material structures, including carbon nanotubes25–27, carbon nanocones28, 
diamond29, graphene nanoribbons30–36, and polyethylene Nanofibers37. Experiments using carbon nano-
tubes38, quantum dots39, reduced graphene oxide40 and phase change materials41–43 have also been carried 
out successfully.

Recently, we managed to reveal the existence of standing wave in graded InAs/GaAs core-shell nano-
wires when the narrow end is in higher temperature44, and found that the formation of the standing wave 
can greatly enhance the thermal rectification effect of the nanowire. However, it is obvious that the stand-
ing wave that occurs in graded nanowires is far from being understood, and characteristics including 
the wavelength, frequency, amplitude and velocity have still to be studied in detail. Also, questions over 
aspects such as where the standing wave originates from, how the standing wave hinders heat transport 
so significantly, and whether the mechanism takes effect in nanowires of different structural and thermal 
properties, have still to be answered.

In this work, we first get a closer look at the configuration and characteristics of the standing wave 
in a graded InAs nanowire, and then manage to figure out how the standing wave enhances the rectifi-
cation effect by checking the deformation of the nanowire and monitoring the vibration density of states 
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(VDOS) of the nanowire before and after the temperature bias is inverted. We also find the existence of 
resonance in the system after noticing the energy accumulation process. After that, we present the inves-
tigation on asymmetric Silicon nanowires to show the generality of our conclusion and the uniqueness 
of each case. Finally, we give a discussion about the origin of the standing wave and the resonance along 
with the important role that structural and thermal parameters play in the issue.

Results
Standing wave and resonance in graded InAs nanowires. Figure  1(a) shows the temperature 
profile of a graded InAs nanowire of specified length, in which a typical undulation caused by the exist-
ence of the standing waves is clearly observed. Four peaks are seen in this temperature profile, and three 
of them are connected to the corresponding atom layers (which are also defined as groups) by arrows. 
To make it self-evident that the periodic undulation is a result of the formation of the standing wave, we 
obtain the trajectory of the coordinate center of each atom group by tracing the position of each atom. 
As shown in Fig. 1(b), a typical outline of standing wave can be observed. What’s more, atom groups 8, 
15 and 21, which correspond to the temperature valleys shown in Fig. 1(a), move only very slightly over 
time, indicating that these atoms groups locate at the nodes of the standing wave. In contrast, groups 4, 
12, 19 and 25, which correspond to the temperature peaks shown in Fig. 1(a), vibrate periodically with 
considerable amplitudes, indicating that they are at the antinodes of the standing wave. Such phenome-
non is consistent with the equipartition theorem:

= ( )E N K T3
2 1k B

which says that the temperature is directly proportional to the kinetic energy. More importantly, the the-
orem tells us that the “ultra-high temperature” (higher than the thermal reservoir) is not real temperature 
but a sign of “high kinetic energy”. Our further investigation on the vibrations of group 19 and group 25 
shows that the two atom groups experience a periodic vibration in both the two lateral directions, and 
their overall orbits are actually quasi-circles.

Figure 1. (a) Side view of a length-specified (10.93 nm) graded InAs nanowire and the temperature 
distribution in the wire. The thermal rectification ratio (TR) is also indicated in the figure. (b) Trajectory of 
the coordinate centers of atom groups 4, 8, 12, 15, 17, 19, 21, 23 and 25 during a time period of 3 ps. The 
alternate distribution of large and small amplitudes suggests the existence of standing wave in the nanowire.
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As for the effect of the standing wave on phonon transport, we find two ways to make it clear. From 
the point view of real space, the transport of heat are obstructed directly by the significant deformation 
of the nanowire when standing wave (and resonance, which we will discuss later) appears. The curved 
nanowire boundary, which can be seen in Fig.  1(b), scatters phonons much more severely than the 
straight one when the wide end of the nanowire is put into higher temperature and no standing wave 
exits. However, to have a better understanding of the enhancement of the thermal rectification, we should 
analyze the issue from the point view of the vibration density of states (VDOS), which can tell us the 
vibrating frequencies of different part of the structure and has been used to explain thermal rectification 
effects quite frequently5,25,27,29. Figure  2 shows the VDOS of the two atom groups next to the thermal 
reservoirs before and after the temperature bias is inverted. When the wide end of the nanowire is placed 
at higher temperature, under which condition no standing wave appears in the nanowire, the VDOS of 
the atom group next to the hot reservoir and that of the atom group next to the cold reservoir match 
each other well, and the thermal conduction of the system is thus relatively good. However, when the 
narrow end is put into higher temperature and standing wave appears, the VDOS of the atom group next 
to the hot reservoir (narrow) turns into a flat line, except for one very sharp peak and one much weaker 
peak. In addition, the corresponding frequency of the sharp peak (0.345 THz) is approximately equal to 
the frequency of the standing wave. This means that the standing wave has dominated the vibration at 
the narrow end of the nanowire, and higher frequency phonons have been either greatly scattered or 
suppressed. In contrast, the overall VDOS of the atom group next to the cold reservoir (wide end) is 
only slightly influenced. In other words, the formation of the standing wave (and resonance) suppresses 
greatly the number of downstream phonons of different frequencies, and meanwhile enhances the mis-
match between the power spectra of the two ends. These two factors, combined with the stationary 
nature of the standing wave, contribute together to the reduction of the thermal conduction in only one 
direction and the enhancement of the thermal rectification effect.

We also manage to reveal the occurrence of resonance in the nanowire by noticing the energy accu-
mulation process in the system. As is seen in Fig. 3(a), the temperature undulation is absent at the first 
few nanoseconds and the four peaks appear gradually over time. This phenomenon, combined with 
other incredible facts including the ultra-high temperature (higher than the thermal reservoir) and the 
large vibration amplitude of the atom groups locate around the antinodes (shown in Fig. 1(b)), provide 
a picture of resonance in our mind. To test and verify this hypothesis, we calculate the average natural 
frequencies of one indium atom in group 25 and one arsenic atom that bonding with that indium atom 
in group 26. The peaks in the frequency spectrum shown in Fig.  3(b) correspond to different orders 
of natural frequencies of the nanowire. As is seen, the natural frequencies along the X direction and Y 
direction happen to coincide with each other, and the fourth main peak corresponds with the frequency 
of 0.349 THz, which is nearly the same with the frequency of the standing wave (0.345 THz). This means 
that the standing wave is vibrating at one of the natural frequencies of the nanowire, and a resonance 

Figure 2. Vibration density of states (VDOS) of the two atom groups next to the thermal reservoirs 
before and after the temperature difference is inverted. 
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process is indeed occurring in conjunction with the formation of the standing wave. Besides, the coinci-
dence of the natural frequencies along the two lateral directions also tells us that strong resonance exists 
in both the two lateral directions, and that’s why the atom groups that locate at the antinodes of the 
standing wave are vibrating in quasi-circles.

With the resonance effect being revealed, we can expect to realize a remote energy accumulation 
process in these asymmetric nanowires. In other words, we can take advantage of the resonance effect 
around the antinodes of the standing wave to send energy into the inner parts of the nanowire and to 
make them possess more kinetic energy than their neighbor parts and even the directly heated terminal.

Standing wave and resonance in asymmetric silicon nanowires. Because we have had a deeper 
insight into the standing wave phenomenon, we now expect to find it in other materials. To show the 
generality of the existence of these standing waves in various asymmetric structures, we build a series 
of two-segment rectangular-bottomed silicon nanowires to fulfill our goal. As shown in Fig. 4, periodic 
temperature undulations and remote energy accumulation can both be observed in nanowires of various 
lengths. The sizes and the thermal rectification ratios of the different models are also given in the figure. 
Specially, for the model in Fig. 4(a), the temperature of the several atom groups near the thermal reser-
voir is higher than that of the thermal reservoir, just as the case in the graded InAs nanowire we have 
discussed above, indicating that large amount of kinetic energy has been stored around that antinode. 
The figure also shows that the temperature behavior of the wide segment of the system is linear, which 
indicates that no standing wave exists in the wide segment of the structure. We can therefore tell that 
the wave has been reflected at the interface between the two segments rather than at the fixed left end.

Inexplicably, however, despite the fact that the thermal rectification effect is better in models where 
standing waves are formed, and the fact that a stronger resonance leads to better rectification, the rectifi-
cation ratio that boosted by the combination of standing wave and resonance in these Silicon nanowires 
(less than 25%) is far less than that in the graded InAs nanowires (163%). To trace the origin of such phe-
nomenon, we check the VDOS of the Silicon nanowire whose temperature profile is shown in Fig. 4(a). 
To our surprise, only the vibrations along the Y direction have been localized at a specific frequency, as 
depicted in Fig. 5, while the vibrations along the X direction are only affected very slightly. This means 
that the distinct standing wave and the strong resonance exist in only the Y direction, which is totally 
different with the case in the InAs nanowires. Considering that this one-direction standing wave and 
resonance can not hinder too much energy, we will certainly make sense of the relatively weak effect of 
the standing wave on the thermal rectification if we can determine the underlying mechanism in this 
case and subsequently confirm it.

Figure 3. (a) Evolution of the temperature distribution in the graded InAs nanowire, which ultimately 
reaches a steady state. (b) Averaged natural frequencies of the graded InAs nanowire along the two lateral 
directions.
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Guided by the conclusion we have drawn above (that the standing wave frequency is one of the natural 
frequencies of the material), we calculate the average natural frequencies of five atoms (where one atom is 
in the center and the other four atoms are distributed in the corners) in one specific atom group, whose 
temperature is the second peak of the temperature profile shown in Fig. 4(a). Surprisingly, as shown in 
Fig. 5(c), the natural frequencies along the two directions do not always coincide with each other, and 
at the frequency of 0.452 THz (the standing wave frequency), a very sharp peak and a very small peak 
are located, representing a major natural frequency along the Y direction and a very minor one along 
the X direction, respectively. Considering the fact that resonance can stay strong and steady only at the 
main natural frequency of a structure, the unexpected difference in the natural frequency along the two 
lateral directions explains well the appearance of the one-direction standing wave and resonance in the 
asymmetric silicon nanowires. Moreover, the result confirms the validity of our conclusion with regard 
to the relationship between the standing wave frequency and the natural frequencies of the material.

Discussion
To analyze the origin of the standing wave and resonance, we must consider the thermal reservoir and 
the rest part of system separately just as Lee et al. did29. Although the thermal reservoir is connected 
with a fixed atom group and thus cannot move freely, it can still vibrate at certain frequencies because 
most of the atoms in the thermal reservoir are not constrained. What’s more, net momentums result 
from velocity fluctuations will always exist in subsystems within the thermal reservoir, and the strength 
of the net momentum is reported to be proportional to (T/Nsub)1/2, where Nsub is the number of atoms 
in the subsystem29. Such local vibration makes the thermal reservoir a force provider to the rest part 
of the structure, and thus turns the whole structure to be a typical forced vibration system. So with the 
increasing of the temperature in the narrow end, the fluctuating net momentum grows stronger and 
stronger and begins to shake the rest part of the structure. If the frequency of the net momentum is close 
to one of the natural frequencies of the nanowire and the distance between the thermal reservoir and 
the reflecting point is multiples of the half-wavelength, the standing wave and resonance will appear. It 

Figure 4. Evolution of the temperature profiles of asymmetric silicon nanowires of different lengths. 
Sizes and thermal rectification ratios are given in the figure along with a picture of one model, in which the 
silicon atoms are colored green.
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is worth pointing out that the net momentum takes effect only when the number of atoms connecting 
the thermal reservoir and the rest part of the structure (not the number of atoms in the thermal reser-
voir) is small enough, otherwise the net momentum of different subsystem will average each other out, 
leaving no forced vibration system. This is why no standing wave and resonance appear when the wide 
end of the nanowire is put into higher temperature. Last but not least, we prove through calculation that 
standing wave and resonance will still appear when the thermal reservoir is extended to ten times longer 
than it is in Fig. 1(a).

By comparing the standing wave and resonance in the two kinds of asymmetric nanowires, we can 
figure out easily the important role that structural and thermal parameters play in this issue. First, the 
length of the nanowire determines whether a standing wave can form in the structure; Second, the cross 
section of the nanowire influences the natural frequencies along the two lateral directions and thus 
decides whether the standing wave and resonance will appear in one direction only or in both directions; 
Third, the thermal conductivity (or phonon group velocity) of the material affect significantly the wave-
length of the standing wave. For example, the wavelength of the standing wave in the InAs nanowire is 
longer around the wide end and shorter around the narrow end due to the higher thermal conductivity 
of the wide bottom, and the wavelength of the standing wave in a carbon nanotube, though not regarded 
as a standing wave in that work45, can be as long as 150 nm. All these factors should be considered in 
questing for standing wave in asymmetric structures.

In conclusion, we have investigated the standing wave and resonance effect in both graded InAs nano-
wires and asymmetric Silicon nanowires systematically. The generality of our conclusion is proved, and 
the uniqueness of each case is revealed. We also analyzed the origin of the standing wave and resonance, 
and discussed how they manage to obstruct heat transport. Then by pointing out the effects of several 
structural and thermal parameters on the standing wave, we come to the conclusion that enhanced ther-
mal rectification and strong energy accumulation can be obtained in asymmetric nanowires only when 
the structure is properly designed.

Method
Our simulations have been performed on two types of asymmetric nanowire: the first is the wurtzite-phase 
InAs nanowire with (0001) orientation, which is larger than the InAs-core/GaAs-shell nanowire studied 
in our previous work, and the second is the zinc-blende-phase silicon nanowire with (110) orientation, 
which was not studied in our previous work. The diameters of the two ends of the InAs nanowire, which 
have been designed to be hexagonal, are 8.9 nm and 2.14 nm; and the side-length dimensions of the two 
ends of the silicon nanowire, which have been designed to be rectangular, are 9.6 nm by 9.1 nm and 
2.69 nm by 2.58 nm. It is worth to mention that techniques for growing or fabricating such asymmet-
ric structures, including a monolayer-controlled sculpting technique that has been performed on III-V 
nanostructures46, have been reported and are becoming increasingly mature.

Figure 5. (a,b) VDOS of the atom group whose temperature is the second peak of the temperature profile 
in Fig. 4(a). (c) Averaged natural frequencies of the atom group.
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To obtain the temperature profile in each model and the heat current required to calculate the rec-
tification ratios (TR), nonequilibrium molecular dynamics simulations are carried out at the following 
stages. At the beginning of the simulation, an energy minimization process is performed by iteratively 
adjusting the atom coordinates. Second, the two outermost atomic layers at each end of the nanowire 
are set to be freezing to prevent the structure from shifting overall. After that, a Nose-Hoover thermo-
stat47,48 is used to maintain the temperature at 300 K for 2 ns to equilibrate the system. Then, heat baths 
are applied at several of the atom layers next to the fixed layers at each end to establish a temperature 
gradient and a steady heat flow. Finally, time averaging of the heat flux and the temperature is performed 
for 30 ns to observe the evolution of these quantities and to ensure the accuracy of the exported data.

The VDOS used in this work is calculated from the fast Fourier transform of the velocity autocorre-
lation function, in which the atom velocities are collected every 25 fs for the 0.25-ns period before the 
end of the simulation. We also calculated the natural frequencies of the different models using Fourier 
transforms for the displacements of the atoms over time. The displacements are exported every 50 fs for 
1 ns after a 5-ns relaxation of the structure at 300 K .The thermal rectification ratio is defined as:

=
−

× %
( )

+ −

−
R

J J
J

100
2

where J+ represents the heat current flowing from the wide end to the narrow end, and J− represents the 
heat current flowing in the opposite direction.

The simulation is mostly carried out using the LAMMPS package49 with a time step of 1 fs, and the 
Tersoff potential50, which is well-suited for group III-V and group IV semiconductors, is adopted in the 
simulation. The parameters required for the InAs nanowires are taken from ref. 51, and those needed 
for the silicon nanowires are taken from ref. 50. To confirm the reliability of our simulations, we use 
another group of parameters from ref. 52 to repeat part of the InAs nanowire simulations, and consistent 
results are obtained.
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