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The immature immune system at birth and environmental stress increase the risk of
infection in nursing pigs. Severe infection subsequently induces intestinal and respiratory
diseases and even cause death of pigs. The nutritional and physiological conditions of
sows directly affect the growth, development and disease resistance of the fetus and
newborn. Many studies have shown that providing sows with nutrients such as functional
oligosaccharides, oils, antioxidants, and trace elements could regulate immunity and the
inflammatory response of piglets. Here, we reviewed the positive effects of certain
nutrients on milk quality, immunoglobulin inflammatory response, oxidative stress, and
intestinal microflora of sows, and further discuss the effects of these nutrients on immunity
and the inflammatory response in the offspring.
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INTRODUCTION

During gestation and lactation, maternal nutrition is a predominant factor to regulate the growth
and immunity of piglets (1, 2). Since neonates are born without brown fat reserves, timely intake of
colostrum is the guarantee of energy supply for piglets. In addition, colostrum also provides
bioactive molecules such as immunoglobulins and inflammatory factors to piglets (3). Even though
maternal immunoglobulins cannot cross the placental barrier (4), these immunoglobulins could
transfer to piglets through colostrum and milk (5). Maternal diets regulate the composition of
colostrum and milk, which further affect the maturation of immune system in neonates (6).
Furthermore, maternal milk-derived cytokines also regulate the immunity of neonates (6). It is
worth noting that maternal intestinal microflora play a crucial role in regulation of immune
development and response during the neonatal period (7). Transferring the intestinal flora of sows
during pregnancy into sterile mice improved the intestinal innate immunity and reduced the
inflammatory response in their offspring (8). Interestingly, newborn intestinal bacteria is derived
from maternal microbiota during delivery and lactation (9). Thus, the regulation of maternal
org January 2022 | Volume 12 | Article 7585251
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intestinal microflora by nutrients indirectly affect the offspring
immunity and inflammatory response.

Maternal infection or inflammatory exposure during pregnancy
impairs the innate response of newborns and increases their
susceptibility to infection (10). During pregnancy, sows undergo
dramatic changes of physiological metabolism and immunity (11),
with markedly increased oxidative stress and inflammatory
response (12). Imbalanced inflammatory response are closely
related to reproductive disorders, including constipation, abortion
and intrauterine growth retardation (9). In addition, inflammatory
factors could transfer frommaternal to fetus and regulate immunity
and inflammatory response. Thus, modification of dietary
components of sows during pregnancy might affect neonate
intestinal development, immunity, and inflammation. In this
review, we summarized the recently published data regarding
prebiotic and nutrient supplementation to sow diets during late
gestation (mainly during G85-G114) and lactation on maternal
milk quality, inflammatory response, oxidative stress and then
discuss their effect on the inflammatory response and immunity
in the offspring.
SOLUBLE DIETARY FIBER

As indigestible carbohydrate, dietary fiber (DF) is partially or
completely fermented by microorganisms in the large intestine,
which could be categorized into insoluble and soluble fiber (13).
Insoluble fiber speeds up the intestinal circulation, reduces
constipation and increases the intestinal volume (14). While
soluble fiber is fermented to produce numerous functional
metabolites, such as short-chain fatty acids (SCFAs), which could
be transmitted from maternal to offspring. Among them, acetate
regulates intestinal permeability and anti-inflammatory effect (15).
Butyrate improves intestinal morphology, promotes beneficial
bacterial growth, and enhances immune defense (16, 17). It has
also been shown thatmaternal DF supplementation could promote
T cell differentiation and reduce the inflammatory response in the
offspring by regulating the intestinalmicrobial composition (18). In
this review, we focused on the effects of several representative DF
supplementation in sow diets (Table 1 and Figure 1).

Isomaltooligosaccharide (IMO) has been reported to activate
the immune system (27) and promotes the proliferative potential
of beneficial bacteria (particularly Bifidobacterium) of sows (28).
A recent study reported that feeding sow IMO during late
pregnancy (G85-G110) could promote milk GH, IgA and IgG
concentrations, increase litter average daily gain (ADG) of
piglets, and reduce backfat loss in sow during lactation (19).
Similarly, another study showed that IMO given to sows during
late pregnancy increased the concentration of IgA, IgG and IgM
in colostrum and reduced the diarrhea rate of piglets (29).

Chitosan oligosaccharide (COS) has good water solubility
and performs antioxidant (30), anti-inflammatory (31), and
immunity-enhancing functions (32). During gestation and
lactation (G85-L21), sows given to COS (100 mg/kg) have higher
milk production as well as IgM and lactose concentration in
colostrum. In addition, COS (100 mg/kg) increased total number
Frontiers in Immunology | www.frontiersin.org 2
of piglets born and weaning weight per litter (20). Importantly,
feeding sows with 30 mg/kg or 100 mg/kg COS both increase the
serum IgG concentration of piglets, which indicates the
enhancement of immune function in neonates (26, 33).

Sugar peat pulp (SBP) contains large amounts of soluble fibers
such as pectin and dextran (34). Feeding SBP could increase the
feed intake of sows during lactation by improving insulin
sensitivity, which is beneficial to the serum GH and IGF-1
levels and growth of piglets (35). SBP supplementation (20%
during gestation and 10% during lactation) reduced pro-
inflammatory cytokines (IL-6 and TNF-a) in serum of sow.
Consistently, pro-inflammatory cytokines (IL-6 and TNF-a) in
colostrum, milk and piglet serum are also decreased. Moreover,
SBP supplementation in sow diet increase intestinal SCFA and
colostral IgA levels, which might be beneficial for reducing
inflammatory response in piglets (21).

Seaweed extracts (SWEs) mainly consists of seaweed
polysaccharide (SDP), laminarin, and fucoidan (36).
Supplementation with SWEs from late gestation to weaning
increased colostrum IgG and IgA concentrations. Correspondingly,
higher serum IgG concentrations were observed in piglets, which
indicates the increased immune function (23). Sudden weaning of
piglets is oftenaccompaniedby adversemorphological changes in the
structure of the small intestine, including villous atrophy and crypt
hyperplasia (37). Recent studies have shown the addition of seaweed-
derived polysaccharides (10 g/d) to sow feed significantly increased
the VH and ratio of villi/crypt (VH:CD) of weaned piglets. In
addition, maternal SWE supplementation increases anti-
inflammatory (TGF-b1) and inhibits pro-inflammatory factors (IL-
6 and IL-8) in the ileum and colon of piglets. Accordingly, the
diarrhea score of the piglets during lactation was decreased (22).
Furthermore, SWEs diet reduced the number of Enterobacteriaceae
in sow feces at delivery and the number of Escherichia coli in piglet
feces atweaning (38). These benefitsmight be attributed to laminarin
could agglutinate certain pathogens and inhibit their adhesion to
mucosal epithelial surfaces (39).

Guar gum is a kind of galactomannan extracted from guar
endosperm. It has high viscosity and water solubility, which is
widely used as a stabilizer and thickener in foods (40). Feeding
2.0% guar gum diet to sow during the gestation and lactation
period (G85-L21) could improve the intestinal barrier function,
accelerate the growth and reduce the diarrhea rate of piglets. In
addition, guar gum increases the abundance of Lactobacilli and
decrease the abundance of Bilophila spp in intestine. Importantly,
IL-10 and TGF-b levels were increased in piglets, which avoids
over-activated immune system in piglets (24).

Mannan oligosaccharide (MOS), derived from the cell wall of
Saccharomyces cerevisiae, has been used as a prebiotic for a long
time (41). Recent supplementation of MOS in sow diets has been
reported to regulate immunity and the inflammatory response in
the offspring. Compared with the control treatment, MOS
treatment (400 mg/kg) shortened the weaning estrous of the sows
and increased the weaning weight of the piglets. Besides, sows fed
MOS increased IgA, IgG, IgM in colostrum, and serumIgAand IgG
levels in suckling piglets (25). Additionally, another study shows
that the additionofMOS (400mg/kg) to sowdiet could significantly
January 2022 | Volume 12 | Article 758525
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TABLE 1 | Maternal microbial and soluble dietary fiber intake in the regulation of neonatal infection, immunity and production performance.

Breed, feeding time
and products

Reproductive and
lactation performance

Immune and oxidative
stability of sows and piglets

Intestinal health and
inflammation

Others References

Breed: Large White ×
Landrace
period: G85-G110
Product:
isomaltooligosaccharide
5.0 g/ kg IMO
0.2 g /kg B. subtilis
0.2 g/ kg B.
licheniformis

Reproductive performance
↑weaning BW (45.63-55.18 kg)
Average litter gain (28.43-35.87 kg)
Milk
↑Total milk yield (113.73-143.46 kg)
IgM (1 794.18-1 894.73 g/ mL)
on L0
IgA (607.50-922.07 g /mL)
on L17

N/A N/A Sow plasma (L17)
↓ALT (37.23-35.49 U/ L)
ALP (40.23-31.82 U /L)

(19)

Breed: Yorkshire
period: G85-L21
Product:chitosan
oligosaccharide
(100 mg/kg COS)

Reproductive performance
↑daily BW gain: (1.90-2.21 kg)
piglet weaning weight: (53.63-60.04
kg)
Colostrum (L1)
↑Solids-not-fat: (128.07 -153.33 g/kg)
IgM: (3.27-4.76 g/L)
Milk (L21)
↑Lactose: (44.12 -56.10 g/kg)
Solids-not-fat: (85.44-101.82 g/kg)

Sow serum (L1)
↑CAT: (14.25-20.49 U/mL)
T-AOC: (5.93 -8.79 U/mL)
IL-10: (50.57-67.73 pg/mL)
IgA: (71.31-91.48 mg/mL)
IgM: (92.53-117.86 mg/mL)
↓MDA: (16.97-11.90 nm/mL)

N/A N/A (20)

Breed: Yorkshire ×
Landrace
Period: G85-L21
(weaning)
Product: Sugar beet
pulp (SBP)
20% SBP in gestation
and 10% SBP in
lactation

Piglet at weaning (L21)
↑Litter weight: (56.94-64.39 kg)
Weaning weight: ((5.74-6.26 kg)
ADG: (196-221 g/d)
Colostrum (L1)
↑IgA: (7.94-9.17 g/L)

Piglet serum (L21)
↓DAO: (5.68-3.60 U/L)
Endotoxin: (0.60-0.47 EU/ml)
IL-6: (178.49-154.30 pg/mL)
TNF-a: (102.45-80.28 pg/mL)
↑IL-10: (4.55-5.13 pg/mL)
Piglet ileum (L21)
↓TNF-a: (1-0.6)
IL-6: (1-0.6)
↑IL-10: (1-1.3)
SIgA: (0.8-1.5 mg/mg)

Piglets Ileal Tight
Junction (L21) mRNA
expression
↑Occluding: (1-1.3)
ZO-1: (1-1.4)
Piglet Jejunum
↑Villus height: (387-447 mm)
Intestinal microbiota
(Piglet)
the relative abundance of
Christensenellaceae was
increased significantly

↑Sow ADFI: (4.80-5.48
kg/d)
Piglet serum (L21)
↑GH: (3.37-4.23)
IGF-1(156.09-187.86)

(21)

Breed: Yorkshire ×
Landrace
Period: G83-L28
(weaning)
Product: seaweed-
derived
polysaccharides (10·0 g
SDP/d)

↑gestation period: (113.5-114.5 d) Piglet ileum (weaning)
gene expression
↓PEPT1: (1.71-0.43)
GLUT1: (0.98-0.65)
GLUT2: (1.76-0.41)
↑IL-1: (0.99-2.85)
IL-12A (p35): (0.97-1.93)
TNF-a: (0.93-1.66)
↓IL-10: (0.82-0.29)
IL-6: (1.12-0.64)
IL-8: (1.15-0.77)

Log GCN/g of sow faece
↓Enterobacteriaceae: (8.55-
7.76) parturition
Piglet weaning
↑villus height: (347-466 mm)
ileum
villus height: (317-454 mm)
jejunum
↓crypt depth: (144-108)
ileum

Piglets had a lower
diarrhoea score during
the lactation period

(22)

Breed: Large White x
Landrace
Period: G107-L26
Product: seaweed
extract (10 g/d)

Colostrum
↑IgA: (8.02-11.61
mg/mL)

Piglet serum (L14)
↑IgG: (8.59-11.36 mg/ml)

piglet intestinal
microbiology (weaning)
↓colonie E.col: (6.45-5.11
Log cfu/g)
↑lactobacilli: E.coli: (1.21-
1.45 Log cfu/g)

log cfu/g of sow feces
(farrowing)
↓En-terobacteriacea:
(8.60-7.26)

(23)

Breed: Landrace sows
Period: G85-L21
(weaning)
Product: 2.0%
pregelatinized waxy
maize starch plus guar
gum (SF)

Piglet at weaning (L21)
↑Final BW: (6.49-7.09 kg)
ADG: (233.66-261.20 g/day)

Piglet serum (L14)
↓IL-6: (310-290 pg/ml)
↑TGF-b: (650-750 pg/ml)
IL-10: (110-140 pg/ml)

Piglet plasma (L14)
↓Zonulin: (700-550 ng/ml)
Endotoxin: (0.7-0.5 Eu/ml)
Diamine oxidase: (10-9 U/L)
↓lipocalin-2 (80-58mg/g
feces)
Intestinal microbiota
(Piglet)
strong increase in relative
abundance of the
Lactobacillus genus

Piglet Diarrhea rate:
(13.69-10.35%)
plasma hormone of
piglets (L14)
↑GH: (587.65-657.49 pg/
ml)
IGF-1: (309.04-374.63
ng/ml)

(24)

(Continued)
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increase the sIgA content in jejunum mucosa and reduce the
intestinal inflammatory response of piglets by inhibiting the
TLR2/TLR4/NF-kB p65 pathway. Furthermore, MOS
supplementation in sow diet increased the number of Lactobacilli
and decreased the number of Escherichia coli in the jejunum of
piglets, which is beneficial for reducing diarrhea (42).

Besides soluble fiber, insoluble dietary fiber also plays a crucial
physiology role in sow. Insoluble dietary fiber accelerates
gastrointestinal motility, reduces constipation and increases satiety
of sows (43). Wheat bran (WB) is a insoluble fiber rich in
arabinoxylan and cellulose, and widely used in the sow diet (44). A
recent study showed that feedingWB to sows during late pregnancy
and lactation (fromG110 and L21) reduced inflammatory responses
with the downregulation of serum IL-6 concentrations (21). In
addition, the addition of wheat bran (25% during gestation and
14% during lactation) to sow diets increase the duodenal villi and
higher colonic and ileal VH:CD ratios of the weaning piglets (45).

However, excessive level of dietary fiber could negatively
affect total tract nutrient digestibility in pigs (46). As soluble
fiber might increase digesta viscosity and slow down the diffusion
of digestive enzymes in the small intestine (47). While insoluble
fiber could promote the passage rate of chyme and reduce the
mixing time of digestive enzymes and dietary ingredients (47).
Therefore, overmuch high-fiber diet may cause reduced nutrient
absorption by sows, which is detrimental to piglets. And the
optimal dosage offiber supplement in the diet of gestational sows
needs further study.

OILS

During late pregnancy and lactation period, sows require more
nutrients and energy for fetal growth and milk synthesis. Oil
supplementation in sow diets could prevent excessive
Frontiers in Immunology | www.frontiersin.org 4
mobilization of body reserves (48), shorten the estrous interval,
improve milk quantity (49), and increase the survival rate and
daily weight gain of weaned piglets (50). In addition, some
specific types of fatty acids also participate in metabolic
regulation and perform antibacterial and anti-inflammatory
effects (51). In this section, we discussed the role of three
wildly used oils (soybean oil, fish oil and olive oil) in sow diet.

Soybean oil is rich in linoleic acid. The addition of 2%
soybean oil during pregnancy increased the content of protein
and lipid-free solids in colostrum (Table 2). Furthermore,
supplementation of soybean oil in the lactating diets of sows
also resulted in higher concentrations of protein in maternal milk
(54), which may be due to fatty acids stimulate the development
of mammary duct and alveolar structure (55). In addition,
maternal soybean oil supplementation also improved the
intestinal morphology, digestive enzyme activities, serum
growth factor concentrations and even intestinal immune
function of piglets with the upregulation of immune-related
genes (TLR-4, TLR-9 and MyD88) in the ileum (52, 56).

Fish oil (FO) is rich in long-chain n-3 polyunsaturated fatty
acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA), which have anti-inflammatory effects both in vivo
and in vitro (57) (Figure 2). Maternal supplementation of FO
accelerated immune system maturation and enhanced anti-
inflammatory response of piglet (58). The addition of 3-5%
fish oil to sow feed during lactation promoted the growth of
piglets during lactation (59–61), which might partly due to the
increased secretion of milk fat and immunoglobulins (IgM and
IgG) (62, 63). Furthermore, fish oil also reduced the transmission
of pro-inflammatory cytokines (IL-1b) from the sow to the
piglets, and up-regulated the expression of IL-10 in the liver
and pro-inflammatory cytokines (IL-6, TNF-a) in the skeletal
muscle of piglets to alleviate the inflammatory response of the
TABLE 1 | Continued

Breed, feeding time
and products

Reproductive and
lactation performance

Immune and oxidative
stability of sows and piglets

Intestinal health and
inflammation

Others References

Breed: Large White ×
Yorkshire
Period: Sow: G86-L20
Piglet: D7-D35

Product Mannan
oligosaccharide
Sow: 400 mg/kg
Piglet: 800 mg/kg

N/A Piglet serum (D35)
↓IL-2: (146.58-107.83 ng/L)
IL-4: (18.21-12.09 ng/L)
IFN-g: (535.58-448.88 ng/L)
↑IL-10: (65.82-76.04 ng/L)

Intestinal microbiota
(Piglet on D35)
log10 counts of
Lactobacillus, E. coli
↓E. coli: (6.83-6.43
Jejunum)
↑Lactobacillus:(7.63-8.44 in
Jejunum)
(7.82-8.76 in Cecum)
immunoglobulin A in
piglet jejunum
↑sIgA: (4.48-6.77 mg/g pro)

N/A (25)

Breed:
Landrace×Yorkshire
Period: G86-L21
Product: chitosan
oligosacchari
(30 mg/kg)

Colostrum (L1)
IgM: (0.95-1.3 g/L)
Umbilical cord blood
IgM: (38.36-43.26 g/L)

Piglet serum (D21)
↑IL-10: (57.04-65.29 ng/L)
IgG: (163.81-192.29 mg/L)
C3: (211.35-254.35 mg/L)

N/A N/A (26)
Jan
uary 2022 | Volume 12 | A
↑, increase; ↓, decrease; N/A, No Value; BW, body weight; IgA, Immunoglobulin A; IgG, Immunoglobulin G; IgM, Immunoglobulin M; T- AOC, Total antioxidant capacity; CAT, Catalase;
MDA, Malondialdehyde; IL-10, interleukin 10; IL-6, interleukin 6; IL-8, interleukin 8; IL-4, interleukin 4; IL-2, interleukin 2; TNF-a, tumor necrosis factor-a; GH, growth hormone; IGF-1,
insulin like growth factor 1; ZO-1, zonula occludens-1; ALT, cereal third transaminase; ALP, alkaline phosphatase; ADG, average daily gain; PEPT1, peptide-transporters 1; GLUT1,
glucose transporter-1; GLUT2, glucose transporter-2; TGF-b, transforming growth factor b; IFN-g, interferon-g; C3, complement 3; sIgA, secretedimmunoglobulin A.
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piglets (64, 65). However, addition of fish oil to sow diets could
increase the sensitivity to oxidative stress in sows and piglets (66,
67). MDA is an indicator of lipid peroxidation, which is higher in
the plasma of pregnant sows after feeding FO (53). This might
due to unsaturated bonds in EPA and DHA were easily attacked
by free radicals (68). Similar to fish oil supplementation, addition
of n-3 PUFA during late pregnancy and lactation (G82-L22)
reduced the weaning-estrous interval of sows, increased the
concentrations of fat, protein and immunoglobulins (IgA, IgG
and IgM) in milk (69). Furthermore, n-3 PUFA supplementation
improved the intestinal barrier, reduced the diarrhea rate, and
minimized the mortality of suckling piglets (69). Besides,
changing the ratio of n-6/n-3 PUFA in the diet of lactating
sows also affect the immune system and antioxidant status of
piglets (70, 71).
Frontiers in Immunology | www.frontiersin.org 5
Olive oil (OO) is rich in monounsaturated fatty acids (72), as
well as antioxidant and anti-inflammatory components such as
tocopherols, triterpenoid alcohols, phytosterols and phenolic
compounds (73). Sows fed with olive oil (2% OO) diet during
late pregnancy and lactation resulted in greater milk fat
content, and higher birth weight and survival rate of piglets
(53). This might be due to sows distributed a larger proportion
of nutrients for fetus and neonate growth instead of using them
for fat deposition. In addition, OO significantly reduced the
contents of IL-1b, IL-6, MDA and TNF- a in milk, and
improved the plasma levels of IL-1b and TNF-a in piglets
(53). However, lower feed intake in sows was caused by OO
feeding, which might be due to olive oil derived oleic acid
upregulated plasma oleoyl ceramide (OEA) levels and caused
anorexia in sows (74).
FIGURE 1 | The soluble dietary fibers beneficial to intestinal health of sow, improves colostrum quality, enhance antioxidant capacity of sows and reduces
inflammatory reaction of piglets.
January 2022 | Volume 12 | Article 758525
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It is worth noting that high fat-induced obese sows have lower
number of live-born piglets (75), piglet birth weight and weaning
weight (76). Moreover, these piglets showed reduced responses to
infection (77). One of the possible reasons is that obesity lead to
lipotoxic placental environment (78, 79), which results in placenta
proinflammatory response and oxidative stress (80, 81). The other
reason is obese sow has higher plasma pro-inflammatory cytokines
TNF-a, IL-1b, and IL-6 (75, 82). Maternal inflammation and
oxidative stress further increase the expression of intestinal pro-
inflammatory cytokines (83) and disrupts the homeostasis of
immune cells (such as the number of T cells and macrophages) in
the offspring (84), which makes them more vulnerable to
inflammatory bowel disease. These data indicate that the
excessive high-energy feed have catastrophic consequences for
health of sows and piglets. Therefore, oil additive dosage should
be considered in actual production.
ANTIOXIDANTS

During late pregnancy,rapid fetal development increases the
metabolic burden and induces systemic oxidative stress of
Frontiers in Immunology | www.frontiersin.org 6
pregnant sows (85).Severe oxidative stress leads to postpartum
hemorrhage, decreases neonate’s birth weight and even causes
fetal death (86). Furthermore, oxidative stress usually causes
inflammation and reduces immune system function in sows,
which leads to growth-retarded fetuses (87, 88). The detrimental
effect of maternal infection or inflammation on fetus
development might be due to maternal inflammatory cytokines
that transmitted from maternal to fetus (89, 90). Therefore,
nutritional strategies to relieve oxidative stress in sows is
crucial to improve fetus and neonate development (Table 3).

Vitamin E, one of the most effective antioxidants, could
directly react with free radicals and stimulate the expression of
antioxidant enzyme genes, like GSH-Px and CAT (94). In
addition, vitamin E enhances cellular and humoral immune
responses in a variety of animals, including pigs (98, 99).
During last week of gestation and lactation, vitamin E (250 IU/
kg) supplementation in sow diet increased the levels of IgG, IgA,
and fat in sow milk and enhanced antioxidant and immune
capacity in piglets with the upregulation of plasma IgG, IgA, T-
AOC and CAT levels (94). Similarly, injection of 1000 IU
vitamin E during gestation also increases serum IgG in
sows (100).
TABLE 2 | Maternal fats intake in the regulation of neonatal infection, immunity and production performance.

Breed, feeding time
and products

Reproductive and
lactation performance

immune and oxidative
Stability of sows and piglets

Intestinal health others References

Breed: Landrace ×
Yorkshire
Period: G0-L20
Product: 2%
soybean oil

Colostrum
↑No-fat solids: (15.53-22.90%)
Protein: (5.85-8.79%)

Piglet ileum (After
farrowing) Gene
Expression
↑TLR-4: (1.00-1.48)
TLR-9: (1.00-1.40)
MyD88: (1.00-1.22)

Piglet Jejunum (After
farrowing)
↑Villous height: (717-923 mm)
Crypt depth: (76-88 mm)
Piglet Colon (After
farrowing)
↑Crypt depth: (32-41 mm)
↓VCR: (6.53-4.40)
(villous height to crypt depth
ratio)

Sow plasma (After
farrowing)
Prolactin: (262.00-432.70
ng/mL)

(52)

Breed: Large White
× Landrace
Period: G109-
weaning (L26)
Product: fish oil and
seaweed extract (100
g of FO/d, 10.0 g of
SWE/d)

Colostrum (SWE)
↑IgG: (63.27-69.84 mg/ml)
Milk (L12) (SWE)
↑CP: (5.17-5.39%)
Milk (L12) (FO)
↑Total n-34: (1.73-4.62%)
Ratio n-6:n-3: (9.75-3.80%)

Piglet serum (L5)
↑IgG (SWE): (19.31-22.9 mg/
ml)
IgA (SWE): (2.51-3.13 mg/ml)
↓IgA (FO): (3.12-2.52 mg/ml)
Piglet serum (L12)
↑IgG (SWE): (9.98-12.04 mg/
ml)

N/A Piglet serum (L26)
↑Total n-6: (0.99-0.16%)
Total n-3: (1.43-0.030%)
Ratio n-6:n-3: (0.61-
0.232%)

(23)

Breed: large white ×
landrace
Period: G84-L21
Product: Fish Oil
(2%)
Or
Olive Oil (2%)

Litter Performance
↑Piglet BW: (1.33-1.58 kg) OO
↑Piglet mortality: (7.2-12.3%) FO
↓Piglet mortality: (7.2-2.2%) OO
Colostrum
↑Fat: (4.84-5.69%) OO
MDA: (3.9-5.8 nmol/ml) FO
IL-1b: (14-20 ng/L) FO
Milk (OO)
↑Fat: (6.77-8.08%) L10
Fat: (5.86-7.99%) L21
↓IL-1b: (20-10 ng/L) L10
IL-1b: (18-6 ng/L) L21
Milk (FO)
↑MDA: (3.9-8 nmol/ml) L10
MDA: (3.8-8 nmol/ml) L21

Sow plasma (FO)
↑MDA: (2-2.25 nmol/ml) L0
MDA: (2-3.5 nmol/ml) L10
MDA: (1.5-2 nmol/ml) L21
Piglet serum (FO)
↑MDA: (2.75-4 nmol/ml) L0
MDA: (3-4 nmol/ml) L21
GSH-Px: (275-300 U/ml) L0
Piglet serum (OO)
↓IL-1b: (12-10 ng/L) L21
TNF-a:(90-80 ng/L) L21

N/A N/A (53)
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↑, increase; ↓, decrease. N/A, No Value; TLR-4, toll-like receptor 4; TLR-9, toll-like receptor 9; MgD88, myeloiddifferentiationfactor88 IgG, Immunoglobulin G; IgA, Immunoglobulin A; IL-10,
interleukin 10; TNF-a, tumor necrosis factor-a; MDA, malondialdehyde; IL-1 b, interleukin-1 b; T- AOC, total antioxidant capacity; GSH-Px, glutathione peroxidase IL-6, interleukin 6.
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Polyphenol is a bioactive substance with antioxidant,
anticancer, anti-inflammatory and antibacterial properties
(101). Supplementation of grape seed polyphenols (GSP)
(300mg/kg) during late pregnancy and lactation reduced the
number of dead fetuses, improved farrowing and pre-weaning
survival (91). This might due to GSP increased antioxidant
ability, progesterone and estradiol levels as well as the content
of colostral IgM and IgG in sow (91). Intriguingly, effects of GSP
on colostral immunoglobin production is better than vitamin E
(91). Supplementation herbal extracts during pregnancy and
lactation also enhance the immune function and antioxidant
capacity of next generation through maternal-offspring
transmission. Forsythia suspensa extract (FSE) is a medicinal
herb extract that mainly consists of forsythiaside A, forythialan
A, phillyrin and phillygenin. FSE has been shown to perform
antioxidant (102), intestinal microflora-regulating, and anti-
inflammatory effects (103). Dietary supplementation with FSE
(100mg/kg) in sows from the G85 to farrowing could upregulate
the milk fat, milk protein and IgM level in colostrum, and
increase the immune ability of the piglets (104). Mechanistically,
FSE limits the inflammatory response with the inhibition of
NF-k B signaling and the activation of Nrf2/HO-1 pathway
Frontiers in Immunology | www.frontiersin.org 7
(105). In addition, GE has an anti-inflammatory effect by
inhibiting the expression of chemokines (106). The sow feed
GE could improve the content of antioxidant and phenolic
compounds in piglets’ plasma, and enhance the immune
function by improve the concentration of IgG in colostrum
and the plasma of the piglets (107). Resveratrol is a plant
polyphenol with anti-inflammatory and antioxidant properties
(108). Resveratrol (300 mg/kg) supplementation in sow diet
improved the intestinal morphology and reduced intestinal
inflammation as well as diarrhea in the offspring (109).

As an essential trace element for sows, selenium (Se) is
incorporated into selenopsroteins and subsequently prevent
intestinal inflammation by alleviating oxidative stress (110). In
addition, selenoproteins such as glutathione peroxidase (GPX)
and thioredoxin reductase (TXNRD) play an important role in
the regulation of immune function (111). Organic Se compounds
are more bioavailable than inorganic Se forms (112, 113).
Supplementing sow gestation diets with HMSeBA (0.3 mg Se/
kg) increases the expression of antioxidant-related selenoprotein
genes in the placenta (GPx2, GPx3) and liver of neonates (GPx1,
GPx2, GPx3 and TXNRD2). Furthermore, administration of
HMSeBA decreased the gene expression of IL-1b, IL-6 and IL-
FIGURE 2 | Beneficial effects of adding fat in feed of pregnant sow on piglets.
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TABLE 3 | Maternal antioxidant and other substrates intake in the regulation of neonatal Infection, immunity and production performance.

Breed, feeding
time and products

Reproductive and
lactation performance

immune and oxidative
Stability of sows and piglets

Intestinal health others References

Breed: Large
White × Landrace
period: G80-L21
Product: grape
seed polyphenols
(300 mg/kg GSP)

Reproductive performance
↓dead fetuses: (1.19-0.63)
↑Farrowing survival: (81.47-89.32%)
Preweaning survivability: (91.85-
95.23%)
Colostrum
↑IgM: (2.5-6 g/L)
IgG: (38-80 g/L)

Sow plasma (G110)
↑SOD: (37.51-66.21 IU/mL)
GSH-Px: (417.83-620.33
IU/mL)

N/A Sow plasma (G110)
↑P4: (35-45 ng/ml)
E2: (40-50 pg/ml)

(91)

Breed: Landrace ×
Yorkshire
period: G85-L21
Product: fully
oxidised b-carotene
(8 mg/kg)

Milk (14)
↑Lactose: (5.67-6.09%)
IgM: (0.024-0.057 g/L)
Colostrum
↑IgM: (2.55-4.52 g/L)
IgG: (29.91-33.22 g/L)
IgA: (2.39-5.11 g/L)
↓TNF-a: (0.34-0.08 ng/mL)
IL-8: (1079.06-605.46 pg/ml)

N/A N/A N/A (92)

Breed: Landrace ×
Yorkshire
period: G90-L21
Product: Rare
Earth Elements
(200 mg REE
mixture/kg)

Reproductive performance
↓Within-litter birth weight CV: (0.21-
0.18%)
↑Weight at 21st day: (5.71-6.21 kg)
Daily weight gain: (223.06-241.
75 g/day)

Sow plasma (farrowing)
↑GSH-Px: (650-700 U/ml)
CAT: (4.8-6.5 U/mL)
↓TNF-a: (200-130 pg/ml)
Piglet plasma (weaning)
↑SOD: (120-130 U/mL)
↓TNF-a: (120-80 pg/ml)

Fecal Microbiota (lactating
sows)
↑Firmicutes: (78.2-81.0%)
Bacteroidetes: (13-19.1%)
Piglet Fecal Microbiota
(weaning)
↓Proteobacteria phylum:
(14.8-6.7%)

Piglet plasma
(weaning)
↑IGF-1: (180-210 ng/ml)

(93)

Breed: Large
White × Landrace
period: G107-L21
Product: vitamin E
(250 IU/kg)

Reproductive performance
↑BW of weaned piglets:(4·89-5·67 kg)
Piglet Day 0-21 ADG: (160-194 g/d)
Colostrum
↑Fat: (44·35-53·80 g/kg)
IgG: (52·78-63·45 g/l)
IgA: (8·02-9·01 g/l)
a-tocopherol: (18·51-26·97 mg/l)
Milk
↑Fat: (67·01-79·13 g/kg)
IgG: (0·89-0·96 g/l)
IgA: (3·81-4·11 g/l)
a-tocopherol: (4.16-7.97 mg/l)

Piglet plasma (L21)
↑IgG (0·44-0·49 g/l)
IgA (0·33-0·36 g/l)
T-AOC (6·82-7·65 IU/ml)
CAT (7·38-8·78 U/ml)

N/A N/A (94)

Breed: Yorkshire ×
Landrace
period: G75-L21
Product: Taurine
(1%)

Reproductive performance
↑Average daily gain: (194.62-230.11 g)
Weaning weight: (5.35-6.29 kg)
Milk
↑T-AOC: (106.21-165.16 U/ml) on L1
T-AOC: (34.45-105.93 U/ml) on L10
GP-x: (103.75-174.03 U/ml) on L1
CAT: (0.69-0.74 U/ml) on L10
T-SOD: (23.71-29.48 U/ml) on L10

Piglet plasma (L1)
↑T-SOD: (35.53-104.92 U/ml)
T-AOC: (23.45-41.22 U/ml)
CAT: (0.34-0.38 U/ml)

Piglet Villous height
↑Duodenum: (249.10-503.08
µm) on L1
Ileum: (318.61-467.21 µm) on
L21
Jejunum : (358.39-524.045
µm) on L7
villus height-to-crypt depth
ratio
↑Duodenum: (1.47-2.81) on
L1
Jejunum: (1.38-1.99) on L7

N/A (95)

Breed: Yorkshire ×
Landrace
period: G85-L21
Product: lysozyme
(300 g/t)

↓Stillborn: (0.89-0.15)
Diarrhea rate: (2.24-1.41%)
Colostrum
↑IgA: (3.21-3.51 mg/mL)
Milk (L7)
↑IgA: (1.84-2.11 mg/mL)

Sow plasma (L1)
↑IgM: (0.81-0.98 mg/mL)
Piglet plasma (L21)
↑IL-10: (209.60-239.21 ng/L)
IgA: (2.16-2.56 mg/mL)
IgG: (2.25-2.65 mg/mL)
IgM: (23.98-28.87 mg/mL)

N/A N/A (96)

Period: G43-
weaning
Product: wheat
bran (25% of WB in

N/A Piglet Ileal mRNA
expression
↑PPARg: (1-1.37)
IL6: (0.61-1)

Piglet Small Intestine
↑villi height: (380-450 mm)
duodenum
villi/crypt: (1.4-2) duodenum

N/A (45)

(Continued)
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8 in placentas and IL-6 serum concentration in neonatal piglets.
Therefore, HMSeBA supplementation in sows during late
pregnancy increased the antioxidant capacity of piglets and
reduced maternal and fetal inflammation (114). Similarly,
another study reported that HMSeBA (0.3 mg Se/kg)
supplementation to sows during pregnancy could up-regulate
GPX1, GPX4 and selenoprotein expressions in the thymus and
spleen of the offspring. Besides, the levels of inflammation,
autophagy and endoplasmic reticulum stress were reduced,
suggesting favorable outcomes in the immune function of
offspring (115). Moreover, provision of maternal hydroxy-
selenomethionine (OH-SeMet) (0.3 mg Se/kg) during G84 to
L21 showed a significantly increase of IgG level in piglets at
weaning (2).

Taurine (Tau), a metabolite of methionine and cysteine, have
anti-inflammatory and antioxidant properties (116, 117). Tau
effectively promotes mammalian growth and intestinal
development (118). Supplementation with Tau (1%) in sow diets
from G75 to weaning could significantly increase the activity of
antioxidant enzymes (T-SOD, T-AOC, and CAT) in piglet serum
andweaningbodyweight of thepiglets. Besides, theheight of jejunal
villi, the ratio of villi height to crypt depth (VCR) and the expression
of tight junction were also increased (95).

Oxidized b-carotene (OxBC) is a complex mixture produced
by complete and spontaneous oxidation of b-carotene. The
addition of OxBC (8 mg/kg) to the perinatal diet (G85-L21)
improved the litter weight and individual body weight of the
weaned piglets. This might be due to OxBC increased the
immune status of sows, which further affect the growth of
piglets. This is evidenced by decreased levels of cytokines
(TNF-a and IL-18) and increased levels of immunoglobulin
(IgM, IgA, and IgG) in colostrum (92).
Frontiers in Immunology | www.frontiersin.org 9
OTHER NUTRITIONAL STRATEGIES

In this section, we describe some other nutrients which are
advantageous to regulate the immunity and inflammation of
piglets when supplemented in sow diets such as rare earth
elements, lysozyme, and yeast nucleotides etc (Table 3).

Rare earth elements (REEs) includes 15 elements such as
lanthanum (La) and cerium (Ce) (119). In addition to promote
growth and feed conversion rate, rare earth elements also have
anti-inflammatory and antioxidant properties (120, 121). A
recent study showed that maternal supplementation with REEs
(200 mg/kg) during late gestation could improve the antioxidant
capacity and immune system through the up-regulation of serum
CAT and GSH-Px level and downregulation of the serum TNF-a
level of sow. In addition, piglets from REEs fed sow, have higher
uniformity of birth weight and weaning weight, which might be
related to the higher serum IGF-1 level (93). Furthermore,
increased abundance of beneficial bacteria (Christensenellaceae
and Ruminocococaceae) and decreased abundance of
opportunistic pathogenic bacteria (Proteus and Campylobacter)
were also found in the intestinal tract of piglets (93).

Lysozyme (LZM) is a natural antibacterial enzyme found in
the tears, saliva and milk of mammals (122). Previous studies
have shown that lysozyme has multiple beneficial effects on
piglets, including improving intestinal morphology (123),
regulating the intestinal microflora (124), and improving
immunity (125). Sows fed diets containing lysozyme (300 g/t)
from late gestation to weaning exhibited shorter weaning-estrous
intervals and less stillbirths. In addition, serum IgM, IgA, IgG and
IL-1 in sow were increased during lactation. Correspondingly,
serum IgA, IgG, IgM, and IL-10 concentrations were also
increased in piglet (96). Besides, piglets showed reduced rates of
TABLE 3 | Continued

Breed, feeding
time and products

Reproductive and
lactation performance

immune and oxidative
Stability of sows and piglets

Intestinal health others References

gestation and 14%
of WB in lactation.)

villi/crypt: (1.4-1.6) jejunum
↓crypts depth: (250-200 mm)
jejunum

Breed: Large
White × Landrace
Period: G85-L20
Product: Yeast-
based nucleotide
(4 g YN/kg diet)

Piglet at Weaning (D20)
↑litter size: (9-10)
ADG: (190-200 g)
Sow total milk yield: (130-150 kg)

Gene expression of
Intestinal cytokine
(neonatal piglets)
Ileal
↑(IL)-17: (1-1.8)
IL-8: (1-1.5)
TNF-a: (1-1.8)
Jejunal
↑(IL)-17: (1-1.8)
IL-6: (1-2.5)
IL-8: (1-1.7)
IFN-g: (1-1.6)
TNF-a: (1-1.8)
Duodenal
↓IL-6: (1-0.5)
↑IL-1b: (1-1.6)

Ileum (neonatal piglets)
↑average villus height: (550-
600 mm)
villus height-to-crypt depth
(V:C): (5-6)
sIgA: (5-6.5 mg/g)
Intestinal tight junction
(neonatal piglets) mRNA
expression
Ileal
↓ZO-1: (1-0.6)
Jejunal
↓ZO-1: (1-0.7)
claudin-1: (1-0.5)
Duodenal
↓claudin-1: (1-0.5)

↓ Diarrhoea rate of
piglets: (4.5-3%)

(97)
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↑, increase; ↓, decrease. N/A, No Value; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; P4, progesterone; E2, estradiol; IgM, Immunoglobulin M; IgG, Immunoglobulin G;
IgA, Immunoglobulin A; TNF-a, tumor necrosis factor-a; IL-8, interleukin 8; IL-6, interleukin 6; IL-10, interleukin 10; IL-17, interleukin 17; IFN-g, interferon-g; CAT, catalase; IGF-1, insulin like
growth factor 1; T- AOC, total antioxidant capacity; T-SOD, total Superoxide dismutase; ZO-1, zonula occludens-1; IL-1 b, interleukin-1 b; ADG, average daily gain; sIgA,
secretedimmunoglobulin A; PPARg, peroxisome proliferator-activated receptor g.
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diarrhea, which may be due to a decreased number of
campylobacter in the feces (126).

Nucleosides could promote the growth and development of
intestinal epithelial cells (127). The addition of nucleotides to infant
formula has a protective effect in preventing diarrhea and
improving immunity (128). As a byproduct of yeast degradation,
yeast-based nucleotides (YN) are rich in nucleotides.
Supplementation of yeast cultures during pregnancy and lactation
decrease of diarrhea and improve the growthperformanceof piglets
(129). In detail,administration of yeast-based nucleotide (4 g YN/
kg)during latepregnancy and lactation (G85-L20) of sow improved
the development of intestinal morphology, and increased innate
immunity with upregulation of intestinal IL-17, IL -8, IL -1b, IL -10
and TNF-a expressions in neonatal piglets (97).

Spray-dried plasma (SDP) is a protein-rich feed additive that
contains immunoglobulins, peptides, glycoproteins and other
active ingredients (130). Previous studies have shown that
supplementation of SDP improved the immune response of
pigs (131). From late pregnancy to weaning (G85-L27),
maternal supplemented with 1% SDP reduced the serum
concentrations of TNF-a, TGF-b1 and cortisol in sows and
serum concentrations of TNF-a, TGF-b1 and cortisol in
piglets. Additionally, the average daily gain of piglets at
weaning was greater, and serum concentrations of cortisol,
TGF-b1, TNF-a and C- reactive protein were lower (132).
CONCLUSION AND OUTLOOK

Dietary fiber regulates inflammatory and immune response in the
offspringbymodulating thematernal intestinalmicroflora andmilk
immunoglobulin content. The antioxidant substances could
directly react with the free radicals and enhance the maternal
antioxidant capacity, thereby indirectly reducing infection in the
offspring.The oil and fat products not onlyprovide adequate energy
to sows, but also supply functional fatty acids to alleviate infection
and enhance the immune function in the offspring by exerting the
anti-inflammatory and anti-oxidant effects. In summary, maternal
nutrition intervention is an effective way to regulate the
inflammatory response and immunity in the offspring.

In this review, we mainly focus on the positive effects of
nutrients in the regulation of immunity and inflammatory
Frontiers in Immunology | www.frontiersin.org 10
response of sows and piglets during pregnancy and lactation. It
worth noting that these effects would be affected by timing and/
or dosage of nutrient supplementation. Moreover, it is well
known that excessive addition of fat usually has a negative
effect on pigs. The toxic effects of excessive addition of other
products, such as vitamin E and selenium (133) are also worthy
of attention. Therefore, we have given the current dosage of these
products. However, the adverse effects of excessive maternal
supplementation of such products on the immune system of
piglets still need further research. In addition, applying nutrients
to piglets and sows at the same time during lactation could
produce better results (93). Even though nutrient mixture might
produce synergistic and addictive effects, but economic cost
should be considered in pig production. Future study needs to
identify the best time and dosage for nutrient supplementation in
sow diet. In addition, current studies only observe the change of
phenotypic indicators, in vitro cell experiments are required to
clarify the potential mechanism. Lastly, whether the metabolites
of these nutrients were involved in the regulation of immunity
and inflammation in the offspring is still unclear and require
more research.
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