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Tourette syndrome is a neurodevelopmental disorder, characterized by motor and phonic tics. Tics are typically experienced as

avolitional, compulsive, and associated with premonitory urges. They are exacerbated by stress and can be triggered by external

stimuli, including social cues like the actions and facial expressions of others. Importantly, emotional social stimuli, with angry

facial stimuli potentially the most potent social threat cue, also trigger behavioural reactions in healthy individuals, suggesting that

such mechanisms may be particularly sensitive in people with Tourette syndrome. Twenty-one participants with Tourette syn-

drome and 21 healthy controls underwent functional MRI while viewing faces wearing either neutral or angry expressions to

quantify group differences in neural activity associated with processing social information. Simultaneous video recordings of

participants during neuroimaging enabled us to model confounding effects of tics on task-related responses to the processing of

faces. In both Tourette syndrome and control participants, face stimuli evoked enhanced activation within canonical face percep-

tion regions, including the occipital face area and fusiform face area. However, the Tourette syndrome group showed additional

responses within the anterior insula to both neutral and angry faces. Functional connectivity during face viewing was then

examined in a series of psychophysiological interactions. In participants with Tourette syndrome, the insula showed functional

connectivity with a set of cortical regions previously implicated in tic generation: the presupplementary motor area, premotor

cortex, primary motor cortex, and the putamen. Furthermore, insula functional connectivity with the globus pallidus and thalamus

varied in proportion to tic severity, while supplementary motor area connectivity varied in proportion to premonitory sensations,

with insula connectivity to these regions increasing to a greater extent in patients with worse symptom severity. In addition, the

occipital face area showed increased functional connectivity in Tourette syndrome participants with posterior cortical regions,

including primary somatosensory cortex, and occipital face area connectivity with primary somatosensory and primary motor

cortices varied in proportion to tic severity. There were no significant psychophysiological interactions in controls. These findings

highlight a potential mechanism in Tourette syndrome through which heightened representation within insular cortex of embodied

affective social information may impact the reactivity of subcortical motor pathways, supporting programmed motor actions that

are causally implicated in tic generation. Medicinal and psychological therapies that focus on reducing insular hyper-reactivity to

social stimuli may have potential benefit for tic reduction in people with Tourette syndrome.
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Introduction
Tourette syndrome is a hyperkinetic neurodevelopmental dis-

order characterized by motor and phonic tics. Tics may be

simple or complex. They are experienced as unwanted and

compulsive (Cavanna and Nani, 2013), and are frequently

preceded by premonitory sensations or urges (Cavanna et al.,

2017). While the structural, functional and neurochemical

alterations underpinning tics and their accompanying pre-

monitory sensations are yet to be precisely understood, dys-

function within cortico-striato-thalamo-cortical pathways

plays a central role (Draganski et al., 2010; Buse et al.,

2013; Ganos et al., 2013; Worbe et al., 2013; Jackson

et al., 2015).

A striking feature of tic expression in Tourette syndrome

is its marked sensitivity to environmental context. For ex-

ample, specific tics may be induced by the presence of a

particular person or object (Eapen et al., 1994). They may

also mirror the actions or speech of others within the en-

vironment, phenomena known as echopraxia and echolalia,

respectively (Ganos et al., 2012). Indeed, echophenomena

increase in frequency further when the observed actions or

speech form part of a patient’s own tic repertoire (Finis

et al., 2012). Emotional states, particularly stress and anx-

iety, can also increase tic severity (Conelea and Woods,

2008; Godar and Bortolato, 2017). This effect is linked

to states of autonomic arousal, which itself may enhance

the expression of tics (Hawksley et al., 2015). In addition,

focusing attention on tics tends to increase their frequency,

while diverting attention away to other tasks or stimuli

decreases tic expression (Brandt et al., 2015; Misirlisoy

et al., 2015), effects that may well be mediated in part by

autonomic arousal. Environmental and physiological fac-

tors therefore appear to influence not just tic frequency,

but also which particular motor or phonic tic action is

performed. These triggering factors have an important

impact on everyday functioning and quality of life: the

presence of others can exacerbate an individual’s symp-

toms, while the enhanced ‘public’ visibility carries a nega-

tive psychosocial impact through stigma, exclusion and

social anxiety (Wadman et al., 2013; Eapen et al., 2016).

Despite the long-recognized ability of environmental cues or

autonomic signals to trigger tics and increase their severity, the

neural circuitry mediating this phenomenon is yet to be

established. Perceptual inputs and their cortical representation

likely act as antecedents that facilitate activity within subcor-

tical motor pathways, in line with cortico-striato-thalamo-cor-

tical models of motor control (Ganos et al., 2013; Neuner

et al., 2013). Theoretical and empirical data suggest the

insula cortex as a likely substrate for premonitory urges,

which can trigger tics as mitigating actions through functional

pathways to basal ganglia and midline motor regions, notably

the supplementary motor area (Jackson et al., 2011;

Conceicao et al., 2017; Rae et al., 2018). From a theoretical

perspective, mappings from posterior to anterior insula are

proposed to provide an interoceptive representation of embo-

died salience. Furthermore, insula grey matter thickness, and

strength of resting state functional connectivity between the

insula and supplementary motor area, are associated with

the severity of premonitory urges in people with Tourette syn-

drome (Tinaz et al., 2015; Draper et al., 2016). However,

these sites are yet to be confirmed empirically as the key re-

gions driving the neural processes by which external context-

ual triggers might effect a worsening of tic severity.

The facial identities and expressions of other people rep-

resent potent cues that rapidly signal contextual social and

emotional information. Face processing feeds in to drive

motivated behaviours and actions, including responses to

threat (Parkinson et al., 2017). Face stimuli thus permit

the investigation of how contextual cues trigger tics. Face

stimuli are processed in well characterized pathways incor-

porating the occipital face area (OFA), fusiform face area

(FFA), and amygdala (Haxby et al., 2002; Ishai, 2008;

Pitcher et al., 2011). To date, one previous neuroimaging

study examined activity during face viewing in people with

Tourette syndrome. This study noted amygdala hyperactiv-

ity in response to faces wearing both neutral and emotional

expressions (Neuner et al., 2010). However, amygdala

hyperactivity did not predict severity of motor symptoms,

recorded using the Yale Global Tic Severity Scale (YGTSS).

This finding suggests that there may be other aspects of

neural circuitry that contribute to tic severity, particularly

in relation to tic triggers such as emotional social cues.

Theoretical and empirical evidence on the contribution of

the insula to premonitory sensations, and motor regions to

tic expression, predict that these regions will show altered

reactivity and connectivity under viewing of emotional

social stimuli in people with Tourette syndrome.
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Here, we used functional MRI in combination with an

emotional face perception task to ascertain the mechanisms

in neural activation and functional connectivity by which

emotional social cues may trigger tics, and how they relate

to symptom experience. We presented neutral and angry

faces, with social anger stimuli selected since they pose

the potentially most potent social threat cue of the core

human expressions, and applied psychophysiological inter-

action analyses to examine how functional connectivity

varies depending on psychological context (Friston et al.,

1997).

Materials and methods

Participants

Twenty-one participants with Tourette syndrome (13 male; age
18–51 years, mean 33) and 21 controls with no history of any
major neurological or psychiatric disorder (11 male; age 19–55
years, mean 34) participated. Diagnosis of Tourette syndrome
was made by a UK neurologist or psychiatrist experienced in
assessment of Tourette syndrome in a suitable specialist clinic,
including participants recruited from the UK National Health
Service Sussex Partnership Trust Neurobehavioural clinic (run
by H.C. and N.H.), and participants recruited via Tourettes
Action UK (who specified details of their clinical assessment
prior to inclusion in the study). Diagnosis of obsessive com-
pulsive disorder (OCD) and attention deficit hyperactivity dis-
order (ADHD) from a specialist clinician was also recorded.
Patient exclusion criteria were: (i) co-occurring psychopath-
ology (current depression, substance abuse, current or previous
history of psychosis); and (ii) contraindications to MRI.

Severity of tics, premonitory sensations, OCD and ADHD
were assessed using the YGTSS (including symptom severity:
maximum 50, and impairment: maximum 50, global total:
100) (Leckman et al., 1989), Premonitory Urge for Tics
Scale (PUTS, Woods et al., 2005), Yale Brown Obsessive
Compulsive Scale (YBOCS, Goodman et al., 1989) and
Adult ADHD Self-Report Scale (ASRS, Kessler et al., 2005).

One patient was taking dopaminergic medication (pimozide),
five were taking serotonergic medication (serotonin reuptake

inhibitors), and one patient was taking both dopaminergic and
serotonergic medications (pimozide and a serotonin reuptake
inhibitor). One patient on sertraline was also taking a benzo-
diazepine (lorazepam). One patient took melatonin as a sleep
aid. The remaining 13 were unmedicated.

Table 1 reports demographic details of participants and sum-
mary clinical features of patients (see Supplementary Table 1
for individual patient data). All participants gave written in-
formed consent, and the study was approved by the National
Research Ethics Service South East Coast Brighton Research
Ethics Committee.

Face perception task

Participants underwent functional MRI during a face percep-
tion task in which male and female faces were presented wear-
ing neutral and angry expressions (Fig. 1). Three male and
three female faces from the NIMSTIM database (Tottenham
et al., 2009) were presented, with each individual face shown
on 20 trials, 10 with neutral and 10 with angry expression, in
a randomized order (120 trials total). Hair and peripheral fea-
tures were removed from the original NIMSTIM images by
applying a greyscale circle to leave only the facial expression.
Faces were presented on a greyscale background for 800 ms,
before a response screen asked participants to indicate with an
index or middle finger button press whether the face had been
male or female. Participants were therefore not overtly in-
structed to focus on the expression of the face. However, by
requiring a gender judgement we ensured that participants at-
tended to the faces. The response period ended at the partici-
pant’s button press indicating a gender discrimination
judgement. A white fixation cross on grey background was
displayed during intertrial intervals, which were jittered in dur-
ation according to the OptSeq functional MRI design tool
(http://surfer.nmr.mgh.harvard.edu/optseq) for event-related
functional MRI design efficiency (35% 1000 ms, 30% 1130
ms, 20% 1250 ms, 10% 1380 ms, 5% 1500 ms).

MRI acquisition

Functional MRI data were acquired on a Siemens Avanto 1.5 T
with a 32 channel head coil (T2*-weighted echo planar images,
repetition time = 2520 ms, echo time = 43 ms, 34 ascending

Table 1 Demographic details of participants and clinical features of patients

Features/measures Tourette syndrome (n = 21) Control (n = 21) Group difference

Number of males/females 13/8 11/10 0.756a

Age 33 (10) 34 (12) 0.461b

Years of education 15 (2) 14 (2) 0.589b

OCD, n 10 0 -

ADHD. n 6 0 -

YGTSS: symptom severity 27 (8) - -

YGTSS: impairment 20 (12) - -

YGTSS: total (symptom severity and impairment) 46 (17) - -

PUTS 24 (6) - -

YBOCS 16 (9) 6 (6) 50.001b

ASRS 4 (2) 1 (1) 50.001b

Data are presented as means (SD). Group difference P-values refer to achi-squared or btwo-tailed t-tests.

ASRS = Adult ADHD Self-Report Scale; YBOCS = Yale-Brown Obsessive Compulsive Scale.
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oblique slices 3-mm thick with 0.6 mm slice gap, in-plane reso-
lution 3 � 3 mm). Total number of functional MRI volumes
acquired depended on participants’ response times (mean vol-
umes acquired: 125). The first five volumes were discarded to
allow for steady state magnetization. A T1 structural was
acquired for registration (repetition time = 2730 ms, echo
time = 3.57 ms, 1 � 1 � 1 mm resolution). Participants’
heads were tightly cushioned within the head coil to reduce
large amplitude head movements.

Tic monitoring

We did not instruct participants to suppress tics during func-
tional MRI, to reduce distress during data acquisition, and to
mitigate contamination of task-related blood oxygen level-
dependent (BOLD) signal with signal relating to intentional tic
suppression. Instead, we undertook tic monitoring time-locked
to the functional MRI data then included tic expression as a
regressor in general linear modelling to remove BOLD signal
relating to tic generation. Specifically, we acquired video using
an in-bore MRI compatible camera (MRC Systems, www.mrc-
systems.de), mounted on the head coil to view participants’
faces, and an out-of-bore camera to view their limbs and
body. Both camera feeds and functional MRI volume markers
were simultaneously relayed to Spike2 physiological recording
software (version 7.17, Cambridge Electronic Design). Tics were
identified during post hoc video assessment and an in-house
Spike2 script was used to extract tic onsets and durations,
time-locked to the functional MRI acquisition. Phonic tics
were often visible in facial movement; however, while all
motor tics were captured, it is possible that occasional phonic
tics were not, since we did not additionally record auditory
signs. During the functional MRI time-locked video recordings,
the researcher (C.R.) watched the live video feeds from the con-
trol room and noted the functional MRI volume number at
which she observed any tics, providing a written tic record
alongside the video recordings. Video recordings failed for
two participants; in these two cases, the written records were
used to identify tic onsets and durations in relation to the func-
tional MRI time series. In addition, head movement parameters
were obtained for each participant from the realignment stage
of preprocessing and inspected for any volume-to-volume trans-
lational displacements 43 mm (as an indicative value close to
the voxel size). To reduce large amplitude head movements
arising from tics, we tightly cushioned participants within the
head coil. In the whole cohort, there were no movements 43

mm, with the exception of a single volume in one Tourette
syndrome participant.

During the whole functional MRI acquisition, across partici-
pants an average of 36 tics occurred (ranging from 0 to 90 in
individual participants, standard deviation: 30). Of the bodily
locations at which tics were expressed, on average 38%
involved facial movement, 14% the head (e.g. twist or nod),
7% both face and head, and 41% body or limbs.

Functional MRI preprocessing

Functional MRI data were preprocessed and analysed using
SPM12 (v6906, www.fil.ion.ucl.ac.uk/spm). Preprocessing
was applied with default options, including realignment to
the mean image, slice-time correction to the middle slice, co-
registration to the T1 structural, normalization to MNI space,
and smoothing at 8 mm full-width at half-maximum (FWHM).

General linear modelling

Task events were modelled in a general linear model, with two
regressors representing the onset and duration of presentation of
neutral and angry faces, respectively. In addition, the general
linear model of Tourette syndrome participants contained a fur-
ther regressor, comprising the onsets and durations of tics iden-
tified in the functional MRI time-locked video recordings, to
remove variance in BOLD signal relating to generation and ex-
pression of tics from task events. In all participants, regressors
for the six movement parameters calculated during realignment
modelled head movements. Single-regressor T-contrasts were
generated for viewing (i) neutral; and (ii) angry faces, with an
implicit baseline of the intertrial interval fixation cross. These
were entered to a full factorial second-level analysis, with group
(Tourette syndrome or control) as an independent (between-
subjects) factor, and facial expression (neutral or angry) as a
non-independent (repeated measures) factor. In addition, three
covariates were entered for (i) medication (1/0 yes/no);
(ii) ADHD diagnosis; and (iii) OCD diagnosis to control for
any potential effects of medication or comorbidity. F-contrasts
were generated testing for all effects (1 1 1 1), main effect of
group [Tourette syndrome (TS), controls: (1 1 �1 �1)], and
main effect of task [neutral, angry: (1 �1 1 �1)]. Group differ-
ences in viewing neutral or angry faces (control neutral 4 TS
neutral; control angry 4 TS angry; TS neutral 4 control neu-
tral; TS angry 4 control angry), and individual group effects

Figure 1 Face perception task. Neutral and angry faces were presented for 800 ms before participants were asked to indicate whether the

face had been male or female. Face enlarged for illustrative purposes.
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for neutral and angry faces (control neutral, control angry, TS
neutral, TS angry) were examined using T contrasts.

A series of four further second-level models in Tourette syn-
drome participants only examined the correlation of symptom
severity with task effects. First-level contrasts for (i) neutral;
and (ii) angry faces were entered to second-level one-way
t-tests, with (i) total YGTSS; or (ii) PUTS scores, entered as
a covariate, and a regressor generated for the interaction with
task effect. Medication and comorbidities were also entered as
covariates. T-contrasts tested for a positive interaction.

Statistic images were thresholded at a cluster-forming thresh-
old of P 5 0.001 for cluster-wise false discovery rate (FDR)
correction for multiple comparisons at P 5 0.05 (Chumbley
et al., 2010; Eklund et al., 2016). Significant clusters were loca-
lized according to the Anatomy toolbox (v 2.2b, Eickhoff et al.,
2007), and the FSL Harvard-Oxford cortical and subcortical
atlases (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) where the
Anatomy toolbox did not contain a relevant label. Contrast
estimate effect size plots were generated in SPM for neutral
and angry faces, in Tourette syndrome participants and in con-
trols, at the peak coordinate of significant regions according to
the F-contrast for all effects (Fig. 2).

Psychophysiological interactions

Functional connectivity can vary between two regions depend-
ing on the psychological context (Friston et al., 1997). To in-
vestigate how reactivity to faces within early face processing
areas and the insula modulated activity elsewhere in the brain,
we performed a series of psychophysiological interaction ana-
lyses. First, we examined whether reactivity within the OFA,
which showed activity in response to both face types in both
groups (Fig. 2C–F), was associated with changes in functional
connectivity to regions elsewhere. Second, we examined
whether activity in the anterior insula was associated with
changes in functional connectivity to elsewhere. This region
showed above criterion threshold activity in response to pres-
entation of neutral and angry faces in people with Tourette
syndrome, but not controls (Fig. 2C–F). Finally, in participants
with Tourette syndrome, we examined whether the strength of
functional connectivity of either OFA or insula was related to
tic severity, according to YGTSS scores (maximum: 100, com-
prising symptom severity and impairment scores; Table 1), and
premonitory sensation severity, according to PUTS scores.

We extracted the first eigenvariate (weighted mean of BOLD
time series), for (i) the OFA; and (ii) the insula, thresholding
the contrast representing viewing of angry faces (which
showed the greatest insula response in Tourette syndrome par-
ticipants at the second-level) at P 5 1 for each individual.
A 10 mm sphere was extracted at the group peak from the
second-level univariate F-contrast for all effects for the OFA
(x 44, y �72, z �8), and insula (x �44, y 18, z �4), adjusting
for effects of interest according to a subject-specific F-contrast
(‘eye’) of all effects (neutral faces, angry faces, and additionally
for Tourette syndrome participants, tics).

Next, the psychophysiological interaction term was calcu-
lated according to the main effect of task (contrast weights:
1 for neutral, and 1 for angry) and the time series of (i) the
OFA; and (ii) the insula. The psychophysiological interaction
term for (i) the OFA; and (ii) the insula were entered respect-
ively to a first-level model in all participants, alongside a
regressor representing the BOLD activity from the region of

interest (PPI.Y) and the main effect of task (PPI.P). In addition,
six regressors modelled head movement, and for Tourette syn-
drome participants, a further regressor comprised the onsets
and durations of tics identified in the functional MRI time-
locked video recordings. Single regressor T-contrasts were gen-
erated for the psychophysiological interaction term. These
were entered to a series of second-level models. The first two
examined the psychophysiological interaction for the OFA,
and the insula, in controls, and Tourette syndrome participants
(using a two-sample t-test design). Then, in Tourette syndrome
participants only (using a one-sample t-test design), two
second-level models (1: OFA, 2: insula) included YGTSS
scores as a covariate, creating an interaction between the
YGTSS scores and psychophysiological interaction term.
Finally, two second-level models in Tourette syndrome partici-
pants (1: OFA, 2: insula) included PUTS scores as a covariate,
creating an interaction between PUTS and the psychophysio-
logical interaction term. In all second-level models, as with the
univariate functional MRI analysis, (i) medication (1/0 yes/no);
(ii) ADHD diagnosis; and (iii) OCD diagnosis were entered as
covariates.

In the two-sample models, an F-contrast on the psychophysio-
logical interaction term examined the group effect [TS, control
(1 �1)], and T-contrasts the direction of effect and individual
group effects. In the tic and premonitory sensation severity
models, T-contrasts tested for correlation with the YGTSS or
PUTS interaction covariates. Contrasts were thresholded at a
cluster-forming threshold of P 5 0.001 for cluster-wise FDR
at P 5 0.05. Significant clusters were localized according to the
SPM Anatomy (v 2.2b, Eickhoff et al., 2007) and FSL Harvard-
Oxford cortical and subcortical atlases (https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/Atlases). Plots of the YGTSS and PUTS correl-
ations with the insula psychophysiological interaction in
Tourette syndrome participants were generated in SPM for the
globus pallidus, thalamus, and supplementary motor area, at
each region’s peak coordinates in the psychophysiological inter-
action contrast, using the adjusted data.

Data availability

The data that support the findings of this study (unthresholded
statistic images for every contrast reported) are openly avail-
able in Neurovault, at https://neurovault.org/collections/4167/,
reference number 4167 (Gorgolewski et al., 2015).

Results

Face perception task: behavioural
performance

Control subjects and Tourette syndrome participants

showed equivalent reaction times when making face

gender ratings [mean control 473 ms, mean Tourette syn-

drome 488 ms, t(40,2) = �0.299, P = 0.766], and did not

significantly differ in face gender rating accuracy [mean

control 90%, mean Tourette syndrome 91%, t(40,2) =

�0.525, P = 0.603] confirming equivalent task difficulty

across groups.
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Univariate functional MRI and
contrast estimate effect sizes

The F-contrast for all effects (1 1 1 1) showed that neutral

and angry faces elicited activity across participants in a

canonical set of face perception regions, including the

OFA, FFA, and inferior frontal gyrus (IFG) (Fig. 2A and

Supplementary Table 2). Thresholded at a more liberal

uncorrected threshold of P 5 0.001 uncorrected (cluster

extent 5 10 contiguous voxels), this set extended to in-

clude the right amygdala and left anterior insula (Fig. 2B

and Supplementary Table 2).

Figure 2 Activity during viewing neutral and angry faces in Tourette syndrome participants and controls. The insula is hyperactive

in Tourette syndrome for both facial expressions. (A) F-test of all effects, (B) F-test of all effects thresholded at more liberal threshold of P 5
0.001 and minimum cluster size of 10 voxels, additionally showing the amygdala and insula, (C) controls neutral, (D) controls angry, (E) Tourette

syndrome neutral, (F) Tourette syndrome angry. All images thresholded at P 5 0.05 cluster-wise FDR (cluster-forming threshold P 5 0.001)

unless specified. (G–K) Contrast estimate effect size plots (pink bar represents 90% confidence interval) for the OFA (G), FFA (H), amygdala

(I), IFG (J), and insula (K), respectively, for (left-to-right) controls neutral (CN), controls angry (CA), Tourette syndrome neutral (TS N), Tourette

syndrome angry (TS A), plotted at co-ordinates given in G-K. Unthresholded statistic images are available at https://neurovault.org/collections/

4167/.
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There was a significant main effect of group (F-contrast;

Tourette syndrome, controls) in the superior frontal gyrus

(Supplementary Table 2). Post hoc T-contrasts confirmed

participants with Tourette syndrome showed greater activity

in the superior frontal gyrus when viewing neutral faces rela-

tive to controls (Supplementary Fig. 1A and Supplementary

Table 2). All other T-contrasts for a group effect were not

significant.

There was no significant main effect of task (F-contrast;

neutral, angry). Examining individual group effects for neu-

tral and angry faces showed that both face types evoked

occipital and temporal lobe activity (within the OFA

and FFA) in controls and Tourette syndrome participants

(Fig. 2C–F and Supplementary Table 2). Furthermore, in

Tourette syndrome participants only, right IFG and left

insula were active during viewing of both neutral and

angry faces (Fig. 2E and F).

Contrast estimate effect size plots, representing activity at

the peak co-ordinate of a region identified according to the

F-contrast for all effects, demonstrated similar levels of ac-

tivity in Tourette syndrome participants and controls for

viewing neutral and angry faces in the OFA, FFA, and

amygdala (Fig. 2G–I). However, Tourette syndrome partici-

pants showed slightly elevated activity in IFG (Fig. 2J) and

a hyperactive insula in response to viewing both neutral

and angry faces, relative to control participants (Fig. 2K),

although this did not attain stringent significance in the

formal whole-brain contrasts.

In the series of second-level models in Tourette syndrome

participants only examining correlations between task effects

(1: neutral, 2: angry) and symptom severity (1: total YGTSS,

2: PUTS), none showed significant correlations (P 5 0.05

cluster-wise FDR).

Psychophysiological interactions

OFA and insula

Two second-level models examined changes in functional

connectivity with (i) the OFA; and (ii) the insula, depending

on the psychological context of viewing neutral and angry

faces, in Tourette syndrome participants and controls.

In the OFA psychophysiological interaction, there was no

significant effect of group (F-contrast; Tourette syndrome,

controls). The contrast testing for individual group effects

in control participants was not significant; however,

Tourette syndrome participants showed a psychophysio-

logical interaction between the OFA and the primary som-

atosensory cortex [Brodmann area (BA) 2], the intraparietal

sulcus, and the superior parietal lobule (BA 7) (Fig. 3A and

Supplementary Table 3).

In the insula psychophysiological interaction, there was a

significant effect of group (F-contrast; Tourette syndrome,

controls) in the temporo-parietal junction (Supplementary

Table 3). Post hoc T-contrasts confirmed Tourette syndrome

participants showed a greater psychophysiological interaction

between the insula and temporo-parietal junction relative to

controls (Supplementary Fig. 1B and Supplementary Table 3).

The contrast testing for individual group effects in control

participants was not significant; however, Tourette syndrome

participants showed a psychophysiological interaction be-

tween the anterior insula and a set of cortical and subcortical

regions, including presupplementary motor area, anterior cin-

gulate cortex, mid-cingulate cortex, middle frontal gyrus, pre-

motor cortex, M1, S1 and S2, mid-insula, temporo-parietal

junction, precuneus, the putamen, and cerebellum (Fig. 3B

and Supplementary Table 3).

Tic severity (YGTSS)

In Tourette syndrome participants only, two psychophysio-

logical interaction analyses examined whether regional con-

nectivity when viewing faces with (i) the OFA; and (ii) the

insula varied in relation to tic severity (according to total

YGTSS scores, comprising symptom severity and impair-

ment). Functional connectivity of the OFA varied in pro-

portion to tic severity with premotor cortex, M1, S1,

temporo-parietal junction, intraparietal sulcus, supramargi-

nal and angular gyri, posterior cingulate cortex, and visual

areas including V1, V2, V3, and V4 (Fig. 3C and

Supplementary Table 3); while functional connectivity of

the insula varied in proportion to tic severity with the

globus pallidus, thalamus, temporo-parietal junction, and

early visual cortex (V1, V2) (Fig. 3D and Supplementary

Table 3).

Premonitory sensation severity (PUTS)

Two psychophysiological interaction analyses examined

whether functional connectivity with (i) the OFA; and (ii) the

insula varied in relation to premonitory sensation severity

(according to PUTS scores). There were no regions where func-

tional connectivity of the OFA significantly varied in propor-

tion to premonitory sensation severity. However, the insula

psychophysiological interaction showed a significant correl-

ation with PUTS in the supplementary motor area, posterior

cingulate, precuneus, and fusiform gyrus/cerebellum (Fig. 3E

and Supplementary Table 3).

Plots of the correlation between YGTSS and globus palli-

dus and thalamus functional connectivity, and between

PUTS and supplementary motor area functional connectiv-

ity, are shown in Fig. 4 at each region’s peak coordinates in

the psychophysiological interaction (Supplementary Table 3).

Discussion
Faces are potent social cues and can act as strong context-

ual triggers for action particularly in the context of per-

ceived threat (Parkinson et al., 2017). In humans,

processing of conspecific faces evokes activity within a

well characterized set of neural pathways, incorporating

the occipital face area, fusiform face area, and amygdala

(Haxby et al., 2002; Ishai, 2008). Here we show that view-

ing neutral and emotionally threatening (angry) faces does

not radically alter activity in canonical face perception
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Figure 3 Psychophysiological interaction results in Tourette syndrome participants, demonstrating changes in functional

connectivity when viewing faces. (A) OFA, (B) insula, (C) OFA, in relation to tic severity (YGTSS), (D) insula, in relation to YGTSS,

(E) insula, in relation to premonitory sensations (PUTS). Unthresholded statistic images are available at https://neurovault.org/collections/4167/.

PPI = psychophysiological interaction; TS = Tourette syndrome.

Figure 4 Regions showing a correlation between tic severity (YGTSS) and premonitory sensations (PUTS) and a psycho-

physiological interaction with the insula when viewing faces in Tourette syndrome participants. The worse the tic severity and

premonitory sensations, the greater the psychophysiological interaction with the insula. Plots show the YGTSS or PUTS correlation with the

insula psychophysiological interaction at each region’s peak coordinates in the contrast (Supplementary Table 3). Black circles indicate group mean,

grey diamonds indicate individual participants. (A) YGTSS: globus pallidus, (B) YGTSS: thalamus, (C) PUTS: supplementary motor area (SMA).
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regions, such as the fusiform face area, in people with

Tourette syndrome. However, when viewing faces individ-

uals with Tourette syndrome do demonstrate additional

recruitment of insula cortex (regardless of whether the

face appears threatening or not).

Furthermore, face-evoked activity in the insula is asso-

ciated with increases in functional connectivity to a set of

cortical regions that mirrors regions previously implicated

in tic generation: presupplementary motor area, premotor

cortex, M1, and the putamen. Key basal ganglia regions

associated with tic expression—the globus pallidus and

thalamus—were seen to vary in functional connectivity

with the insula in proportion to tic severity, while connect-

ivity with the supplementary motor area varied in propor-

tion to premonitory sensations. Together, this suggests that

when confronted with social stimuli, in people with

Tourette syndrome a hyper-reactive insula increases in sig-

nalling with a set of cortical and subcortical areas known

to have a causal role in generating tics (Ganos et al., 2013;

Neuner et al., 2013). This may reveal a neural mechanism

underlying a common everyday experience for people with

Tourette syndrome in which environmental and autonomic

factors can influence the expression of tics, including tran-

sient increases in tic severity.

The face perception network in
Tourette syndrome

Face perception proceeds in humans via occipito-temporal

lobe pathways comprising a characteristic set of regions

including the OFA, FFA, and amygdala (Haxby et al.,

2002; Ishai, 2008). In addition, the IFG has been proposed

to have a role in an extended hierarchy for contextual pro-

cessing of dynamic aspects of faces, such as valence

(Scalaidhe et al., 1997; Ishai, 2008). In our participants

with Tourette syndrome, activity within these canonical

face perception regions was similar to that of controls, sug-

gesting that cardinal operations underlying face processing

do not differ radically in people with tics.

One previous study, also employing a gender judgement

task of emotional faces, observed a greater response in the

amygdala in participants with Tourette syndrome (Neuner

et al., 2010). We did not observe a significant difference in

amygdala response between Tourette syndrome participants

and controls, although we note the previous result was

uncorrected for multiple comparisons, and as such any dif-

ference may be subtle.

In addition, it is notable that IFG activity was slightly

elevated in Tourette syndrome participants: across numer-

ous cognitive, affective, and motor tasks, the IFG has been

identified as a region of altered function in Tourette syn-

drome (Polyanska et al., 2017). While it may play a key

role in tic suppression (Ganos, 2016) and prefrontal regu-

lation of adaptive behaviour (Robbins, 2007), it may

be less crucial in the specific context of face perception.

In contrast, the insula was notably hyperactive in response

to the presentation of faces in participants with Tourette

syndrome.

The insula as a tic trigger site in
Tourette syndrome

The insula is likely a key site of dysfunction in Tourette

syndrome, and in particular has been associated with the

generation of uncomfortable premonitory sensations or

‘urges’ that commonly precede tics (Cavanna et al., 2017;

Conceicao et al., 2017). In broad terms, the insula functions

as an interoceptive hub for processing homeostatically rele-

vant internal physiological signals (Critchley and Harrison,

2013), generating bodily ‘feelings’ that underpin emotional

experiences, such as stress and anxiety (Gray and Critchley,

2007). Onward signals to prefrontal and motor systems may

then facilitate the production of remedial action (Jackson

et al., 2011; Garfinkel and Critchley, 2016). The insula re-

sponse that we observed in Tourette syndrome participants

may therefore suggest an interoceptive experience occurs for

participants with Tourette syndrome when viewing faces, in

a way that does not for controls. Furthermore, the equiva-

lent response of the anterior insula to both neutral and

angry faces suggests that insula signals do not necessarily

reflect the specific emotional valence of a face stimulus (at

the univariate level), but instead a visceral response when

presented with this form of social cue. This may suggest a

hypersensitivity to visceral experience in the presence of

social cues, in a condition where social anxiety is commonly

comorbid (Kurlan et al., 2002; Specht et al., 2011).

We explored the implications of this insular hyper-

reactivity in greater depth, through a series of psycho-

physiological interaction analyses. In participants with

Tourette syndrome, the insula showed a change in func-

tional connectivity when viewing faces, with a number of

cortical and subcortical regions, including regions that

appear to have key roles in tic generation and expression:

the presupplementary motor area, premotor cortex, M1,

and putamen (Ganos et al., 2013; Neuner et al., 2013).

We also examined functional connectivity with the OFA

as a contrasting region of the face processing hierarchy.

This region showed changes in functional connectivity in

Tourette syndrome during face viewing with primarily pos-

terior cortical regions, notably including primary somato-

sensory cortex. These observations point towards the insula

as a hub of hyper-reactive dysfunction, which interacts with

a wider cortical and subcortical network, including critical

motor regions associated with tic generation, while the

OFA displays a more circumspect pattern of functional

connectivity constrained to more posterior (sensory) areas.

Particularly striking were the observed changes in insula

functional connectivity that occurred in proportion to tic se-

verity (YGTSS) and premonitory sensations (PUTS). There

was greater functional connectivity of the insula with the

globus pallidus and thalamus in patients with worse tic se-

verity. These two subcortical nuclei are the primary targets
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for deep brain stimulation in refractory Tourette syndrome

(Akbarian-Tefaghi et al., 2016). Furthermore, functional con-

nectivity of the insula with the supplementary motor area

was greater in those with worse premonitory sensations.

Our data thus suggest the insula may function as a ‘tic trig-

ger’ site in response to social stimuli, perhaps mediated in

part through autonomic arousal responses (Nagai et al.,

2009; Hawksley et al., 2015; Godar and Bortolato, 2017),

generating a cascade of onward signals to cortico-striato-tha-

lamo-cortical circuitry in proportion to an individual’s ex-

perience of sensory and motor symptoms. It is notable that

effects on symptom severity were observed only in connect-

ivity analyses: univariate models showed no significant cor-

relations with YGTSS or PUTS scores.

Our evidence for the insula as a ‘tic trigger’ site in

Tourette syndrome extends observations that insula grey

matter thickness predicts severity of premonitory sensations

(Draper et al., 2016), as does resting state functional con-

nectivity between the insula and supplementary motor area

(Tinaz et al., 2015). Furthermore, this anatomical focus is

consistent with the notion that the expression of tics in

Tourette syndrome is likely influenced by neural processes

that support experience of bodily urges, which elicit miti-

gating action via signals to motor regions (Jackson et al.,

2011; Conceicao et al., 2017; Rae et al., 2018). Tourette

syndrome is a highly heterogeneous condition, with sub-

stantial variability between individuals in the severity of

premonitory urges and tics (Robertson et al., 2017), and

the extent to which such premonitory sensations are con-

sciously perceived as triggers for tics (Leckman et al.,

1993). Here, we identify that these individual differences

are likely underpinned by the strength of insula signalling

with the basal ganglia nuclei and cortical motor regions

that are associated with the generation of tics.

In contrast, the OFA showed changes in functional con-

nectivity both overall, and in relation to tic severity, in

more posterior cortical regions (highlighting the specificity

of the insula effects). These regions included early visual

areas, parietal association cortices, and perhaps most not-

ably, primary somatosensory and primary motor cortices.

Thus, while the dysfunctional interactions of the insula are

likely critical to the generation of premonitory sensations

and tics, and their increasing expression under environmen-

tal cues, there is nevertheless a probable role for activity in

other sensory areas also influencing symptom expression,

for example via disrupted perception-action binding pro-

cesses mediated by parietal cortex (Beste et al., 2016;

Polyanska et al., 2017; Petruo et al., 2018).

Impact of environmental and
autonomic tic triggers on
quality of life

In examining the strength of functional connectivity changes

in relation to tic severity, we used the total YGTSS scores that

comprise symptom severity and impairment. The symptom

scores relate to the number, frequency, and complexity of

an individual’s tics, while impairment scores indicate how

much impact an individual’s tics have on their everyday life.

Those scoring higher on symptom severity tend to also report

greater social problems and impact on quality of life (Eapen

et al., 2016). In the context of presenting face stimuli that can

act as social cues, we therefore applied the total composite

score of the YGTSS. Indicative of the extent of tic triggers on

quality of life, social impairment may extend to a comorbid

diagnosis of social phobia in people with Tourette syndrome

(Kurlan et al., 2002; Specht et al., 2011). Identification of the

insula as a hub of hyper-reactive dysfunction in social con-

texts interacting with wider regions outside the canonical face

perception network highlights this region as a target for thera-

peutic interventions that aim to reduce impacts of environ-

mental and autonomic triggers on tic severity.

One way in which this might be achieved is via interocep-

tive training regimes in which participants practise detection

of bodily sensations, such as heartbeats. Interoceptive accur-

acy, as assessed by a heartbeat counting task, is reduced in

people with Tourette Syndrome (Ganos et al., 2015), sug-

gesting that such sensory signals may be noisier. These in-

teroceptive signals are known to be processed by the insula

(Critchley et al., 2004). Furthermore, interoceptive accuracy

is malleable under practises in which attention is directed to

bodily sensations (Bornemann and Singer, 2017): elements

of such an approach bear similarity to existing behavioural

therapies for Tourette syndrome such as Habit Reversal

Therapy, of which awareness training to premonitory sensa-

tions is a core component (Woods et al., 2008).

There is also interest in the application of non-invasive

brain stimulation techniques (e.g. transcranial magnetic

stimulation) for the therapeutic treatment of tics (Grados

et al., 2018); however, these have typically been applied to

cortical regions—most commonly the supplementary motor

area—that are more easily accessible than the insula, which

lying ~2 cm under the frontal operculum does not present a

practical target.

The development of alternative therapeutic approaches to

managing tics is particularly important in a condition in

which the typically prescribed frontline dopaminergic medi-

cations do not always have therapeutic efficacy in all indi-

viduals (Hartmann and Worbe, 2013). Moreover,

therapeutic interventions that can aid reductions in tic ex-

pression driven by stressful social cues will have important

benefits on quality of life (Eapen et al., 2016), and it is in

this domain that interoceptive training regimes impacting

insula reactivity may have the highest potential.

Methodological considerations of
impact of tics

Acquiring task-based functional MRI data from hyperkin-

etic movement disorder populations presents challenges

both for data quality, and for the separation of concurrent

BOLD signals relating to tic generation and expression

3258 | BRAIN 2018: 141; 3249–3261 C. L. Rae et al.



from BOLD signals related to the task. Tic monitoring

using video recording has been proposed (Neuner et al.,

2007), but other than in a minority of studies (Thomalla

et al., 2014), this has not been extensively taken up.

Nevertheless, we followed such an approach, monitoring

tics time-locked to the functional MRI data, and regressing

tic timelines in first level models. As such, we can be con-

fident that the influence of co-occurring tics on our results

is as far as practically possible removed.

Tic monitoring deals with the issue of separating BOLD

signal relating to tics from BOLD signal relating to the

task. However, it does not necessarily deal with the

impact on data quality of head movements. Therefore, we

also included realignment parameters in first level models,

as is common practice (Hodgson et al., 2017). An alterna-

tive approach to head motion can include a multi-echo

functional MRI acquisition, to remove non-BOLD compo-

nents of the signal that do not scale with T2* (Kundu et al.,

2017). However, this approach would ultimately still not

address the contaminating effects of neural activity under-

pinning tic expression on BOLD signal relating to task

performance.

Future directions

People with tics often take medications influencing mono-

aminergic transmission, including treatments for associated

conditions such as ADHD, OCD, and anxiety (Roessner

et al., 2011). Medications influencing serotonergic trans-

mission, for example, can modulate cortical influences

over canonical face perception regions such as the amyg-

dala during face viewing (Passamonti et al., 2012). Our

present sample was heterogenous in comorbidity and medi-

cation status, which is representative of the ‘TS+’ spectrum

(Cavanna et al., 2009). We therefore included covariates

for medication and ADHD and OCD comorbidity in

second-level models to account for this heterogeneity. A

larger sample, containing subgroups of individuals on dif-

ferent medications, would enable a more detailed investiga-

tion of the impact of these features of the condition, and

permit stratification of participants according to medication

or comorbidity status and neural response to emotional

social cues.

Psychophysiological interaction analyses are a useful ap-

proach to identify functional influences within neural sys-

tems under experimental manipulations (Rowe, 2010). To

more concretely dissect the causative role of the insula, it

would be useful to apply generative models of effective

connectivity using dynamic causal modelling (Friston

et al., 2017). Historically, event-related designs have been

suboptimal when applying such analyses, but forthcoming

advances in neural mass models will permit the inversion of

models with event-related datasets previously limited by

their relative poverty of signal-to-noise for experimental

events (Friston et al., 2017).

Conclusion
Tics can be triggered in people with Tourette syndrome by

environmental and autonomic factors. When viewing faces,

which are potent social cues, people with Tourette syn-

drome show a hyperactive insula. Furthermore, functional

connectivity increases between the insula and key regions

associated with tic generation and expression. This suggests

people with Tourette syndrome may experience a hypersen-

sitivity to embodied experiences associated with the pres-

ence of social cues, with insula signals influencing the

expression of tics via signals to subcortical regions within

cortico-striato-thalamo-cortical circuits. These results high-

light the potential neural mechanisms by which tic trigger

factors such as social cues can transiently increase tic se-

verity, and suggest that treatment strategies focused on

reducing insula hyper-reactivity may have therapeutic

potential.
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