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Lung cancer is one of the most common and mortal malignancies, usually with a poor
prognosis in its advanced or recurrent stages. Recently, immune checkpoint inhibitors
(ICIs) immunotherapy has revolutionized the treatment of human cancers including lung
adenocarcinoma (LUAD), and significantly improved patients’ prognoses. However, the
prognostic and predictive outcomes differ because of tumor heterogeneity. Here, we
present an effective method, GDPLichi (Genes of DNA damage repair to predict LUAD
immune checkpoint inhibitors response), as the signature to predict the LUAD patient’s
response to the ICIs. GDPLichi utilized only 7 maker genes from 8 DDR pathways to
construct the predictive model and classified LUAD patients into two subgroups: low- and
high-risk groups. The high-risk group was featured by worse prognosis and decreased B
cells, CD8+ T cells, CD8+ central memory T cells, hematopoietic stem cells (HSC), myeloid
dendritic cells (MDC), and immune scores as compared to the low-risk group. However,
our research also suggests that the high-risk group was more sensitive to ICIs, which
might be explained by increased TMB, neoantigen, immune checkpoint molecules, and
immune suppression genes’ expression, but lower TIDE score as compared to the low-
risk group. This conclusion was verified in three other LUAD cohort datasets (GSE30219,
GSE31210, GSE50081).

Keywords: DNA damage repair (DDR), immune check inhibitor (ICI), GDPLichi, lung adenocarcinoma, gene classifier
INTRODUCTION

Lung cancer ranks the second in incidence and top in mortality among malignancies worldwide (1), of
which lung adenocarcinoma is the most common subtype (2). The prognosis of advanced and recurrent
lung cancer is usually poor because most standard treatments by cytotoxic anticancer drugs only have
limited therapeutic effects. In recent years, with a better understanding of immune response regulation,
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the immune checkpoint inhibitor (ICI) therapy showed improved
survival rates in multiple cancers including non-small-cell lung
cancer (NSCLC). The principle of ICIs is to reactivate immune cells
by using specific antibodies against inhibitory signaling molecules
such as CTLA-4 and PD-1 expressed on tumor and immune cells.
Currently, the approved drugs of anti-CTLA-4 (ipilimumab), anti-
PD-1 (nivolumab and pembrolizumab), anti-PD-L1 (atezolizumab,
avelumab, and durvalumab), and their combinations have
performed significant improvements in treating advanced NSCLC
patients (3–6). Lung adenocarcinoma accounts for 80% of NSCLC
and benefits most from ICIs therapy. However, it was also reported
that there were still only partial LUAD patients responsive to
ICIs (7).

PD-L1 expression has been widely used as an ICI response
predictive marker, but the sensitivity and specificity are not very
consistent due to different antibodies and cutoff values used for PD-
L1 test (3, 8, 9). Meanwhile, PD-L1 expression cannot accurately
reflect the complicated tumor immune microenvironment (10).
Recent studies have also reported that tumor mutation burden
(TMB) is closely related to the efficacy of ICIs response (11, 12) and
can also be used as a predictive marker for the efficacy of ICI
treatment. Like PD-L1, the cut-off value of TMB is controversial
(13–15). Additionally, TMB alone does not directly produce
neoantigen processing by major histocompatibility complex
(MHC) class molecules, thus the accuracy of TMB as a predictor
for ICI treatment is modest. Neoantigen expressed on tumor cells is
oneof themain targets for aneffective antitumorT-cell response (16),
but difficult to be identified.Therefore, identifyingnovelmarkers that
can efficiently and accurately predict ICI responses is urgent. One
promising area for this research is DNA damage repair (DDR). To
ensure the integrity of the genome, cells activate DNAdamage repair
pathways to repair genetic lesions (SNP, Indel, etc.) during the
process of DNA replication. DDR consists of eight pathways
including miss match repair (MMR), base excision repair (BER),
nucleotide excision repair (NER), direct damage repair (DR),
homologous dependent recombination (HDR), nonhomologous
end joining (NHEJ), fanconi anemia pathway (FA), and translesion
DNA synthesis (TLS). Defects in DDR pathways lead to the
accumulation of genomic aberrations and an elevated TMB (17–
19), thus promoting tumor development (20). Many studies have
shownthatmutations inDDRpathwaygenesare associatedwith ICIs
responses (20, 21). Patients who have DDR genomic alterations
usually have a better clinical benefit after ICIs therapy (19, 21).

The Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm is a computational method that uses gene expression
profiles to predict the ICIs response, particularly successful in
NSCLC and melanoma (22). TIDE uses a specific set of marker
genes to estimate dysfunction of tumor-infiltrating cytotoxic T
lymphocyte and exclusion of CTL by an immunosuppressive
factor to predict patients’ response to ICIs. Patients with lower
TIDE scores have a lower chance of antitumor immune escape,
thus having a higher response rate of ICIs treatment (22). The
TIDE score exhibited a higher accuracy than PD-L1 expression
level and TMB in predicting the overall survival of patients
treated with ICIs (20, 23, 24). Some studies also have reported its
utility in predicting or evaluating the ICIs efficacy (24–28).
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We identified seven significant genes (e.g., DUT, MGMT,
POLH, RAD1, RAD17, TYMS, and YWHAG) strongly associated
with prognosis from DDR pathways using Cox regression analysis.

Patients with lower expression of DUT, TYMS, and YWHAG
but higher expression of MGMT, POLH, RAD1, and RAD17 had
a better prognosis. Based on the expressions and weights
calculated by Cox regression on these genes, we developed a
classifier, GDPLichi (Genes of DDR to Predict LUAD immune
checkpoint inhibitors), as the signature to predict the ICIs
response. LUAD patients were classified into low- and high-
risk groups based on the cutoff of the GDPLichi score. Many
features, including PDCD1, CTLA4, PD-L1 expression, TMB,
and neoantigen, displayed strong discerning abilities in the
survival analysis of these two subgroups. Especially, the high-
risk subgroup had a worse prognosis but is presumably more
efficacious towards ICIs treatment.
MATERIALS AND METHOD

Data Source
To predict the LUAD ICIs response, we built a multi-step
approach called GDPLichi described below (Figure 1 and
Supplementary Figure S1). The transcriptome gene
expression, genomic data, and clinical phenotype data of 526
TCGA-LUAD samples were downloaded from the website
xenabrowser (https://xenabrowser.net/datapages/). TCGA raw
RNA-Seq transcriptome count data including 526 LUAD
samples were further transferred into a transcript per kilobase
mullion (TPM). Three validation groups of raw data, including
438 LUAD samples from 3 cohorts [GSE31210 (29), GSE30219
(30), and GSE50081 (31)], were downloaded from Gene
Expression Omnibus (GEO) repository. Then raw data were
transferred to expression data using the “Oligo” package in R
software. For genes with multiple probes, their expression levels
were calculated as the maximum expression level of these probes.
Finally, all expression data were normalized and converted to
Z-scores.

GDPLichi Score
First, a univariate Cox regression model was used to assess the
association of 276 DNA damage repair-related genes
(Supplementary File 1) with the overall survival in the TCGA
LUAD cohort. P-value was used to identify key genes and genes
with P-value < 0.05 were considered as predictive genes
(Supplementary File 2). Then, 63 predictive genes were
selected for multivariate Cox regression and genes with P-value
< 0.05 were considered as risk genes (Supplementary File 3).
Finally, seven risk genes were obtained by multivariate Cox
regression and combined to construct the GDPLichi classifier.
By combining the expression values of risk genes and weighting
by multivariate Cox regression coefficients, the GDPLichi score
for each patient was calculated as follows:

GDPLichi score = Sn
i=1 expreibi
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Here n is the number of prognostic genes, exprei meant the
expression value of gene i, and bi represented the regression
coefficient of gene i in the multivariate Cox regression analysis.
Using themedianGDPLichi score as a cutoff value, TCGA andGEO
LUAD patients could be classified into low and high-risk groups.
Gene Set Enrich Analysis, Survival
Analysis, Principal Components Analysis,
Tumor Microenvironment Analysis,
and TIDE
R language 4.0 was applied in this study for the statistical
analyses. GSEA was used to explore the pathway enrichment
between low- and high-risk groups using the R package
“clusterProfiler” (32) on the Reactome pathway database (33)
with default parameters. The fold change of gene expressions
between two groups was used to rank the genes. The absolute
values of the normalized enrichment score (NES) >1 and P-value
≤0.05 were used to screen out significantly enriched pathways.
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The “survivalROC” package was used to plot the survival ROC
curve. The cutoff of survival time was set to 36 months. “Forest
plot” was used in the “forestmodel” package and the
“factor_separate_line” parameters were set as TRUE. Survival
analysis of two groups was carried out by the R package
“survminer”. PCA was used by the R packages “FactoMineR”
and “factoextra” with the values of all genes’ expression as the
input. We used the “xCell” package (34) to estimate relative
subsets of immune cells. TIDE Score was calculated with the
TIDE algorithm (22) from the website (http://tide.dfci.harvard.
edu). All R package parameters can be found in the source
analysis code in main_code.R (Supplementary File 6).

Patient Sample Collection
From the TCGA LUAD cohort downloaded from the
xenabrowser website, samples with survival, and genomic data
were collected. In datasets GSE31210, GSE50081, and GSE30219,
lung squamous cell carcinoma samples could be excluded and
lung adenocarcinoma with survival data were collected.
A

B

C

FIGURE 1 | The overall workflow of GDPLichi. (A) GDPLichi was constructed by DNA damage-related genes and divided LUAD patients into two subgroups (low-
and high-risk). (B) GDPLichi can be used for the analyses of survival, GSEA, immune microenvironment, TMB, Neoantigen, immune checkpoint genes (PD-L1, PD-1,
CTLA4), and genomic mutation between low- and high-risk subgroups. (C) The TIDE algorithm was used to predict the sensitivity to immune checkpoint inhibitors
(ICIs) between low- and high-risk groups in four cohorts.
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RESULT

Construction of GDPLichi
A univariate Cox regression model was used to assess the
association of 276 DNA damage repair genes with the overall
survival in the TCGA LUAD cohort. There were 63 predictive
genes screened out with an initial significance (P <0.05). By
using these 63 predictive genes as input for multivariate Cox
regression, seven risk genes (DUT, MGMT, POLH, RAD1,
RAD17, TYMS, and YWHAG) were screened out (Figure 2A)
and Kaplan–Meier analysis further confirmed the prognostic
value of the individual genes (Suppelementary Figure S2).
The multivariate Cox regression analysis of the above
seven risk genes showed high accuracy in predicting the
survival of LUAD patients (Figure 2B). By combining the
expression values of seven risk genes and weighted by COX
regression coefficients, the GDPLichi score for each patient
was calculated (Described in 2.2). To further facilitate the
application of the GDPLichi, the patients were divided into
low- and high-risk groups according to the median value of the
GDPLichi score. PCA showed that patients could be distinctively
clustered according to the selected signatures (the seven risk
Frontiers in Oncology | www.frontiersin.org 4
genes) in the TCGA LUAD cohort (Figure 2C) and three GEO
validation cohorts (Suppelementary Figure S3A). In addition,
Spearman’s correlation test indicated that GDPLichi was
significantly correlated with the selected genes in the TCGA
LUAD cohort (Figure 2D) and three GEO validation cohorts
(Figure S3B).

Identification of LUAD Subgroups
With Prognostic Significance
According to GDPLichi
LUAD patients were classified into low- or high-risk groups
based on the median GDPLichi score described above. The
overall survival analysis for these two subgroups showed a
significant difference in the TCGA cohort (Figure 3A,
P<0.0001) and three GEO validation cohorts (Suppelementary
Figure S4A).

The hazard ratio of the two subgroups in the TCGA cohort is
1.912 (GSE30219: 2.99, GSE31210: 3.79, GSE50081: 2.43). The
95% confidence interval of two subgroups of TCGA cohort is
1.421-2.573 (GSE30219: 1.585-5.641, GSE31210: 1.72-8.351,
GSE50081: 1.356-4.356). The difference remained statistically
significant after adjusting for age, gender, stage, and smoking
December 2021 | Volume 11 | Article 73353
A B

C D

FIGURE 2 | DDR signature accurately predicts the prognosis of LUAD patients. (A) Univariate and multivariate Cox regression analyses screened out seven risk
genes. The point number represents a score for the relation between the expression of each selected gene and the predicted survival calculated by Cox regression.
High and low represent the highest and lowest expression levels of the gene, respectively. Total points were the sum of the individual points from the seven
selected genes. Based on the total points, 1-year and 3-year predicted overall survival rates of each LUAD patient were calculated. The higher the number, the
lower the predicted survival. (B) Multivariate Cox regression analysis of the seven risk genes in predicting the survival of LUAD patients. (C) PCA based on the
expression profile of the seven risk genes from different risk groups. (D) Correlation between the GDPLichi and the seven risk genes in the TCGA LUAD cohort.
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status in the TCGA cohort (Figure 3C) and three GEO
validation cohorts (Suppelementary Figure S4C). To test the
practicality of the GDPLichi classifier, we applied ROC (Receiver
Operating Characteristic) analyses to the TCGA cohort and
found that the GDPLichi score could function as a better
prognostic index than any risk gene alone (Figure 3B). This
result was also validated in the three GEO cohorts
(Suppelementary Figure S4B). Therefore, the GDPLichi could
be a good model to predict the prognosis of LUAD patients.

GSEA Explored the Pathway Enrichment
Between Low- and High-Risk Groups
To further investigate the difference of biological mechanisms
between low- and high-risk groups divided by GDPLichi, we
performed GSEA on the TCGA LUAD cohort. It revealed that
cell proliferation-related pathways such as cellular response to
hypoxia, MAPK signaling, and noncanonical NF-kB signaling
were significantly enriched in the high-risk group (Figures 4, B).
Meanwhile, cell cycle pathways were also significantly enriched
in the high-risk group (Figures 4B, D). The results also showed
that immune-related pathways such as antigen procession, cross-
presentation, interleukin-10 signaling, and MHC class II antigen
presentation were significantly enriched (Figure 4C). By
examining the expression of HLA genes, it was revealed that
the expression of MHC II genes in the low-risk group was
significantly higher than in the high-risk group (Figure 4E).
MHC II genes are only expressed in antigen-presenting cells.
This may indicate a higher tumor-infiltrating lymphocyte (TIL)
in the low-risk group, and ultimately a poorer prognosis.

The Difference in Tumor Immune
Microenvironment Between Low- and
High-Risk Groups
The “xCell” algorithm was employed to estimate the immune
cells in malignant tumor tissues between two subgroups using
Frontiers in Oncology | www.frontiersin.org 5
RNA sequencing data. Our results showed that the immune
scores, B cells, hematopoietic stem cells (HSC), myeloid
dendritic cells (MDC), CD8+ T cells, and CD8+ central
memory T cells were significantly higher in low-risk groups
compared to high-risk groups, suggesting a higher TIL in
the low-risk group (Figures 5A–F). CD8+ T cells, also
named cytotoxic T cells, are one of the major tumor killer cells
and CD8+ cell exclusion is strongly associated with tumor
immune escape. Therefore, we examined the expression of
several immune-suppression genes such as TIM-3 (HAVCR2),
IDO1, LAG3, PD-L2 (PDCD1LG2), TIGIT, CD276,
CD160, VEGFA, VEGFB, SLAMF7, KIR2DL3, and IL1B
between low- and high-risk groups. As shown in Figure 5G,
t he h igh- r i sk g roup had a h igher expre s s ion o f
immunosuppression genes than the low-risk group, which
might account for higher sensitivity to ICIs in the high-risk
subgroup of LUAD patients.
The Difference in TMB, Neoantigen, and
ICIs-Target Expression Between Low- and
High-Risk Subgroups
To predict the sensitivity to ICIs between low- and high-risk
groups as classified by the GDPLichi model, we further examined
immunotherapy-related markers such as tumor mutation
burden (TMB), neoantigen, and expression of PDCD1 (PD-1),
CD274 (PD-L1), and CTLA4. The degree of TMB and
neoantigen in the high-risk group was significantly higher as
compared to the low-risk group in the TCGA-Cohort
(Figures 6A, B). A significantly higher expression of PD-L1,
PDCD1, and CTLA4 was also observed in the high-risk group as
compared to the low-risk group in the TCGA-Cohort
(Figure 6C) as well as the three GEO validation cohorts
(Supplementary Figures S5A–C). These results indicated that
the high-risk group might be more sensitive to immunotherapy.
A B C

FIGURE 3 | GDPLichi score can function as a prognostic index for LUAD patients. (A) Kaplan-Meier plots of the survival probability for low- and high-risk
subgroups of TCGA cohort, respectively. (B) ROC curves for the performance of the GDPLichi score as well as the seven risk genes of the classifier in TCGA in
predicting prognosis. (C) Forest plot representation of multivariate Cox model depicting the association between overall survival and LUAD subgroups with other
clinical factors considered in the TCGA cohort.
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It also suggested that the GDPLichi model may help to predict
the response to ICIs of LUAD patients.

Gene Mutation Pattern Between Low-
and High-Risk Groups Classified
by GDPLichi Model
We identified 12 candidates from the top 25 frequently mutated
genes in the TCGA cohort of LUAD patients, which exhibited a
significant difference between the low- and the high-risk group
classified by GDPLichi (Figure 7). Recent studies reported that
mutations in the TTN andMUC16 genes indicated high TMB (35,
36) and could be used to predict immunotherapy efficacy (37).
TTN mutation status can independently predict immunotherapy
prognosis in lung adenocarcinoma patients after ICIs (38).
MUC16 mutation was associated with greater response rates
Frontiers in Oncology | www.frontiersin.org 6
associated with ICIs response and overall survival (39). TP53 is
a well-known tumor suppressor gene with mutation occurring in
more than 50 percent of all malignancies. TP53mutation is usually
associated with a poor prognosis. Some studies also reported that
loss of CSMD3 results in increased proliferation of airway
epithelial cells in the LUAD (40). Ovarian carcinoma patients
with CSMD3 mutation had sustained responses to anti-PD1
without prior chemotherapy (41). Somatic mutations in the
ZFHX4 gene are associated with poor overall survival in Chinese
lung cancer patients (42). The mutation of RYR2 is a significant
biomarker associated with high TMB in LUAD (43). Patients with
lung adenocarcinoma with the ADAMTS12 mutation would have
a worse prognosis (44). Taken together, these results suggested
that the high-risk group might be more sensitive to ICIs and
GDPLichi model may predict the response to ICIs.
A

D

E

B C

FIGURE 4 | Enriched proliferation-related and cell cycle pathways, but reduced immune-related pathways in the high- as compared to the low-risk group classified
by GDPLichi. GSEA plots of proliferation-related pathways (A), cell cycle, (B), and immune-related pathways (C). All transcripts are ranked by the fold change
between low- and high-risk subgroups in the TCGA-LUAD cohort. (D, E) The difference in the expression of cell cycle-related, cell response to hypoxia, and antigen
presentation genes between low and high-risk subgroups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, no significant difference.
December 2021 | Volume 11 | Article 733533

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Leng et al. GDPLichi Predicts LUAD ICI Response
A C

G

B

D FE

FIGURE 5 | The high-risk LUAD group exhibits relatively lower infiltration of B, HSC, MDC, CD8+ T, and memory T cells, and lower immune scores than the low-
risk group, but has higher expression of immuno-suppression genes. (A–F) Comparison of infiltrating immune cells (xCell) between low- and high-risk groups using
xCell algorism. (G) Statistical analysis of the expression of immunosuppression genes between low- and high-risk groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001;
ns, no significant difference.
A

C

B

FIGURE 6 | The high-risk group exhibits a higher level of TMB and neoantigen as well as PD-L1, PDCD1, and CTLA4 expression than the lower-risk group.
(A, B) Boxplot of TMB and neoantigen between low and high-risk groups of the TCGA cohort. (C) Statistical analysis of the expression of PD-L1, PDCD1, CTLA4
between low- and high-risk groups in TCGA cohort. *P < 0.05; ***P < 0.001; ****P < 0.0001.
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ICIs Response Prediction Between Low-
and High-Risk Groups of LUAD Patients
Classified by GDPLichi Model
The TIDE algorithm has been proved to help predict ICIs
response of LUAD patients with high accuracy (22). Therefore,
we calculated the TIDE scores of both low- and high-risk groups
of the TCGA LUAD cohort as classified by the GDPLichi model.
The results revealed that the TIDE score in the high-risk group
was significantly lower than the low-risk group (Figure 8A).
Similar results were observed in the other three external GEO
datasets (Figures 8B–D). These results suggested that the high-
risk group has a lower chance of antitumor immune escape and
exhibiting a higher response rate of ICIs treatment.
DISCUSSION

Lung cancer ranks second in incidence and top in mortality
among malignancies worldwide (1). Recently, immunotherapy
has become an important new therapeutic approach in treating
multiple types of cancer with promising results. It has greatly
changed the landscape of cancer care. Many studies have shown
that mutations in DDR pathway genes are associated with the
prognosis of LUAD patients (20, 21), however, using the DDR
gene expression profile as a molecular signature to predict the
Frontiers in Oncology | www.frontiersin.org 8
response to ICIs of LUAD patients has not been reported yet. In
this study, we constructed a GDPLichi model based on seven
DDR genes (DUT, MGMT, POLH, RAD1, RAD17, TYMS, and
YWHAG), to classify LUAD into two distinct subgroups: low-
and high-risk groups. Thymidylate synthase (TYMS) is a critical
target for cancer chemotherapy (45). Tyrosine 3-Monooxygenase/
Tryptophan 5-Monooxygenase Activation Protein Gamma
(YWHAG) is also known as 14-3-3g. A recent study reported that
knockdown of YWHAG suppresses epithelial-mesenchymal
transition (EMT) and reduces the metastatic potential of human
NSCLC (46). O-6-Methylguanine-DNA Methyltransferase
(MGMT) catalyzes the transfer of methyl groups from O(6)-
alkylguanine and other methylated moieties of the DNA to its
molecule. A low protein expression of MGMT was found in the
bronchial epithelium of patients with lung cancer as compared to
healthy controls, suggesting that there is a negative correlation
between MGMT expression and lung cancer risk (47). DNA
polymerase eta (POLH) is a DNA polymerase belonging to a
subset of tumor suppressor proteins required for maintaining
genome integrity (48). RAD1 encodes a component of a
heterotrimeric cell cycle checkpoint complex, known as the 9-1-1
complex, that is activated to stop cell cycle progression in response
to DNA damage or incomplete DNA replication. RAD17 is a cell
cycle checkpoint gene required for cell cycle arrest and DNA
damage repair in response to DNA damage. This protein recruits
FIGURE 7 | Mutation landscape of genes with significant difference between low- and high-risk subgroups in TCGA LUAD cohort. *P < 0.05; **P < 0.01.
December 2021 | Volume 11 | Article 733533
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the RAD1-RAD9-HUS1 checkpoint protein complex onto
chromatin after DNA damage and initiates DNA repair.

Gene Set Enrichment Analysis (GSEA) is a computational
method that determines whether a priori defined set of genes
shows statistically significant, concordant differences between
two biological states. GSEA showed that cellular response to
hypoxia, MAPK signaling, noncanonical NF-kB signaling, and
cell cycle pathways relating to cell proliferation was significantly
enriched in the high-risk group, which might account for a
higher malignancy and poorer prognosis of LUAD patients in
the high-risk group. Oxygen deprivation (hypoxia) is a feature of
solid tumors that promotes genomic instability, enhanced
aggressiveness, and metastases and is an important factor in
treatment resistance and poor survival (49). The MAPK
pathways converge in the amplification of key molecules that
sustain cell proliferation, growth, and survival processes (50, 51).
Noncanonical NF-kB signaling contains NIK phosphorylates
IKK/and helps IKK/to phosphorylate p100. Mutations in
various upstream regulators (TRAF2, TRAF3, cIAP1&2, CD40)
lead to increased stability of NIK and subsequent activation of
the noncanonical NF-kB pathway, and this mechanism of
activation appears to be important for different cancer types
including DLBC and lung cancer (52). The human cell cycle is a
tightly regulated process with checkpoints in place to ensure
genomic integrity. Recent studies have shown that CDK4 and
CDK6 inhibitors can promote T cell activation (53) and reverse T
Frontiers in Oncology | www.frontiersin.org 9
cell exclusion, thus leading to a better response to ICIs (54).
Taken together, this suggests that tumor cells in the high-risk
group proliferated faster, leading to increased malignancy.

In addition, there were decreased B cells, CD8+ T cells, CD8+

central memory T cells, HSC, MDC, and immune scores found
in the high-risk group. The CD8 T cell-dependent killing of
cancer cells could produce interferon-gamma (IFN-g) and then
activate antitumor immunity (55). Myeloid dendritic cells
(MDC) are crucial for the activation of antigen-specific CD8 T
Cells. A recent study reported that anti-tumor effects of DCs can
be reduced by a low DC count, low antigen presentation
efficiency of tumor-infiltrating DCs, and a weak ability of DC
to migrate into tumor (56). Many studies reported that B cell
infiltration was associated with a favorable prognosis in NSCLC
(57–60). Hematopoietic stem cells (HSC) are a very small group
of source cells that can self-renew and generate various blood
cells and immune cells. Tumor immune infiltrating cells migrate
from blood to tumor tissues and play an important role in
immune regulation. Lots of studies have shown that tumor
immune infiltrating cells are closely related to the efficacy of
ICIs and prognosis (61, 62).

Interestingly, we noticed that there were increased TMB,
neoantigen, immune checkpoint molecules, and immuno-
suppression genes’ expression in the high-risk group.
Meanwhile, the expression of MHC II genes that express on
antigen-presenting cells only in the low-risk group was
A B

C D

FIGURE 8 | TIDE score was significantly lower in the high- as compared to the low-risk group classified by the GDPLichi model. (A–D) Statistical analysis of TIDE
scores between low and high-risk groups divided by GDPLichi model in the TCGA LUAD cohort and the three other external validation GEO datasets. ****P < 0.0001.
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significantly lower than in the high-risk group. It has been widely
studied that higher TMB, neoantigen, and immune checkpoint
molecules are indicators implicated in a better response to ICI
treatment (8, 11, 12). Therefore, it is suggested that the high-risk
group might be more sensitive to immunotherapies as compared
to the low-risk group classified by the GDPLichi model.

We further examined genomic mutations in both the low-
and high-risk groups and identified 12 candidates from the first
top 25 mutated genes, whose mutation frequency has a
significant difference between low- and high-risk groups
classified by the GDPLichi model. Most of these genes are
associated with TMB (35, 36), which could be used to predict
the efficacy of immunotherapy.

The TIDE algorithm is a computational method that uses the
expression profile of immune-related genes to predict the ICIs
response. It is particularly successful in NSCLC and melanoma
(22) and has exhibited a higher accuracy than PD-L1 expression
level or TMB alone in predicting overall survival of patients
treated with ICIs (13, 19, 20). Further analysis revealed that the
TIDE scores in the high-risk group were significantly lower than
the low-risk group, suggesting that patient of the high-risk group
is more sensitive to response for ICIs. This conclusion was
verified in the other external datasets (GSE31210,
GSE50081, GSE30219).

In conclusion, we firstly identified two prognostically and
clinically relevant subgroups of LUAD using the GDPLichi
model which was constructed from seven DDR-risk genes.
Patients from the high-risk group showed lower TIDE scores,
and are thus more responsive to ICIs. The limit of this research
was that it was retrospective, and results should thus be further
confirmed by prospective studies.
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