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The aim of our study is to reveal the hub genes related to the pathogenesis of

chronic rhinosinusitis with nasal polyps (CRSwNP) and their association with

immune cell infiltration through bioinformatics analysis combined with

experimental validation. In this study, through differential gene expression

analysis, 1,516 upregulated and 1,307 downregulated DEG were obtained

from dataset GSE136825 of the GEO database. We identified 14 co-

expressed modules using weighted gene co-expression network analysis

(WGCNA), among which the most significant positive and negative

correlations were MEgreen and MEturquoise modules, containing 1,540 and

3,710 genes respectively. After the intersection of the two modules and DEG,

two gene sets—DEG-MEgreen and DEG-MEturquoise—were obtained,

containing 395 and 1,168 genes respectively. Through GO term analysis, it

was found that immune response and signal transduction are the most

important biological processes. We found, based on KEGG pathway

enrichment analysis, that osteoclast differentiations, cytokine–cytokine

receptor interactions, and neuroactive ligand–receptor interactions are the

most important in the two gene sets. Through PPI network analysis, we listed

the top-ten genes for the concentrated connectivity of the two gene sets. Next,

a few genes were verified by qPCR experiments, and FPR2, ITGAM, C3AR1,

FCER1G, CYBB in DEG-MEgreen and GNG4, NMUR2, and GNG7 in DEG-

MEturquoise were confirmed to be related to the pathogenesis of CRSwNP.

NP immune cell infiltration analysis revealed a significant difference in the
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proportion of immune cells between the NP group and control group. Finally,

correlation analysis between target hub genes and immune cells indicated that

FPR2 and GNG7 had a positive or negative correlation with some specific

immune cells. In summary, the discoveries of these new hub genes and their

association with immune cell infiltration are of great significance for uncovering

the specific pathogenesis of CRSwNP and searching for disease biomarkers and

potential therapeutic targets.

KEYWORDS
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Introduction

Chronic rhinosinusitis (CRS) is a common disease in

departments of otolaryngology, with a global incidence of 5%

~12% (Fokkens et al., 2020), causing a huge economic burden on

many patients. According to EPOS 2020 guidelines, chronic

rhinosinusitis with nasal polyps (CRSwNP) is considered a

primary CRS associated with type 2 immune response (Fokkens

et al., 2020). CRSwNP is a chronic inflammatory disease of sinus

mucosa, which usually manifests as nasal obstruction, runny nose,

and olfactory disturbance (Kwah and Peters, 2019). Because the

pathogenesis of CRSwNP has not yet been fully clarified and is prone

to recurrence, it is particularly urgent to better understand its

molecular and genetic pathological mechanisms and promote the

research and development of targeted drugs. Many studies have

found that the role of genetic factors (Liu et al., 2020; Tubita et al.,

2020) in CRSwNP patients cannot be ignored. Therefore, this study

will explore the pathogenesis of CRSwNP from the perspective of

genes.

With the development of the new generation of high-

throughput sequencing technology, many gene databases have

stored a large amount of genetic information about diseases

(Barrett et al., 2013; Shimoyama et al., 2015; Sarkans et al., 2021).

This lays a foundation for us to quantitatively research the

biological process of disease by constructing a gene expression

network system. Weighted gene co-expression network analysis

(WGCNA) is a bioinformatics analysis method used to

systematically study complex relationships between genes and

disease phenotypes across different groups of samples. The

significant advantage of WGCNA is that it can integrate

decentralized gene expression data into co-expression modules

to provide phenotypic features of interest (Zhang and Horvath,

2005; Zhao et al., 2010).

In this study, we constructed WGCNA based on the high-

throughput sequencing dataset GSE136825 and explored the

association between immune cell infiltration and hub genes.

Our study identified hub genes and immune cell infiltration

characteristics in CRSwNP through comprehensive

bioinformatics analysis and experimental validation, providing

strong evidence for identifying candidate biomarker genes and

future drug therapeutic targets.

Materials and methods

Collection of high-throughput
sequencing data

The National Center for Biotechnology Information (NCBI)

Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/

geo/) database stores many high quality gene expression datasets.

We downloaded a large-sample high-throughput sequencing

dataset GSE136825 on CRSwNP submitted by Andiappan AK,

Guan W and based on the GPL20301 Illumina HiSeq 4000

(Homo sapiens) platform from the GEO database—it included

42 nasal polyps (NP) and 28 normal inferior turbinate (IT)

samples. All CRSwNP patients had bilateral NP; those with

antrochoanal polyps, fungal sinusitis and/or recurrent lower

airway infections were excluded. None of the participants had

CRS without NP or aspirin-exacerbated respiratory diseases

(Peng et al., 2019).

Screening of differentially expressed
genes

Statistical software RStudio (Version 1.3.959, https://rstudio.

com/) and Bioconductor packages (http://www.bioconductor.

org/) were used for bioinformatics analysis of NP samples and

normal IT samples. We firstly collated the dataset of raw data and

made it accord with the RStudio software input file format, using

limma, ggplot2, and pheatmap R package to map the heat maps

and volcanic DEG. The adjusted p values <0.05 and | logFC | >
1 are considered statistically significant.

Weighted gene co-expression network
analysis

As a systematic bioinformatics analysis method, we used the

Rstudio weighted gene co-expression network analysis

(WGCNA) package (https://cran.r-project.org/web/packages/

WGCNA/) in WGCNA. The gene expression matrix of the

whole transcriptome was firstly examined to see if there were
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any missing values; if there were, these were filled. The NP and

normal samples were then clustered. The soft threshold

capability was determined by network topology analysis, and

the co-expression similarity and adjacency of genes were

calculated using the soft threshold capability. After that, the

adjacency relationship was transformed into a topological

overlap matrix (TOM) which was used for gene hierarchical

clustering. The dynamic shear algorithm was applied to module

recognition and the similar modules were clustered and merged.

Finally, the gene-module tree diagram and the module-trait

relationship diagram were outputted.

Intersection of DEG and WGCNA

After WGCNA, the Venndiagram software package was used

to intersect the results of DEG and WGCNA to obtain the NP-

related genes in which we were interested. In the module-trait

relationships diagram, the modules with the most significant

positive and negative correlations were found and the positive

and negative correlation module genes were intersected with

DEG to obtain two Venn diagrams.

GO term and KEGG pathway enrichment
analysis

Firstly, the org.hs.eg. db R software package was used to

convert the gene names of interested into gene IDs that could be

recognized by the R language. Then, the R software packages

Clusterprofiler, Enrich Plot and GGPLOT2 were used to conduct

GO Term enrichment analysis on the genes of interest, including

biological processes (BP), cell components (CC), and molecular

functions (MF), in order to explore the biological significance of

the genes of interest. KEGG enrichment analysis was then

performed on the genes of interest to identify the key

pathways closely related to the occurrence and development

of CRSwNP. The adjusted p value < 0.05 is considered

statistically significant.

Protein–protein interaction network
analysis

PPI network analysis helped identify the hub genes and key

gene modules involved in the occurrence and development of

CRSwNP from the interaction level. PPI information for the

genes of interest was obtained from the Search Tool for

Interacting Genes/Protein (STRING) database (http://www.

string-db.org/). Next, we used Cytoscape software to build a

PPI visual network. Finally, the Cytohubba plug-in was used in

Cytoscape to select the top-ten genes with the highest

connectivity from the genes of interest as the hub genes of the

network to visualize them.

Experimental validation of qRT-PCR
analysis

The ten genes with the highest degree of connectivity (listed

in Table 1) were selected for experimental validation. Our study

included eight NP samples and eight normal samples. All

participants signed an informed consent form prior to

participating in the study which was approved by the Ethics

Committee of Beijing Tongren Hospital, Capital Medical

University. Eight NP were collected from three male and five

female patients with a mean age of 48.10 ± 10.90. Eight normal

tissues (non-CRS uncinate process tissues) were distributed in

seven males and one female with an average age of 43.60 ± 6.59.

All had either functional endoscopic nasal surgery or uncinate

process resection. All CRSwNP subjects met the diagnostic

criteria of United States and European guidelines. None had

taken glucocorticoids, antibiotics, or antihistamines in the

four weeks prior. Patients with fungal sinusitis, posterior

nostril polyps, asthma, aspirin intolerance, allergic rhinitis, or

smoking were excluded. The basic clinical data of all participants

in this study are listed in Table 2. Tissue RNA stored in the

RNAlater solution was extracted using a total RNA extraction kit

(Soleabal, R1200) as recommended by the biological

manufacturer; cDNA was synthesized using a universal

reverse transcription kit (Yisheng Bio, 11141ES60). A real-

time quantitative fluorescence PCR analyzer (Molarray, MA-

6000) was used for qRT-PCR analysis using real-time PCR

quantitative fluorescence kit (Yishengbiao, 11201ES08), and

all PCR was repeated three times. GAPDH gene expression

was used as a standardized endogenous control. We used a

standard ΔΔCt method to calculate relative gene expressions

by Roche LightCycler 480 software. A set of primers and

probes were designed and improved for these genes (shown in

Table 1).

Nasal polyps immune cell infiltration
analysis

To compare the differences in immune cell infiltration

between NP and control tissues, we analyzed NP immune cell

infiltration using the ggpubr R package (Zhang et al., 2020) and

preprocessCore (Yan et al., 2016) to obtain the levels of immune

cell infiltration in each sample. In addition, we assessed the

infiltration levels of immune cells in both groups. A heat map, a

violin diagram, and a correlation matrix were used to represent

the difference results. p < 0.05 was considered statistically

significant.
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Correlation analysis between target hub
genes and immune cells

To reveal the association between immune cell infiltration

and the expression level of target hub genes, Pearson correlation

between gene expression and immune cell fraction was

performed by R packages reshape2, ggpubr, and ggExtra

(Zhang et al., 2020). At first, the gene expression matrix and

the list of immune cell infiltration results were read, with the data

being consolidated and normalized. Next, the correlation test of

various immune cells was calculated in cycle and a correlation

scatter diagram was drawn. Finally, we used a lollipop diagram to

visualize the correlation between target hub genes and immune

cells.

Result

Identification of DEG

The high-throughput sequencing dataset GSE136825 was

downloaded from the GEO database, consisting of

42 CRSwNP-NP samples and 28 non-CRS-IT samples; the

data passed the initial quality control of RNA-SEQ. Through

pretreatment of the dataset and the analysis of DEG, we obtained

2823 DEG (the adjusted p values <0.05 and |logFC|>1), including
1516 DEG which were significantly upregulated and 1307 DEG

which were significantly downregulated (as shown in Figure 1A).

The top-50 DEG with the most significant upregulation and

downregulation was, respectively, displayed by a gene heat map

(as shown in Figure 1B).

WGCNA of whole transcriptome gene
expression matrix

Genes with the same expression tendency may also have

certain correlations in some biological functions. Therefore, we

constructed a weighted gene co-expression network on the

dataset, analyzed the expression values of 21,734 corrected

total transcriptome genes from 42 NP samples and 28 normal

samples, mined out genes with similar expression profiles, and

then clustered these genes and grouped them into the same

module. We set the soft threshold power to 4 (scale-free R2 =

0.90) to ensure a scale-free network. As shown in Figure 2A, a

total of 14 gene modules were screened out. As could be seen

from Figure 2B, the gene module with the most significant

positive correlation with the CRSwNP group was MEgreen

[Spearman correlation coefficient (RS) = 0.53, P = 3e-06],

which contained 1,540 genes. The gene module with the most

significant negative correlation was MEturquoise (RS = −0.74,

P = 2e-13), which contained 3,710 genes.

Intersection of DEG and the most
significantly related module genes in
WGCNA

DEG was intersected with the genes in MEgreen and

MEturquoise modules respectively, and the intersection gene

sets obtained were named “DEG-MEgreen” and “DEG-

MEturquoise”, containing 395 and 1,168 genes respectively.

TABLE 1 The genes and primers used for experimental validation by qRT-PCR.

Gene Module Primer (F) Primer (R)

FPR2 MEgreen ACACGCACAGTCACCACCATCT AGCAAGAATCCAAGGTCCGACGAT

ITGAM MEgreen ACCTCGCATAACCACCTCCTGAT TGTCCTTGTATTGCCGCTTGAAGAA

C3AR1 MEgreen TTGTTGTCGTGTGGTGTTGATGGT ACTCAGTCTCATGGCTTCTTGTCTTC

FCER1G MEgreen CAGGAACCAGGAGACTTACGAGACT AGAGAAGAAGGGTGGGACAAGAGAG

CYBB MEgreen CTTCGCATCCATTCTCAAGTCAGTCT CAGCCAGTGAGGTAGATGTTGTAGC

ITGB2 MEgreen ACAACAACTCCATCATCTGCTCAGG GCCACGACCACTACACTCAACAC

GNG4 MEturquoise TGGTAGTCATACAGCAAGGCAGGT TAGGAAGATAGGTGGAGGCGGAGA

NMUR2 MEturquoise TTCCACTATCCTAACTGCCTCATGC TTATGCCTGTAGACTGCTGCCAAG

GNG7 MEturquoise TCCTTCTGCGTGGTCCCTTTGA TTAACTTGGAGATGGATGCGTGGC

AGT MEturquoise CTGGATGTTGCTGCTGAGAAGATTGA ACCGAGAAGTTGTCCTGGATGTCA

TABLE 2 The basic clinical data of all participants.

CRSwNP Normal

Number of subjects 8 8

Sex, male/female 3/5 7/1

Age (y) 48.10 ± 10.90 43.60 ± 6.59

Duration (y) 2.8 (0.5–7.2) NA

Endoscopic appearance (Lund-Kennedy score) 12.88 ± 2.90 NA
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FIGURE 1
(A)Volcano plot of 2823 DEG inGSE136825, RedDEGwith fold change >2; greenDEGwith fold change <2. (B)Heatmap of the top-50DEGwith
fold change >2. Red upregulated DEG; green downregulated DEG. Small blue squares represent Normal group, the pink represent CRSwNP group.
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The gene sets were visualized to obtain two Venn diagrams (as

shown in Figures 3A and B).

CRSwNP function and pathway
enrichment analysis of DEG-MEgreen and
DEG-MEturquoise

The GO enrichment and KEGG pathway enrichment DEG-

MEgreen and DEG-MEturquoise were analyzed using RStudio.

In DEG-MEgreen, GO enrichment analysis results showed that

the BP functions include the immune response−activating cell

surface receptor signaling pathway, immune response−activating

signal transduction, T cell activation, and other immune

biological processes. CC functions were related to the external

side of plasma membrane, secretory granule membrane, and

tertiary granule, and MF functions included immune receptor

activity, carbohydrate binding, and cytokine binding (Figure 4A).

In Deg-meturquoise, the results of GO enrichment analysis

mainly identified the organic anion transport and extracellular

matrix and structure organization involved in BP functions, the

basolateral plasma membrane, the glutamatergic synapse and

transmembrane transporter complex involved in CC functions,

and the receptor ligand activity and the signaling receptor

activator activity involved in MF functions (Figure 4B). In

KEGG pathway analysis, the pathways identified in DEG-

MEgreen were highly correlated with Staphylococcus aureus

infection, osteoclast differentiation, chemokine signaling

pathways, and cytokine–cytokine receptor interactions

FIGURE 2
The constructed gene co-expressionmodules of CRSwNP by
WGCNA in R. (A) Gene-module tree diagram. Each branch
represents one gene, and every color below represents one co-
expression module. (B) Module-trait relationship diagram.
14 modules were generated; the MEgreen (RS = 0.53, P = 3e-06)
and MEturquoise (RS = −0.74, P = 2e-13) modules were most
significantly related to CRSwNP.

FIGURE 3
Venn diagrams. (A) DEG was intersected with the genes in
MEgreen module: 395 genes were obtained. (B) DEG was
intersected with the genes in MEturquoise module: 1,168 genes
were obtained.
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(Figure 4C). The pathways identified in DEG-MEturquoise were

closely related to neuroactive ligand–receptor interaction,

cytokine–cytokine receptor interactions, and salivary secretion

(Figure 4D).

Acquisition of hub genes by PPI network
analysis

As shown in Figures 5A and B, genes from DEG-MEgreen

and DEG-MEturquoise were put into PPI to analyze the

connectivity of each protein interaction subnet, with genes

with high connectivity identified as the hub genes of the

network. As shown in Figures 5C and D, the top-ten

connectivity genes in DEG-MEgreen and DEG-MEturquoise

were visualized through Cytoscape software.

Experimental validation

According to the above bioinformatics analysis results, our

experiment verified the six genes with the highest connectivity in

DEG-MEgreen and the four genes with the highest connectivity in

DEG-MEturquoise. As shown in Figure 6A, Formyl peptide receptor

2 (FPR2) (16.78-fold), Integrin subunit alpha M (ITGAM) (6.83-

fold), ComplementC3a receptor 1 (C3AR1) (12.31-fold), Fc fragment

of IgE receptor Ig (FCER1G) (4.31-fold), and Cytochrome b-245 beta

chain (CYBB) (2.99-fold) were up-regulated inDEG-MEgreen. There

FIGURE 4
The GO enrichment and KEGG pathway enrichment analysis identified in the DEG-MEgreen (A,C) and DEG-MEturquoise (B,D) modules. The
immune response and signal transduction were the main biological processes identified in DEG-MEgreen and DEG-MEturquoise, respectively. The
majority of pathways identified in two modules were osteoclast differentiations, cytokine–cytokine receptor interactions, and neuroactive
ligand–receptor interactions, respectively.
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FIGURE 5
PPI network analysis and top-ten hub genes. (A,B) Genes from DEG-MEgreen and DEG-MEturquoise were put into PPI. (C,D) The top-ten
connectivity genes in DEG-MEgreen and DEG-MEturquoise were visualized by Cytoscape. The ten highest degree genes in this PPI network were
presented as red or orange nodes, where a node represents a gene and a line represents an interaction between nodes.
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were significant differences between CRSwNP and normal control

group (p value < 0.05) while there was no statistically significant

difference in Integrin subunit beta 2 (ITGB2) (18.81-fold, p value >
0.05). In DEG-MEturquoise, the expressions of G-protein subunit

gamma 4 (GNG4) (4.75-fold) and Neuromedin U receptor 2

(NMUR2) (5.69-fold) were upregulated, and the expression of

G-protein subunit gamma 7 (GNG7) (0.06-fold) was

downregulated. Both of these showed significant differences

among groups (p value < 0.05) while there was no statistically

significant difference in Angiotensinogen (AGT) (0.59-fold, p

value > 0.05), as shown in Figure 6B.

The differential composition of infiltrating
immune cells

Analysis of the infiltrating immune cell component by the

CIBERSORT algorithm based on the GSE136825 dataset

revealed immune cell classifications between the NP group

and the normal group. The infiltration of each type of immune

cell in each sample is summarized in Figure 7A and the co-

expression correlation of various immune cells is displayed in

Figure 7B. As illustrated in Figure 7C, in comparison with the

control group, higher proportions of Macrophages M2,

Dendritic cells activated, and Mast cells resting could be

detected in the NP group, along with lower proportions of

Plasma cells (p-value <0.05).

Relationships between target hub genes
and immune cells

We validated the RNA-seq results by qPCR for selected

hub genes, among which FPR2(16.78-fold) and GNG7 (0.06-

fold) with the greatest fold difference presented a variety of

correlations to immune cell infiltration. Figures 8 and 9 show

the significant correlation between FPR2 or GNG7 and

immune-infiltrating cells. FPR2 had a positive correlation

with Neutrophils and Dendritic cells activated (Correlation

Coefficient > 0 and p-value < 0.05) and a negative correlation

with T cells CD4 memory resting, T cells regulatory (Tregs),

T cells CD8 and Dendritic cells resting (Correlation

Coefficient < 0 and p-value < 0.05). Similarly, GNG7

correlated positively with Plasma cells and Mast cells

activated but negatively with T cells CD4 memory resting,

Neutrophils, Mast cells resting, Macrophages M2, and

Dendritic cells activated.

Discussion

The clinical characteristics of CRSwNP include chronic

inflammation of sinus mucosa, nasal obstruction, and growth

of nasal polyps. Due to its refractory and recurrent nature,

CRSwNP brings a heavy psychological pressure and economic

burden to patients. There are, at present, few studies on the

pathogenesis and phenotypic characteristics of CRSwNP at the

gene level. In this study, we used WGCNA to identify the key

modules and hub genes involved in the molecular mechanism of

CRSwNP and identified two gene sets most related to CRSwNP:

DEG-MEgreen and DEG-MEturquoise. Through GO term

analysis, it was found that immune response and signal

transduction are the most important biological processes in

DEG-MEgreen and DEG-MEturquoise respectively. KEGG

pathway enrichment analysis showed that osteoclast

differentiation, cytokine–cytokine receptor interactions, and

neuroactive ligand–receptor interaction are most important in

DEG-MEgreen and DEG-MEturquoise, respectively. Through

PPI network analysis, we listed the top-ten genes in the

connectivity of DEG-MEgreen and DEG-MEturquoise. Next, a

few genes were verified by qPCR experiments with the samples

FIGURE 6
The mRNA expression in participants with CRSwNP (n = 8)
and normal controls (n = 8) was assessed by qRT-PCR analysis.
Fold change was calculated relative to normal controls. (A) mRNA
expression in the DEG-MEgreen module. (B) mRNA
expression in the DEG-MEturquoise module. All data are displayed
as the mean, and n = 8 per group.
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FIGURE 7
Differences and correlation of immune cell infiltration between the CRSwNP group and normal group. (A) Summary of immune infiltration in
22 immune cell subpopulations from 57 samples. (B) Correlation matrix of 22 immune cell infiltration in 57 samples. (C) Violin plot of differential
expression of 22 infiltrating immune cells. Abscissa: immune cell types; ordinate: relative immune cell content; red: CRSwNP group; blue: Normal
group.
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from our hospital; FPR2, ITGAM, C3AR1, FCER1G, CYBB in

DEG-MEgreen, and GNG4, NMUR2 and GNG7 in DEG-

MEturquoise were confirmed to be related to the pathogenesis

and phenotype of CRSwNP. We then used immune cell

infiltration analysis to find that higher proportions of

Macrophages M2, Dendritic cells activated, and Mast cells

resting could be detected in the NP group, along with lower

proportions of Plasma cells. Finally, correlation analysis between

target hub genes (FPR2 and GNG7) and immune cells revealed

significant relationships.

In this study, a total of 14 modules were mined by WGCNA,

among which the MEgreen and Meturquoise modules correlated

most with CRSwNP. Through traditional experimental methods

and bioinformatics analysis, many studies in the past have shown

that immune response and signal transduction play an important

role in the pathogenesis of CRSwNP. Bassiouni et al. (2020)

analyzed the whole transcriptome of nasal polyps by high-

throughput sequencing and found that the B cell-mediated

immune response of CRSwNP polyps is upregulated and

the expression of genes related to epithelial morphogenesis

FIGURE 8
(Continued).
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and hemostasis is downregulated. Studies have shown that

CRSwNP is driven by cytokines IL-5 and IL-13 produced by

Th2 cells, type 2 innate lymphoid cells, and mast cells, while

type 2 cytokines activate inflammatory cells associated with

pathogenic mechanisms, including mast cells, basophils, and

eosinophils (Schleimer, 2017). Recently, using a mouse NP

model and human tissues, the Bae JS team (Bae et al., 2020)

found that the Wnt signaling pathway may be involved in the

pathogenesis of NP through epithelial cell to mesenchymal

transformation (EMT). Therefore, the inhibition of Wnt

signaling may be a potential treatment strategy for patients

with CRSwNP. However, in our study, the GO term analysis

of DEG-Megreen and DEG-Meturquoise proved that

immune response and signal transduction are the most

important biological processes of the two gene modules.

These results indicated that WGCNA can predict the exact

biological processes involved in the pathogenesis of CRSwNP,

which provides guidance for further exploration of its genetic

and molecular mechanisms.

It is worth noting that, in this study, the KEGG pathway

analysis of both DEG-Megreen and DEG-Meturquoise

indicated that the cytokine–cytokine receptor interaction

plays a vital role in the occurrence and development of

CRSwNP. In addition, the S. aureus infection, osteoclast

differentiation, and the neuroactive ligand–receptor

interaction are the unique biological roles of the two

module genes, respectively. Lan et al. (2018) demonstrated

for the first time that S. aureus can directly induce the release

of epithelial-derived cytokines by binding Toll-like receptor

2 through the human nasal mucosal tissue model, thereby

spreading the expression of type 2 cytokines in NP tissues. Liao

et al. (2015) examined some cytokines and their receptors in

NP tissue through rigorous experiments and found that the

positive feedback loop between TSLP, IL-33 and its receptor,

and Th2 cytokines in eosinophilic CRSwNP may promote

Th2 bias inflammation. Two studies in NP mouse models

have shown that osteoclast formation and differentiation are

involved in the pathological tissue remodeling process of

FIGURE 8
(Continued). Scatter plots of correlation between FPR2 or GNG7 expression and different immune cell contents (A–M). (A) Neutrophils, (B)
dendritic cells activated, (C) T cells CD4memory resting, (D) T cells regulatory (Tregs), (E) T cells CD8, and (F) dendritic cells resting. (G) Plasma cells,
(H)mast cells activated, (I) T cells CD4memory resting, (J) neutrophils, (K)mast cells resting, (L)macrophagesM2, and (M) dendritic cells activated. R:
correlation coefficient, p < 0.05 means a significant correlation.
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CRSwNP (Pan et al., 2018; Khalmuratova et al., 2020). Only

one study has shown that CRSwNP can impair the olfactorial

signaling pathway and neuroactive ligand receptor pathway by

affecting the expression of “olfactorial receptor activity” and

“channel activity” genes (Xiong et al., 2020). These clinical and

animal experimental results provided the evidential support

for WGCNA to be used to explore the specific pathogenic

mechanism of CRSwNP.

FIGURE 9
Lollipop diagram of correlation between FPR2 (A) or GNG7 (B) expression levels and 22 immune cell infiltrations. Circle size: absolute value of
correlation coefficient; circle color: p-value of correlation test. p < 0.05 (red) indicates a significant correlation between FPR2 (A) or GNG7 (B)
expression and immune cell contents.
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In the two gene sets of DEG-Megreen and DEG-

Meturquoise, we listed ten hub genes that affect the

pathogenesis of CRSwNP; our experiments proved that, in

DEG-Megreen, FPR2, ITGAM, C3AR1, FCER1G, and CYBB

are most significantly positively correlated with CRSwNP. In

DEG-Meturquoise, GNG4, NMUR2, and GNG7 were most

significantly negatively correlated with CRSwNP. To date, no

studies have reported the involvement of these genes in the

occurrence and development of CRSwNP. A recent study has

confirmed that the formyl peptide receptor agonist Ac2-26 exerts

an anti-inflammatory effect in a mouse model of bacterial

meningitis through the formamide peptide receptor 2 (FPR2)

(Rüger et al., 2020). FPR2 agonists could stimulate the resolution

of inflammation by inhibiting neutrophil chemotaxis and

stimulating macrophage phagocytosis, which may be the key

to the treatment of chronic inflammatory diseases (Asahina et al.,

2020). Odobasic et al. (2018) investigated the effects of FPR2

activation on output T cell response and fibroblast-like synovial

cell expansion in a rheumatoid arthritis model and found that the

FPR2 activator reduced the proliferation and survival of

CD4 T cells in lymph nodes and increased the production of

the protective cytokines IFNγ and anti-inflammatory IL-4.

Therefore, the high expression of FPR2 may activate the

immune regulatory system of CRSwNP patients through

similar biological behavior. It has been reported that C3AR1

may be a major regulator of microglia reactivity and

neuroinflammatory functions (Harder et al., 2020) and that

C3AR1 activates by the dual ligand TLQP-21 and C3a being

involved in microglia signaling under pathological conditions—a

new neuroimmune signaling pathway (Doolen et al., 2017).

Chauhan P’s team (Chauhan et al., 2017) observed a

significant delay in microglia polarization to the IFNγ and IL-

4-activated M2 phenotype in the absence of the Fcγ receptor for
IgG in murine cytomegalovirus-infected FCER1G and FCGR2B

knockout mice. The results of this study provide gene therapy

ideas for inhibiting neuroinflammation caused by virus infection.

NMUR2 is a neuropeptide receptor whose ligand NMU is

involved in a variety of physiological processes, such as the

regulation of food intake and other behaviors (De Prins et al.,

2018). Therefore, it is expected to be a targeted drug for the

treatment of diabetes and obesity (Kanematsu-Yamaki et al.,

2017). Upregulation of G-protein subunit γ4 (GNG4) is

associated with many cancers, such as colon cancer (Song

et al., 2020), triple-negative breast cancer (Zhang et al., 2020),

thymic carcinoma (Kishibuchi et al., 2020), and hepatocellular

carcinoma (Ding et al., 2019). It was found that G-protein γ7
(GNG7) is a tumor suppressor gene in the progression of renal

cell carcinoma (RCC) and is a novel replacement gene in the

treatment of RCC (Xu et al., 2019). Demokan et al. (2013) found

that GNG7 is a highly specific promoter methylation gene associated

with head and neck squamous cell carcinoma (HNSCC) and that

downregulation of GNG7 expression is a common event in HNSCC

(Hartmann et al., 2012). These results indicate that WGCNA could

be used to reveal new pathogenic genes and provide reliable

theoretical evidence for experimental studies in the future.

Our study showed that a great quantity of disease-related

genes and modules could be mined through WGCNA. The

accuracy and reliability of WGCNA are confirmed through

experimental validation and immune cell infiltration and

correlation analyses. In the field of CRSwNP research,

there are few innovative studies that apply WGCNA to

high-throughput sequencing data, and our experimental

results have been satisfactory as verified. However, there

are no more large-sample datasets, and a lack of prognosis,

follow-up, and other clinical information, which are the

limitations of our study.

In conclusion, we identified some hub genes and key

modules that were closely related to the molecular

mechanism of CRSwNP, conducted immune cell

infiltration analysis and correlation analysis for the target

hub genes through integrated bioinformatics analysis,

together with our experimental validation. For example,

FPR2, ITGAM, C3AR1, FCER1G, CYBB, GNG4, NMUR2,

and GNG7 had been proved to be highly correlated with

the pathogenesis of CRSwNP. Further study of these new

genes is of great significance for uncovering the pathogenesis

of CRSwNP and the search for disease biomarkers and

potential therapeutic targets.
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