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Abstract 

A fully automated and accurate assay of rare cell phenotypes in densely-packed fluorescently-labeled 
liquid biopsy images remains elusive. 
Methods: Employing a hybrid artificial intelligence (AI) paradigm that combines traditional rule-based 
morphological manipulations with modern statistical machine learning, we deployed a next generation 
software, ALICE (Automated Liquid Biopsy Cell Enumerator) to identify and enumerate minute amounts 
of tumor cell phenotypes bestrewed in massive populations of leukocytes. As a code designed for futurity, 
ALICE is armed with internet of things (IOT) connectivity to promote pedagogy and continuing education 
and also, an advanced cybersecurity system to safeguard against digital attacks from malicious data 
tampering. 
Results: By combining robust principal component analysis, random forest classifier and cubic support 
vector machine, ALICE was able to detect synthetic, anomalous and tampered input images with an 
average recall and precision of 0.840 and 0.752, respectively. In terms of phenotyping enumeration, 
ALICE was able to enumerate various circulating tumor cell (CTC) phenotypes with a reliability ranging 
from 0.725 (substantial agreement) to 0.961 (almost perfect) as compared to human analysts. Further, 
two subpopulations of circulating hybrid cells (CHCs) were serendipitously discovered and labeled as 
CHC-1 (DAPI+/CD45+/E-cadherin+/vimentin-) and CHC-2 (DAPI+ /CD45+/E-cadherin+/vimentin+) in 
the peripheral blood of pancreatic cancer patients. CHC-1 was found to correlate with nodal staging and 
was able to classify lymph node metastasis with a sensitivity of 0.615 (95% CI: 0.374-0.898) and specificity 
of 1.000 (95% CI: 1.000-1.000). 
Conclusion: This study presented a machine-learning-augmented rule-based hybrid AI algorithm with 
enhanced cybersecurity and connectivity for the automatic and flexibly-adapting enumeration of cellular 
liquid biopsies. ALICE has the potential to be used in a clinical setting for an accurate and reliable 
enumeration of CTC phenotypes. 

Key words: ALICE, cell phenotyping software, hybrid artificial intelligence, image forgery detection, circulating 
hybrid cells 

Introduction 
Liquid biopsy in cancer research constitutes a 

minimally invasive procedure that can be readily 
carried out with relative ease [1] for sampling one of 
the most investigated biological materials in body 

fluids: circulating tumor cells (CTCs) if the body fluid 
is blood and mobile tumor cells (MTCs) if the body 
fluid is non-blood [2]. The prevalence and 
pervasiveness of these rare cancer cells have been 
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demonstrated to correlate well with clinical 
predictions for diagnosis [3, 4], prognosis [5, 6], 
relapse monitoring [7, 8] and treatment response [9, 
10]. However, the adoption of CTCs/MTCs in routine 
cancer management is still not widespread despite the 
reported efficacy of its use [11]. To-date, the 
CellSearch system [12] remains the only FDA 
approved CTC-based blood test even though CTCs 
have been investigated for over a century [13]. 

One of the major hurdles impeding the 
acceptance of CTCs/MTCs in clinical oncology is the 
accuracy and reliability of the CTC/MTC count 
assessment [14]. The current de facto standard for the 
identification and enumeration of these tumor cells by 
trained human examiners employs an immuno-
fluorescent staining approach that involves cancer- 
specific markers such as the epithelial cell adhesion 
molecule (EpCAM) and cytokeratin (CK) [15]. 
Inevitably, the count results are affected by human- 
introduced variabilities that manifest in two forms: 
inter-observer variability and intra-observer 
variability. The former is due to a subjective 
interpretation of the fluorescently labeled cells with 
disparate criteria and the latter can be attributed to the 
viewing of images with different hardware, as well as, 
fatigue arising from the highly intense labor and time 
involved in a typical manual operation. These 
observer variabilities compromise the accuracy and 
reliability of the CTC/MTC enumeration. Other 
factors that can significantly affect the accuracy and 
reliability of the prevalence assessment of tumor cells 
in body fluids are issues pertaining to CTC/MTC 
false positives, capture purity and cellular 
phenotyping. The CTC/MTC false positives occur 
when white blood cells (WBCs) are unintentionally 
labeled as tumor cells (as per the immunostaining 
results). The issue of capture purity refers to the 
inadvertent harvesting of WBCs, the amount of which 
is usually disproportionately larger than CTCs/ 
MTCs. Tumor heterogeneities and cells with distinct 
biological functions and responses often demand that 
cellular phenotypic count instead of the total count be 
used. All these issues can forestall the establishment 
of liquid biopsy standards for guiding the diagnosis, 
staging, treatment and relapse monitoring of cancer 
patients. 

The first step in achieving consistent and high- 
fidelity standards so that cellular liquid biopsy can be 
developed into a mainstream tool for cancer 
management is to replace the complexity of the 
challenging human enumeration assessment with a 
computer-aided diagnosis (CAD) system. Stott et al. 
[16] presented an automated imaging system for the 
analysis of prostate CTCs, following enrichment by 
the CTC-Chip [17]. Their rule-based system exploited 

the size and shape of cells and the colocalization of 
fluorescent signals of the nucleus marker 4’,6- 
diamidino-2-phenylindole (DAPI) and prostate- 
specific antigen (PSA) for the CTC identification. In 
addition to rule-based methods, advanced techniques 
such as statistical machine learning algorithms, e.g. 
the random forest [18], support vector machine (SVM) 
[19], and naive Bayesian classifier [20] have been used 
for automated detection of fluorescently stained 
CTCs. Furthermore, convolutional neural networks 
have been successfully employed to identify CTCs in 
dark field microscopic images of unstained blood [21]. 
Functional software based on these computational 
techniques has also been developed. The Precise and 
Automatic CTC Enumeration (PACE) chip system [14] 
combines a specially designed microfluidic chip with 
an image processing algorithm to achieve an 
automated CTC count; however, it outputs only the 
CK19 positive CTCs, which implies that it can only 
generate the epithelial CTC count. The Automated CTC 
Classification, Enumeration and PhenoTyping (ACCEPT) 
software was developed under the European Union 
funded CANCER-ID & CTCTrap programs [22, 23] 
and it utilizes a deep learning algorithm for an 
automated CTC classification via an epithelial marker 
staining. Although the immunofluorescent 
identification of tumor cells is considered more 
reliable than the traditional hematoxylin and eosin 
(H&E) staining, software such as the CTC AutoDetect 
1.0 system [24] have been developed to detect H&E 
stained CTCs based on morphological criteria (cell 
diameter > 24 µm, a non-normal oval/circular shape, 
etc.). This software has one major limitation – they are 
designed to enumerate the most common epithelial 
CTCs without considering other phenotypes. To the 
best of our knowledge, we are not aware of major 
software that can handle CTCs/MTCs beyond the 
epithelial phenotypes. 

We present the software ALICE for an 
automated and accurate identification-cum- 
enumeration of multiple cellular phenotypes (up to 
20) in fluorescent microscopy images. Further, for an 
in-depth scrutiny of the liquid biopsy data, the 
software can be configured to output positions and 
(optional) thumbnails of rare tumor cells (< 0.5%) 
bestrewed in dense and massive populations of WBCs 
(Figure 1A). A hybrid artificial intelligence (AI) 
paradigm that integrates traditional rule-based 
morphological manipulations with modern statistical 
machine learning is programmed into ALICE to 
manage varying cell phenotyping activities obtained 
from conventional and non-conventional biomarker 
combinations. To encourage participation from 
appurtenant user communities, ALICE is designed to 
be accessed by the following four groups: hospital, 
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research, education and public, each with its own 
defined degree of access permission and usage 
functions (Figure 1B). An enhanced cybersecurity 
system to combat intrusive hackings and safeguard 
against image manipulations is built into ALICE. We 
benchmarked and validated the performance of 
ALICE using publicly reposited images sets, as well 
as, fluorescent image sets containing CTC 
phenotypes. We also described the detection of a new 
circulating hybrid cell population in the peripheral 
blood of pancreatic cancer patients. As reported here, 
this serendipitous discovery made using ALICE 

constitutes a preliminary investigation of a new 
fusion hybrid that appears to exhibit promising 
biological significance in relation to the disease 
progression. 

Results 
ALICE workflow and improved gray image 
binarization 

ALICE workflow consists of five major steps 
(Figure 2A); the 1st is a preprocessing of input images 
into grayscale data (for RGB input), followed by a 

 

 
Figure 1. Major operational challenges of a modern biomedical software for futurity. (A) Rare tumor cells bestrewed in dense and massive populations of non-tumor cells 
require accurate processing. ‘E-CTC’ denotes epithelial circulating tumor cell that expressed positive for the nucleus marker DAPI and epithelial tumor marker E-cadherin but negative 
for the mesenchymal tumor marker vimentin and leukocyte marker CD45. ‘M-CTC’ denotes mesenchymal CTC that expressed positive for DAPI and vimentin but negative for 
E-cadherin and CD45. ‘H-CTC’ denotes hybrid CTC that expressed positive for DAPI, E-cadherin and vimentin but negative for CD45. ‘Unknown’ denotes cell that expressed positive 
for all 4 markers. White blood cell (WBC) expressed positive for DAPI and CD45 but negative for E-cadherin. (B) Enhanced software connectivity to encourage participation from 
appurtenant user communities. Different communities will have different accessibility and functions. 
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two-part 2nd step: data denoising via a bilateral 
filtering technique [25] and contrast enhancing via a 
contrast-limited adaptive histogram equalization 
(CLAHE) algorithm [26]. The third step involves a 
binarization of the data into black (background) and 
white (foreground) pixels. The Triangle technique [27] 
is then used to generate superior gray image 
thresholding results, which were compared to the 
results of 15 other thresholding methods in Figure S1 
(see Methods for the details of the thresholding 
method). To flexibly and accurately binarize images 
under varying ambient conditions (e.g. lighting, 
contrast level, etc.), a thresholding correction factor is 
introduced to modulate the Triangle thresholding 
value. The final thresholding value is a product of the 
initial value and the correction factor. To estimate the 
thresholding correction factor, we employed 14 
regression machine learning models to automatically 
select a parametric value that is concordant with the 
image’s features (‘Binarization’ in Figure 2A). 
Working with the 10×10-fold cross-validation and test 
sets, we found that the ensemble method model with 
the random forest kernel function yielded the least 
test set error (root mean square error=0.74 (95% CI: 
0.70-0.81) and the mean absolute error=0.50 (95% CI: 
0.47-0.52) (Table S1)). The Watershed algorithm [28] 
is used to separate overlapping and clustered cells. 
The 4th step involves creating cytoplasmic masks and 
purging non-nucleic objects in the nucleus channel 
image via traditional morphologic criteria of cell size 
and eccentricity. The cytoplasmic masks are applied 
to the filtered nucleus image and a rule-based 
algorithm is invoked to identify, locate and enumerate 
the different cell phenotypes (‘Analysis’ in Figure 2A). 
The 5th step pertains to a data output of the cellular 
information – the enumeration of each cell phenotype 
and the corresponding location of each identified cell. 
Additionally, thumbnails of the cell phenotype can be 
exported for downstream confirmation and analysis. 
ALICE currently supports up to one nucleus channel 
and three cytoplasmic channels for a total of twenty 
cell combinations/phenotypes (Table S2). A 
graphical user interface (GUI) for pellucid point-and- 
click operations is used to specify the number of 
channels for a field of view (FOV) with images 
ordered to the bright field, nucleus or the 3 cytoplasm 
markers (Figure S2). 

Internet of things (IOT) connectivity and 
enhanced cybersecurity for enigmatic and fake 
images 

As an advanced software designed for futurity, 
ALICE serves not only as a tool for biomedical 
research but also, as a databank for academic teaching 
and continuing education for extended user 

communities. This open-source accessibility via a 
cloud-based internet of things (IOT) connectivity 
requires enhanced cybersecurity against digital 
attacks that are aimed at accessing, planting, 
modifying or destroying sensitive data. ALICE 
engages several advanced tools such as the robust 
principal component analysis (PCA) algorithm, 
random forest classifier and cubic SVM classifier to 
identify and flag enigmatic and fake images (‘Machine 
Learning’ box in Figure 2A). The software adopts the 
same extracted features used in the determination of 
the threshold correction factor to implement one 
unsupervised classification model and train 2 separate 
single-target classification models for the detection of 
anomalous, tampered and synthetic images, 
respectively (Figures 2B-D). Further, we used a 
single-target approach instead of the multi-label 
method [29] to handle all three types of manipulated 
images. This approach allows for an easy treatment of 
the three image types together with any of their 
combinations via a quad-layered protection system. 

The first protective layer is to curb anomalous 
images using the robust PCA algorithm [30] and we 
do this by tuning and optimizing two parameters: k, 
the number of principal components to retain and α, 
the lower bound of the proportion of uncontaminated 
observation. Experimenting with varying amounts of 
anomalies, we found the optimal parameters to be k = 
1, α = 0.70 (Table S3). The second layer of protection 
deals with the detection of tampered images and 
forgeries. With the easy availability of advanced 
image editing tools, it has become increasingly 
challenging to detect manipulated images as they are 
virtually indistinguishable from real images. We 
trained and tested 22 classifiers using a large image 
set obtained by automatically splicing and pasting up 
to three objects randomly in the ground truth mask of 
publicly available image sets [31]. This procedure 
generated 46,936 images (50% pristine-tampered 
pairs) and these images were segregated into 37,549 
(80%) training images and 9,387 (20%) testing images. 
Among the 22 classification models for detecting 
tampered and forged images, the random forest 
approach produced the best performance with a test 
sensitivity = 97.38% (95% CI: 95.82-97.79%), specificity 
= 97.78% (95% CI: 97.33-98.20%) and accuracy = 
97.58% (95% CI: 97.22-97.88%) (Table S4). The third 
protective layer involves the detection of synthetic 
images using a different classification model from the 
one employed for tampering detection. Trained and 
tested on 12,448 (80:20 ratio for train:test) real and 
synthetic fluorescent images, we found four 
classifiers: logistic regression, quadratic SVM, cubic 
SVM and random forest classifiers all performed 
equally best among the 22 models (Table S5). The 



Theranostics 2020, Vol. 10, Issue 24 
 

 
http://www.thno.org 

11030 

fourth layer of protection is the localization of image 
tampering which, in most cases, is indiscernible to the 
naked eye. To achieve this localization, we adapted 
the multi-class hierarchal clustering technique [32] to 
work with the PCA-derived noise of the image [33] 
and assumed that the class with the least number of 
pixels is the tampered region. Figure 2B depicts two 
examples of tampering localization; the top row 
illustrates a small tampered region (0.3% tampered 
pixels) in a synthetic/normal/tampered image and it 
is visually indistinguishable from the main image, 
and the bottom row shows a larger tampered region 
(1.3% tampered pixels) in a synthetic/anomalous/ 
tampered image. For both cases, ALICE was able to 
accurately localize the tampered region despite 
generating some small misidentified patches in the 
second example. 

The final test is to evaluate the performance of 
ALICE in a realistic image set where anomalous, 
tampered and synthetic images often appeared as 
integrated together. For this purpose, we curated a 
new image set of 1000 real (R), synthetic (S), normal 
(N), pristine (P), anomalous (A), and tampered (T) 
images distributed as follows: 916 R/N/P and 12 of 
each R/N/T, R/A/P, R/A/T, S/N/P, S/N/T, 
S/A/P, S/A/T. Figures 2C-D show the final result in 
the detection of combined anomalous, tampered and 
synthetic images. When dealing with more obvious 
abnormalities such as S/A/P, S/N/P, R/A/P, 
R/N/P and S/A/T image types, the cubic SVM 
classifier in ALICE was able to detect almost all with a 
high recall, precision, F1 score and Matthews 
correlation coefficient (MCC) (Figure 2D). However, 
when detecting the more difficult abnormalities 
(S/N/T, R/A/T and R/N/T) ALICE’s performance 
decreased somewhat despite having correctly 
classified a majority of these image types (Figure 2D 
with details in Table S6). 

Performance assessment in synthetic and real 
fluorescent images 

ALICE is designed to simultaneously enumerate 
multiple cell phenotypes in an image set. To handle 
this, the cells are color-coded for each phenotypic 
group and each cell within the same group is labeled 
with individually color-synchronized count data to 
serve as a unique identifier for the cell (Figure 3A). A 
synthetic fluorescent image set was employed to 
assess ALICE’s phenotypic enumeration accuracy. It 
was created using SimuCell [34] and contained 2000 
fluorescent images, each with 5 channels: bright field, 
nucleus marker, cytoplasm markers 1, 2 and 3 to 
generate 20 different phenotypes (Table S2). The 
assessment scheme proposed by the Broad Institute, 
Cambridge, MA was used for the evaluation and 

ALICE achieved a pooled mean percentage error ± SD 
of 10.6 ± 13.2% for all 20 phenotypes (Figure 3B). The 
pooled sensitivity and specificity for these phenotypes 
were 0.934 (95% CI: 0.801-1.000) and 0.990 (95% CI: 
0.924-1.000), respectively (Figure 3C). 

We also assessed the performance of ALICE on 
real fluorescent image sets by comparing against two 
highly popular state-of-the-art bioimage software: 
ImageJ [35, 36] and CellProfiler [37, 38]. Unlike 
ALICE, both ImageJ and CellProfiler are unable to 
carry out a simultaneous enumeration of multiple cell 
phenotypes and therefore, we compared the total cell 
count predicted by all three software. To achieve the 
comparison, we selected 4 publicly available real 
image sets sourced from the Broad Bioimage 
Benchmark Collection (BBBC) [39]: 1) Human HT29 
Colon Cancer Cells image set (BBBC001v1); 2) 
Drosophila Kc167 Cells image set (BBBC002v1); 3) 
Simulated High-content Screening image set 
(BBBC005v1) and 4) Human U2OS Cells image set 
(BBBC006v1). As shown in Figure 3D, the 
performance of ALICE was found to be superior to 
either ImageJ or CellProfiler as it generated the least 
mean percentage error for all four sets and the 
difference was most striking for the BBBC002v1 image 
set with ALICE mean percentage error at 6.5%, which 
was nearly half of ImageJ (11.3%) and CellProfiler 
(17%). 

Since image processing requires very intense 
computational effort, it is important to assess the 
software processing time. For each image size, we 
evaluated the processing time for the following four 
situations: with or without parallel processing and 
with or without exporting the cell thumbnails; 
designated, respectively as, “no parallel, no export”; 
“no parallel, export”; “parallel, no export”; and 
“parallel, export”. The processing times for 20 FOVs 
with image dimensions of 696×520 pixels (no parallel, 
no export) and 2560×1920 pixels (no parallel, export) 
were 1.1 min and 25.0 min, respectively. It appeared 
that the processing time increased exponentially with 
an increasing image size (adjusted R2 for an 
exponential fitting of the four conditions are 0.999, 
0.999, 0.998, 0.999) (Figure 3E). As expected, invoking 
parallel processing will significantly reduce the 
processing time for all image sizes (all P < 0.05). Also, 
when an image size is small (e.g. 696×520 pixels), 
exporting cell thumbnails did not generate a 
significant increase in the processing time, regardless 
of with or without parallel processing (P = 0.099 and P 
= 0.174, respectively). The converse is true for 
handling a large image size (e.g. 1280×1024 pixels) – 
exporting results caused a statistically significant 
increase in the processing time regardless of with or 
without parallel processing (all P < 0.05, Figure 3E). 
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Figure 2. Overview of ALICE with enhanced connectivity and cybersecurity. (A) ALICE contains a hybrid AI engine that combines traditional rule-based 
morphological manipulations with modern statistical machine learning for an automated and accurate identification, localization and enumeration of cell phenotypes. The built-in 
cybersecurity detects enigmatic and fake input data. (B) Localization of the tampered region via a multi-class hierarchical clustering based on PCA-derived noise levels of the input 
image. Different colors in the class map represent different predicted classes. The class with the least number of pixels is considered a tampered region and visualized by a 
bounded red box. (C) From an image set of 1000 images, individually detected image types are marked using different symbols. The yellow shaded area represents the region of 
anomaly determined by the robust PCA. Inset shows a magnified plot of the region around the origin. Anomalous, tampered and synthetic images are detected by the robust PCA 
algorithm, random forest classifier and cubic SVM classifier, respectively. Note: ‘R’ denotes real, ‘S’ denotes synthetic, ‘N’ denotes normal, ‘P’ denotes pristine, ‘A’ denotes 
anomalous, ‘T’ denotes tampered. (D) The corresponding confusion matrix and performance indices for the detection results in (C). ‘Re’ denotes the recall, ‘Pr’ denotes the 
precision, ‘F1’ denotes the F1 score and ‘MCC’ denotes the Matthews correlation coefficient. 
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Figure 3. Assessing ALICE’s performance and capabilities. (A) Identification, localization and enumeration of 5 representative simulated cell phenotypes among 300 
synthetic cells in a sample image along with output cell thumbnails for 4 channels: Nuc, M1, M2 and M3 that denote respectively, the nucleus and cytoplasm marker 1, 2, 3. (B) 
Mean percentage error and SD in the enumeration of 20 cell phenotypes (all n=100). (C) Sensitivity and specificity in the enumeration of 20 cell phenotypes (all n=100). Error 
bars represent the 95% CI. (D) Assessing ALICE cell enumerative performance against ImageJ and CellProfiler using 4 publicly available real image sets. (E) Characterizing the 
processing time with respect to image size, processing scheme and result export. Insets show representative image and size dimension. Error bars represent SD. *** - P < 0.001. 
(F-I) Passing-Bablok regression analysis for P3, P7, P11 and P15 (all n=100) with results of the remaining phenotypes shown in Figure S3. Black dash lines represent the identity 
line, red solid lines represent the fitted line and blue solid lines represent the 95% CI of the fitted line. Insets depict individual fluorescent channel images, τ denotes the Kendall’s 
correlation coefficient and m denotes the slope. (J-M) Bland-Altman plots for the same 4 phenotypes (all n=100) with results of the remaining phenotypes shown in Figure S4. 
ΔCount denotes the difference between the 2 counts. Orange dash lines represent the mean difference between ALICE’s count and the simulated ground truth, purple solid lines 
represent the 95% limits of agreement and brown dotted lines represent the 95% CI of the limits of agreements. The phenotypes are defined in Table S2. 
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Another performance metric considered is the 
reliability of ALICE. This was tested via an agreement 
analysis between ALICE’s phenotypic count and the 
simulated ground truth using the Passing-Bablok 
regression method [40] (Figure 3F-I and details in 
Figure S3). With the assumptions of high correlation 
and linearity satisfied, none of the 20 phenotypes 
exhibited proportional bias (95% CI of the fitted slope 
not including 1) nor constant bias (95% CI of the fitted 
intercept not including 0). Further, the Bland-Altman 
plots [41] confirmed that no proportional bias was 
present for all 20 phenotypes (Figure 3J-M and details 
in Figure S4) but a mean bias ranging from -4.9 to 0.9 
was observed. Both tests confirmed the reliability of 
ALICE in that it performed consistently well under a 
wide range of CTC counts (i.e. no proportional bias) 
and the deviation from the true count was small (i.e. 
small constant bias). 

Benchmarking ALICE CTC phenotyping 
enumeration against human count 

Encouraged by ALICE’s performance on 
synthetic images, we next sought to characterize the 
software CTC phenotyping enumeration using actual 
patient-derived fluorescent images and comparing 
the outcome against that of human enumeration. This 
comparison is necessary for the assessment of the 
potential application and reliability of ALICE in 
actual clinical settings. We selected two different sets 
of fluorescent images containing captured CTCs 
either with human epididymis secretory protein 4 
(HE4+) or without HE4 (HE4-) from 61 ovarian cancer 
patients [42] and epithelial (E), hybrid (H) and 
mesenchymal (M) CTCs from 46 pancreatic cancer 
patients [43]. ALICE was able to accurately identify 
and correctly locate these rare CTCs despite their 
extremely small numbers (< 0.1%) in the dense image 
set containing vast numbers of white blood cells 
(Figure 4A-B). Considering the rarity of CTCs 
(manifesting as a huge number of zeros in the CTC 
phenotypic count data), we opted to fit four different 
models: Poisson (P), negative binomial (NB), 
zero-inflated Poisson (ZIP) and zero-inflated negative 
binomial (ZINB) for ALICE versus human counts. The 
method of enumeration was entered into all 4 models 
as a factor with two levels: human enumeration and 
ALICE enumeration. Therefore, the manual count was 
taken as the reference and the ALICE count 
benchmarked against it. 

Based on the lowest Akaike information criterion 
(AIC) values offered by the four models, the chosen 
regression models for HE4-, HE4+, E, H and M CTCs 
were respectively, ZIP, P, ZIP, ZIP and P (inset tables 
in Figure 4C-G). Further, from the incidence rate ratio 
(IRR) of the count part, the CTC counts by ALICE 

were found to be statistically indifferent from human 
counts for all 5 phenotypes, since all their IRR had 
95% CI (P > 0.05) that crossed the value one (Figure 
4H with details in Table S7). Likewise, the IRRs for 
the zero part of the regression models were statisti-
cally insignificant as well (Figure 4H), implying that 
the enumeration by ALICE will not increase the odds 
of observing an excess zero in the CTC counts. The 
agreement between ALICE and human counts based 
on Gwet’s AC1 revealed that the Gwet’s AC1 statistic 
for the HE4-, HE4+, E, H and M CTCs were 0.725 (95% 
CI: 0.652-0.789), 0.907 (95% CI: 0.819-0.955), 0.961 (95% 
CI: 0.918-0.983), 0.958 (95% CI: 0.925-0.978) and 0.884 
(95% CI: 0.836-0.916), respectively (Figure 4I). The 
results indicated that the agreement between ALICE 
and human counts ranged from “substantial” to 
“almost perfect” in the Landis and Koch benchmark 
scale [44]. 

Next, it is most useful from a clinical point of 
view to provide a comparison of the time required by 
ALICE and human enumeration of CTC phenotypes 
in a real image set. For this purpose, we chose three 
CTC phenotypes: E-CTC, H-CTC and M-CTC sourced 
from 46 pancreatic ductal adenocarcinoma (PDAC) 
patients. For a human analyst, it generally takes 2-8 
hours to count, typically, 80 FOVs per patient, with 
each FOV having 5 channels: bright field, nucleus 
marker DAPI, pan-leukocyte marker CD45, 
mesenchymal marker vimentin and epithelial marker 
E-cadherin. On the other hand, ALICE takes about an 
hour to complete an even more thorough scanning 
and enumeration task that included all the images of 
WBCs. 

A serendipitous encounter with circulating 
hybrid cells (CHCs) in PDAC patients 

During ALICE’s default full combinatorial scan 
of captured cell images in the peripheral blood of 
PDAC patients [43], we unexpectedly discovered a 
novel population of fusion hybrid cells that 
simultaneously express both hematopoietic (CD45) 
and tumor (E-cadherin) antigens. The classical 
enrichment technique for harvesting CTCs is to 
exclude the overwhelming presence of CD45+ 
expressing cells and this practice leads to an 
inadvertent preclusion of CHCs in human 
enumerative assays. We found 2 types of CHCs: 
CHC-1 (DAPI+/CD45+/E-cadherin+/vimentin-) and 
CHC-2 (DAPI+/CD45+/E-cadherin+/vimentin+) in 
our study (Figure 5A) and defined the CHC-Total 
(CHC-T) as the sum of the two fusion hybrids. The 
baseline characteristics of the 32 PDAC patients with 
14 patients exhibiting positivity for CHC-T and 18 for 
the absence of CHC-T are listed in Table 1. Looking at 
the individual subpopulations of the rare fusion 
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hybrid, we found that 8/32 (25.0%) patients had 1-6 
CHC-1s/2ml of blood; 5/32 (15.6%) patients had 1-17 
CHC-2s/2ml and 1 patient had both: 6 CHC-1s/2ml 
and 2 CHC-2s/2ml (Figure 5B). Further, the CHC-1 
fusion hybrids possessed a more uniform size 

distribution with a min-max diameter range of 4 µm 
to 21 µm (mean (SD): 11.2 (3.4) µm) (Figure 5C). The 
CHC-2s on the other hand were narrower with a 
min-max diameter range of 6 µm to 15 µm (mean (SD): 
9.9 (1.8) µm) (Figure 5D). 

 

 
Figure 4. Benchmarking ALICE CTC phenotypic count against human enumeration in real fluorescent images. Identification, localization and enumeration of 
CTC phenotypes: (A) HE4- (DAPI+/CD45-/E&M+/HE4-) and HE4+ (DAPI+/CD45-/E&M+/HE4+) CTCs from 61 ovarian cancer patients, (B) E CTCs 
(DAPI+/CD45-/E-cadherin+/vimentin-), H CTCs (DAPI+/CD45-/E-cadherin+/vimentin+) and M CTCs (DAPI+/CD45-/E-cadherin-/vimentin+) from 46 pancreatic cancer 
patients. E&M denotes combined epithelial and mesenchymal markers. Scale bar: 20 µm. (C-G) Distribution of the phenotypic count for HE4- CTC, HE4+ CTC, E-CTC, H-CTC 
and M-CTC. Inset tables show the AIC values for the 4 fitted regression models: Poisson (P), negative binomial (NB), zero-inflated Poisson (ZIP) and zero-inflated negative 
binomial (ZINB) model and the model with the lowest AIC value is bolded and colored. (H) Incidence rate ratio (IRR) plot indicating the CTC phenotypic counts of ALICE and 
human are statistically indifferent. The fitted regression models are listed for each CTC phenotypes and the zero-inflated models have a zero part and a count part whereas 
nonzero-inflated models only have a count part. The dash line represents IRR=1 and error bars denote the 95% CI of the IRR. (I) Agreement analysis between ALICE and human 
counts using Gwet’s AC1 for the 5 CTC phenotypes. Error bars represent the 95% CI. 
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Figure 5. Circulating hybrid cells (CHCs) in pancreatic cancer patients. (A) Two populations of fusion hybrid identified by ALICE: CHC-1 
(DAPI+/CD45+/E-cadherin+/vimentin-) and CHC-2 (DAPI+/CD45+/E-cadherin+/vimentin+) embedded in an overwhelming population of WBCs 
(DAPI+/CD45+/E-cadherin-/vimentin-) in pancreatic cancer patients. Scale bar: 20 µm. (B) Frequency histogram of CHC-1 and CHC-2 counts in pancreatic cancer patients. 
(C-D) Size distribution of CHC-1 and CHC-2. (E-H) Correlation of CHC-1, CHC-2 and CTC-T with T stage (n=24), N stage (n=24), M stage (n=32) and recurrence (n=32). 
* - P < 0.05; ** - P < 0.01 from Mann-Whitney U test. (I) Receiver operating characteristic (ROC) curves for CHC-1 and CHC-T in differentiating N0 and N1 PDAC patients with 
their respective apparent area under the curve (AUC), optimism and optimism-adjusted AUC calculated over 10000 bootstrap iterations. Colored dots represent the selected 
cutoff of 1 CHC-1/2 ml of blood and 1 CHC-T/2 ml of blood. (J) Validity of CHC-1 and CHC-T as PDAC node-positive biomarker in terms of the sensitivity, specificity, positive 
predicted value (PPV), negative predicted value (NPV) and accuracy. The error bars denote the 95% CI. 
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Table 1. Baseline Patient Characteristics Stratified by CHC-T 
Positivity 

Patient characteristic CHC-T 
negative (n=18) 

CHC-T positive 
(n=14) 

P 
value 

Age, mean (SD) 59.3 (7.8) 58.6 (9.0) 0.814 
Males, No. (%) 6 (33) 9 (64) 0.082 
Albumin, mean (SD), g 43.1 (3.3) 41.6 (3.6) 0.234 
CA19-9 serum, median (IQR), U/ml 122 (28-174) 104 (70.8-412) 0.531 
CEA serum, median (IQR), U/ml 2.4 (2.0-5.1) 3.6 (2.2-8.4) 0.368 
CA242 serum. Median (IQR), U/ml 23.7 (5.7-70.5) 39.2 (19.5-142.8) 0.263 
Location of tumor: head/body or tail, 
No. (%) 

11 (61) / 7 (39) 11 (79) / 3 (21) 0.446 

Tumor size, median (IQR), No. (%) 3.3 (2.0-4.8) 3.0 (2.5-3.9) 0.706 
T stage, No. (%)   0.112 
T0 4 (22) 1 (7)  
T1 4 (22) 9 (64)  
T2 4 (22) 2 (14)  
Tx 6 (34) 2 (14)  
N stage, No. (%)   0.007 
N0 9 (50) 2 (14)  
N1 3 (17) 10 (72)  
Nx 6 (33) 2 (14)  
M stage, No. (%)   0.412 
M0 12 (67) 12 (86)  
M1 6 (33) 2 (14)  
TMN stage, No. (%)   0.275 
I 1 (6) 0 (0)  
II 11 (61) 12 (86)  
IV 6 (33) 2 (14)  
Differentiation grade, No. (%)   0.448 
Well 1 (6) 0 (0)  
Moderate 7 (39) 7 (50)  
Poor 4 (22) 5 (36)  
Not specified 6 (33) 2 (14)  
Perineural invasion, No. (%)   0.421 
No 3 (17) 4 (29)  
Yes 9 (50) 8 (57)  
Not specified 6 (33) 2 (14)  
Perivascular invasion, No. (%)   0.154 
No 10 (56) 12 (86)  
Yes 2 (11) 0 (0)  
Not specified 6 (33) 2 (14)  
Carcinoma cell embolus, No. (%)   0.297 
No 10 (56) 8 (57)  
Yes 2 (11) 4 (29)  
Not specified 6 (33) 2 (14)  
Surgery, No. (%)   0.412 
Whipple 8 (44) 9 (64)  
Distal pancreatectomy 4 (22) 2 (14)  
Palliative surgery 2 (11) 1 (7)  
Others 1 (6) 2 (14)  
No surgery 3 (17) 0 (0)  
Resection margin, No. (%)   0.333 
R0 5 (28) 7 (50)  
R1/R2 7 (39) 5 (36)  
Not specified 6 (33) 2 (14)  
Chemotherapy, No. (%)   0.425 
No 4 (22) 3 (21)  
Yes 12 (67) 11 (79)  
Not specified 2 (11) 0 (0)  
Number of CTCs/2 ml    
Epithelial CTCs, mean (SD) 8.3 (8.0) 8.2 (6.7) 0.965 
Mesenchymal CTCs, mean (SD) 19.8 (13.5) 17.2 (11.4) 0.573 
Hybrid CTCs, mean (SD) 14.1 (12.2) 10.6 (7.5) 0.349 
Total CTCs, mean (SD) 42.2 (30.7) 36.0 (24.1) 0.538 

 
 
Interestingly, no correlation was observed 

between the CHC and CTC counts (Table S8). Also, 
there was no significant difference in the CHC-1, 
CHC-2 and CHC-T count when patients were 

stratified in accordance to their tumor size (Figure 
5E). However, when stratified by the node stage, the 
CHC-1 and CHC-T counts were found to be 
significantly larger for patients with lymph node 
metastasis (N1) (P = 0.002 and P = 0.011, respectively) 
(Figure 5F). For the metastatic and recurrence status, 
once again, null results were obtained (Figures 5G-H). 
Based on these results, the receiver operating 
characteristic (ROC) curves for CHC-1 and CHC-T in 
discriminating N0 and N1 patients were drawn to 
evaluate the performance of these two counts as 
node-positive biomarkers (Figure 5I). To obtain a 
more accurate estimate of the two fusion hybrids’ 
diagnostic performance, we have opted to report the 
optimism-adjusted area under the curve (AUC) [45]. 
The optimism-adjusted AUCs of the CHC-1 and 
CHC-T were 0.805 and 0.744, respectively, and this 
indicated that the CHC-1 had a slightly better 
diagnostic ability in classifying N0 and N1 PDAC 
patients. By defining a cutoff of 1 CHC-1 per 2 ml of 
blood based on the highest Youden’s index in Figure 
5I, the leave-one-out cross-validated sensitivity = 
0.615 (95% CI: 0.374-0.898), specificity = 1.000 (95% CI: 
1.000-1.000), positive predictive value (PPV) = 1.000 
(95% CI: 1.000-1.000), negative predictive value (NPV) 
= 0.688 (95% CI: 0.483-0.931) and accuracy = 0.792 
(0.625-0.958). Likewise, a cutoff of 1 CHC-T per 2 ml of 
blood (again from the highest Youden’s index) 
achieved a sensitivity = 0.769 (95% CI: 0.615-1.000), 
specificity = 0.818 (95% CI: 0.636-1.000), PPV = 0.833 
(95% CI: 0.666-1.000), NPV = 0.750 (95% CI: 
0.587-1.000) and accuracy = 0.792 (0.708-1.000) (Figure 
5J; results of training data for CHC-1 and CHC-T are 
listed in Table S9). 

Discussion 
ALICE is designed to automatically and 

simultaneously analyze and enumerate multiple 
cellular liquid biopsy phenotypes (up to 20 
phenotypes) in fluorescent microscopy images, 
regardless of the image size. In addition to the count 
of a particular cell phenotype, ALICE also outputs the 
position and (optionally) thumbnails of the identified 
cells for further scrutiny. ALICE is configured for use 
across both the research and clinical settings. In the 
research setting, ALICE can be adopted by researchers 
as a standard pipeline for analyzing fluorescent 
images containing rare liquid biopsy cells such as 
CTCs and CHCs. ALICE not only increases the data 
analysis throughput but also, promotes an objective 
and repeatable research in the field of cellular liquid 
biopsies. In the clinical setting, the software can be 
used by hospitals for a rapid and reliable CTC and/or 
MTC analyses for disease management outcomes. 
Further, ALICE can be applied in the education sector 
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for general pedagogy purposes (Figure 1B). A 
comparison of ALICE with other automated CTC 
detection software is listed in Table 2. 

 

Table 2. Comparison of ALICE to other automated CTC 
detection software 

Software Algorithm Advantage Disadvantage 
PACE  
(Precise and 
Automatic  
CTC 
Enumeration) 
[14] 

Morphological 
operations based 
on cell area, 
length/width 
ratio and 
circularity at 
specific regions 
of the 
microfluidic chip 

• Detection of 
fluorescently stained 
CTCs; 

• Computationally 
efficient by 
processing only 
specific regions of the 
microfluidic chip. 

• Unable to detect 
H&E stained 
CTCs; 

• Only able to 
detect epithelial 
CTCs; 

• Used in 
conjunction with 
specific 
microfluidic 
chip. 

ACCEPT 
(Automated 
CTC 
Classification, 
Enumeration 
and 
Phenotyping) 
[22, 23] 

Deep learning 
algorithm via an 
epithelial marker 
staining 

• Detection of 
fluorescently stained 
CTCs; 

• Open-source. 

• Unable to detect 
H&E stained 
CTCs; 

• Only able to 
detect epithelial 
CTCs. 

CTC 
AutoDetect 
1.0 [24] 

Morphological 
operations based 
on cell diameter 
and shape at 10 
different focal 
lengths 

Detection of H&E 
stained CTCs 

• Unable to detect 
fluorescently 
stained CTCs; 

• Unable to 
differentiate 
CTC 
phenotypes. 

ALICE 
(Automated 
Liquid 
Biopsy Cell 
Enumerator)  

Hybrid AI that 
combines 
rule-based 
morphological 
operations and 
statistical 
machine 
learning 
algorithm 

• Detection of 
fluorescently stained 
CTCs; 

• Able to enumerate up 
to 20 cell phenotypes 
simultaneously; 

• Built-in cybersecurity 
and connectivity 
functions. 

• Unable to detect 
H&E stained 
CTCs; 

• Computationally 
expensive. 

 
 
The novelty of ALICE lies not only with its 

state-of-the-art image processing capabilities but also, 
in reaching out to several user communities through 
an enhanced connectivity structure and in guarding 
against cyberthreats and adverse image 
manipulations via an advanced cybersecurity system. 
Taking hints from Google DeepMind gaming 
program, AlphaZero [46] that combined deep neural 
networks and traditional symbolic Monte Carlo tree 
search, we adopted a similar hybrid AI strategy in 
ALICE by integrating machine learning with rule- 
based algorithms to accurately enumerate various 
CTC phenotypes beyond the traditional confinement 
of counting only epithelial CTCs found in current 
software. In the first part of the hybrid AI, machine 
learning is employed to evaluate the threshold 
correction factor for ALICE to flexibly adapt and 
correctly process dense fluorescent images derived 
from disparate conditions of the cellular liquid 
biopsy. Trained and tested using a large number of 
images (>50 K) sourced from 6 synthetic and real 

image sets, the implemented regression model 
showed a low test error and a good generalization 
ability in handling images obtained under an assorted 
range of clinical environments that reflect the 
different microscopy systems of hospitals [47]. In the 
second part of the hybrid AI, the rule-based algorithm 
enables ALICE to extend the identification, 
localization and enumeration process to use a full 
gamut of conventional and unconventional marker 
combinations to assay a diverse range of cell 
phenotypes (mesenchymal, hybrid, HE4 CTCs, CHCs, 
etc.). 

ALICE is designed with an extended external 
connectivity to encourage a wide spectrum of 
appurtenant user communities to use the software. 
Linking electronic health records and the transfer of 
data and images across hospital communities can 
speed up the process of diagnosis, treatment and 
clinical management decision making [48]. Likewise, 
the connectivity of ALICE can be exploited by the 
research community to foster effective and efficient 
collaborations. ALICE is also accessible by two other 
communities; education and public for the delivery of 
general and continuing education services and 
pedagogy. Different versions of specially configured 
ALICE are provided to connect with the four user 
communities. With the extended connectivity, ALICE 
needs to be safeguarded against intrusive hacking and 
malicious tampering of data and this scenario was 
vividly demonstrated by the use of fake CT scan 
images [49]. ALICE is armed with a quad-layer 
protective feature for detecting and handling the 
majority of image forgeries encountered in digital 
image forensics [50]. For example, the planting of fake 
or malicious images can be detected and removed to 
maintain the data integrity, as well as, the prevention 
of false results being generated from tampered 
images. 

The fusion between immune and epithelial cells 
in tumors has already been widely reported [51-54] 
but this is not the case for mobile fusion cells in body 
fluids of cancer patients. The serendipitous discovery 
of CHCs in the peripheral blood of pancreatic cancer 
patients by ALICE raises the strong possibility of 
similar circulating hybrid cells in other epithelial 
cancers. Our CHCs are different from reported hybrid 
cells in blood [55, 56] in two aspects: our tumor cells 
expressed positivity to the pan-leukocyte antigen 
CD45 and either one of the combinations; CTC 
epithelial marker E-cadherin or simultaneously, both 
E-cadherin and the CTC mesenchymal marker 
vimentin. Several studies have suggested that the 
fusion of tumor and immune cells give rise to tumor 
heterogeneity that generates increased metastasis in 
pancreatic cancer patients [57]. It was shown that 
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cancer patients with CHCs have a poor prognosis 
[58-60] and correlates with the disease staging and 
overall survival [57]. However, in our work, we found 
that the CHC-1 count was significantly higher for 
pancreatic cancer patients with N1 status compared to 
the N0 patients (Figure 5F). For the M stage, we did 
not find any significant difference in the CHC-1, 
CHC-2 and CHC-T counts (Figure 5G). This raises an 
interesting hypothesis whereby heterogeneity in the 
expression of the epithelial marker exists in CHCs that 
leads to different biological functions, much similar to 
that of conventional CTCs that express CK and 
EpCAM differently [55, 61, 62]. The ROC and AUC 
analysis of CHC-1 and CHC-T indicated that these 
CHC populations can be a potential high specificity 
lymph node metastasis biomarker for pancreatic 
cancer (Figure 5I-J). Although promising for the 

diagnosis and treatment planning of PDAC patients 
[63-65], the results obtained in this study are still in 
the early stages and thus, a larger, prospective 
validation study of the node positive biomarker is 
warranted. 

Although only validated and compared with 
CTC phenotypes in this study, ALICE has the 
potential to enumerate other cellular liquid biopsies 
such as the T lymphocytes [66] (Figure 6A), urinary- 
exfoliated tumor cell [67] (Figure 6B) and circulating 
endothelial cells [68] (Figure 6C) and this can 
accelerate the adoption of cellular liquid biopsies in 
other diseases. It is worth noting that the underlying 
algorithm implemented in ALICE can also be used for 
handling applications beyond traditional liquid 
biopsy to encompass the enumeration of general 
cellular phenotyping. 

 

 
Figure 6. ALICE for Non-CTC Cellular Liquid Biopsies: Identification, Localization and Enumeration. (A) Enumeration of T lymphocytes for the monitoring of 
HIV patients. (B) Urinary-exfoliated tumor cells in bladder cancer patients for the early detection of bladder cancer. (C) Circulating endothelial cells in unstable angina and 
chronic stable angina patients for the evaluation of angina pectoris. For all three subpanels, the first column shows the raw input fluorescence images, the middle column depicts 
the nucleus mask image labeled with the identified cells and the last column highlights the exported cell thumbnail results of the identified cells by ALICE. 
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Being a cell-based liquid biopsy technology, 
ALICE may not be as sensitive as genomic-based 
liquid biopsy approaches that assays circulating 
tumor DNA (ctDNA) [69, 70]. However, ALICE can 
first be used for a rapid identification of single-cell 
CTC phenotypes followed by a downstream genomic 
or transcriptomic analysis of captured CTCs in such a 
way that these two technologies can complement each 
other [71]. For example, ctDNA analysis may be used 
to monitor cancer patients whereas single-cell CTC 
analysis can be used to reveal more actionable 
information to guide therapeutic decisions [72]. 

Conclusions 
We presented a hybrid AI algorithm developed 

using rule-based and machine-learning strategies for 
an automated and flexibly-adapting enumeration in 
cellular liquid biopsy applications. In particular, it is 
designed for a fast, accurate and reliable CTC 
phenotypic identification and quantitative assessment 
of several phenotypes. Implemented as ALICE, the 
software comes with enhanced cybersecurity and 
connectivity for use by medical researchers and 
members of the public alike. Further, our hybrid 
algorithm led to an unexpected discovery of CHC-1s 
(DAPI+/CD45+ /E-cadherin+/vimentin-) and 
CHC-2s (DAPI+ /CD45+/E-cadherin+/vimentin+). 
We showed that these CHCs can potentially be used 
as a high specificity biomarker for lymph node 
metastasis for pancreatic cancer. 

Methods 
Overall study design and sample selection 

The objective of this retrospective study is to 
characterize and verify the performance of ALICE. 
Synthetic and real images were curated into different 
sets to handle contrasting usages that included 
training, validation and testing of regression models 
(12480 images), classification models for synthetic 
(12448 images) and tampered (46,936 images) input 
image detection, anomalous input image detection 
(400 images), final detection of a combination of 
synthetic, tampered and anomalous input images 
(1000 images), quantification of the accuracy and 
reliability of synthetic images (2000 images) and 
patient-derived real images (950 images), comparison 
with other bioimage software (744 images) and 
processing time characterization of ALICE (240 
images). The images came from 14 different image 
sets with details as follows. 

Human HT29 colon cancer cells image set 
(BBBC001v1) [37] 

This image set consists of 6 FOVs of human 

HT29 colon cancer cells stained with Hoechst 33342 
DNA stain. Each image contains 512 × 512 pixels. 
Counts from two different humans are provided and 
the mean of the two human counts is taken as the 
ground truth. This image set was used for the 
comparison of ALICE against other bioimage 
software. 

Drosophila Kc167 cells image set 
(BBBC002v1) [37] 

This image set has 5 different samples of 
Drosophila melanogaster Kc167 cells stained for DNA 
with Hoechst 33342. It contains a total of 50 images 
with 10 FOVs for each sample. The image size is 512 × 
512 pixels. Similar to the previous image sets, the 
counts from two different humans are provided and 
the mean is taken as the ground truth. The image set 
was used for comparing ALICE against other 
bioimage recognition software. 

Synthetic cells image set (BBBC004v1) [73] 
This image set has 100 FOVs containing 

simulated objects with various degrees of overlapping 
and clustering using the SIMCEP simulating platform 
for fluorescent cell population images [74, 75]. Each 
image is 950 × 950 in size. Data augmentation was 
performed by mirroring the image in the horizontal 
and vertical direction, as well as the combination of 
both directions to produce a total of 400 images 
(augmentation factor of 4). All 400 images were used 
for the training, validation and testing of the 
classification models for the detection of synthetic 
input images. 

Simulated high-content screening image set 
(BBBC005v1) 

This image set contains simulated high-content 
screening (HCS) images using the SIMCEP simulating 
platform for fluorescent cell population with a 
clustering probability of 25% and a charge-coupled 
device (CCD) noise variance of 0.0001. Each image is 
696 × 520 pixels and the whole image set has a total of 
19,200 images (both in-focus and out-focus images). 
The nucleus counts for each of the FOVs are provided 
in [76]. Four thousand and eight hundred in-focus 
FOVs (augmented from 1200 FOVs) were used for the 
training, validation and testing of the classification 
models for the detection of synthetic input images 
whereas only 2650 in-focus FOVs were used for to 
train, validate and test the regression models for the 
automatic determination of the threshold correction 
factor. A total of 560 FOVs were used to compare the 
performance between ALICE and other bioimage 
software. A further 60 FOVs were selected randomly 
for the characterization of the processing time of 
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ALICE. Lastly, the provided binary masks were used 
to randomly segment up to 3 objects from the image 
in this set and pasted onto images from BBBC021v1, 
BBBC022v1 and BBBC038v1 sets to form the tampered 
images. 

Human U2OS cells image set (BBBC006v1) 
The images were acquired from one 384-well 

microplate containing U2OS cells stained with the 
nucleus marker Hoechst 33342 and the cytoplasm 
marker phalloidin. Each image is 696 × 520 pixels and 
the whole image set contains 52,225 images generated 
from 32 z-step increments for each of the 768 FOVs. 
Similar to BBBC005v1, the ground truth for each FOV 
is provided in [76]. A total of 2560 (augmented from 
640 of the 768 in-focus FOVs) images were used for 
the training, validation and testing of the regression 
models implemented in ALICE. The rest of the FOVs 
(128 FOVs) were used to compare the performance 
between ALICE and other bioimage software. 

Human MCF7 cells compound-profiling 
experiment image set (BBBC021v1) [77] 

This image set contains 39600 FOVs of MCF7 
breast cancer cells stained for DAPI, F-actin and 
B-tubulin (each channel having 13200 FOVs) and 
imaged by fluorescent microscopy after being treated 
with a collection of 113 small molecules at 8 different 
concentrations. Each image is 1280 × 1024 pixels. Two 
thousand one hundred and sixty images were 
randomly selected as the target images for the splicing 
operation in the creation of tampered images. A 
different set of 60 nuclei images were selected 
randomly for the characterization of ALICE’s 
processing time. 

Human U2OS cell compound-profiling cell 
painting experiment image set (BBBC022v1) 
[78] 

This image set contains 69120 FOVs of U2OS 
cells treated with 1600 known bioactive compounds. 
With 5 channels for each FOV: con A, Hoechst 33342, 
MitoTracker Deep Red, WGA/phalloidin and SYTO 
14 channels, this amounts to a total of 345600 
fluorescent images in this image set. The images were 
captured using a 20X magnification and have a 
resolution of 696 × 520 pixels. A total of 2500 images 
were used as targets for the splicing operation in the 
creation of tampered images and another 916 images 
were used as the real/normal/pristine images in the 
final combined synthetic, anomalous and tampered 
detection image set. 

Human hepatocyte and murine fibroblast cells 
co-culture experiment image set 
(BBBC026v1) [79] 

This set contains images of co-cultured 
hepatocytes and fibroblasts in 384-well plate. There is 
a total of 864 FOVs of nuclei stained with Hoechst 
33342 DNA stain and each image is 1392 × 1040 pixels. 
One thousand five hundred and sixty-eight 
(augmented from 392) images were used for the 
training, validation and testing of the classification 
models for the detection of synthetic input images. A 
further 60 nuclei images were selected randomly for 
the characterization of ALICE’s processing time. 

Simulated 24-well plate with synthetic cells 
image set (BBBC031v1) [74] 

This synthetic HCS dataset was generated to 
simulate drugs perturbing the cell shape and 
expressions of proteins. The set contains 216 images 
with 9 images per well. The image size is 950 × 950 
pixels. The provided binary masks were used to 
randomly segment up to 3 objects from the image in 
this set and pasted onto images from BBBC021v1, 
BBBC022v1 and BBBC038v1 image sets to form the 
tampered images. 

Kaggle 2018 Data Science Bowl Image Set 
(BBBC038v1) 

This dataset consists of 670 FOVs of nuclei 
images created for the Kaggle 2018 Data Science Bowl. 
The nuclei were stained either fluorescently or 
histologically under various magnifications, quality of 
illumination, size of image, contexts including cell 
division, genotoxic stress, differentiation and others. 
The 545 fluorescently stained nuclei FOVs were 
extracted and among this, 1760 (augmented from 440) 
FOVs were used for the training, validation and 
testing of both the synthetic input image classification 
models and the threshold correction factor regression 
models. This image set also serves as the target 
images for the splicing operation in the creation of 
tampered images. 

Nuclei of U2OS cells in a chemical screen 
image set (BBBC039v1) [80] 

This image set contains 200 FOVs of nuclei 
stained with the Hoechst stain and imaged using a 
fluorescence microscope during a high-throughput 
chemical screen on U2OS cells. The nuclei images in 
this image set present a variety of nuclear phenotypes. 
All the FOVs (total of 800 FOVs; augmentation of 4) 
were used for the training, validation and testing of 
the machine learning regression models implemented 
in ALICE. Another 100 images were chosen as normal 
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images in the testing of the anomaly detection 
algorithm. 

Synthetic fluorescent cell phenotypes image 
set 

The synthetic fluorescent cell image set was 
created using SimuCell. Four groups of synthetic 
fluorescent images were simulated with one group 
containing 100 FOVs of 5 randomly selected 
phenotypes. Within each FOV, there is one nucleus 
image (Type: “nucleus”, Model: “Nucleus_Model”, 
nuclear radius: 13, nuclear eccentricity: 0.5, extent of 
variation: 0.1) and either without any cytoplasm 
images or having up to 3 cytoplasm images (Type: 
“cytoplasm”, Model: “Centered_Cytoplasm_Model”, 
cell radius: 18, cell eccentricity: 0.5, extent of variation: 
0.3, centered around: Nucleus). A constant marker 
level and standard deviation of 0.5 and 0.2, 
respectively, were used for all images, along with the 
addition of Perlin texture for a realistic representation 
of the marker expression. The number of the five 
phenotypes in each FOV was randomly generated. In 
total, this image set contains 400 FOVs and 2000 
individual synthetic fluorescent images. This image 
set was used for the performance assessment of 
ALICE. A further randomly selected 1280 images 
were used for the training, validation and testing of 
the classification models for the detection of synthetic 
input images. 

Captured cells of ovarian cancer patients’ 
image set [42] 

This image set contains fluorescent images of 
captured cells from the blood of ovarian cancer 
patients recruited from Peking University People’s 
Hospital with protocols approved by the hospital’s 
institutional review boards and written informed 
consent was obtained from all patients. CTCs were 
captured using a specially designed microfluidic chip 
– triangular unit (TU)-chipTM with 8 capture chambers 
× 693 capture unit (CU)/chamber = 5544 CUs, each 
consisting of a group of 3 elliptical micropillars placed 
in a triangular configuration (Figure S5). Two ml of 
blood was obtained from each patient, centrifuged to 
discard the serum and diluted with a buffer solution 
of volume ratio 1:1. Next, the diluted blood was 
syringe-pumped into the microfluidic chip at a flow 
rate of 500µl/h. Captured cells were fixed with 4% 
paraformaldehyde for 15 min, permeabilized with 
0.1% Triton X-100 for 10 min, washed with phosphate 
buffered saline (PBS) for 20 min and perfused with 5% 
BSA for 30 minutes to prevent nonspecific binding of 
antibodies. The cells were then stained with DAPI 
(Molecular probes, D1306), Alexa Fluor 488 
conjugated anti-CD45 (Invitrogen, MHCD4520), 

phycoerythrin conjugated anti-EpCAM (Abcam, 
ab112068), phycoerythrin conjugated anti-panCK 
(Abcam, ab52460), phycoerythrin conjugated 
anti-vimentin (Abcam, ab209446), phycoerythrin 
conjugated CK7/17 (Novus Biologicals, 
NB500-352PE) and unconjugated anti-HE4 (Abcam, 
ab200828) with secondary donkey anti-rabbit Alexa 
Fluor 647 (Abcam, ab150067). There is a total of 130 
FOVs and each FOV has 5 channels: one bright field, 
one nucleus channel (DAPI), one epithelial and 
mesenchymal CTC marker channel (E&M; EpCAM, 
panCK, vimentin and CK7/17), one leukocyte marker 
channel (CD45) and one ovarian specific marker 
channel (HE4). Hence, the total number of images 
amounted to 650. Each image is 2560 × 1920 pixels. 
Two CTC phenotypes were defined based on the 
expression of HE4, either HE4- CTC with 
DAPI+/E&M+/CD45-/HE4- or HE4+ CTC with 
DAPI+/E&M+/CD45-/HE4+. The counts of trained 
human analysts were taken as the ground truth. This 
image set was used for a comparison of ALICE and 
human count of CTC phenotypes. A further 1424 
randomly selected fluorescent images were used for 
training, validation and testing of the classification 
models for the detection of synthetic input images. 

Captured cells of pancreatic cancer patients’ 
image set [43] 

This image set contains fluorescent images of 
captured cells from the blood of pancreatic 
adenocarcinoma (PDAC) patients recruited from 
Peking Union Medical College Hospital with 
approved protocols by the institutional review boards 
and written informed consent was obtained from all 
patients. Similar to the ovarian cancer samples, 2 ml of 
blood was drawn and processed using the TU-chipTM 
as well with the only exception of using a faster flow 
rate of 2 ml/h. Next, the captured cells were first 
washed with PBS, fixed with a 1% paraformaldehyde 
flow for 15 min, washed with PBS for 10 min, 
permeabilized with 0.1% Trixon X-100 for 15 min, 
washed again with PBS for 10 min and blocked with 
BlockAid Blocking Solution (Life Technologies, 
B1070) for 30 min. Lastly, the captured cells were 
stained with DAPI (Molecular probes, D1306), Alexa 
Fluor 488 conjugated anti-CD45 (Invitrogen, 
MHCD4520), Alex Fluor 555 conjugated anti-E- 
cadherin (Abcam, ab206878), Alexa Fluor 647 
conjugated anti-vimentin (Abcam, ab195878), Alexa 
Fluor 488 conjugated anti-E-cadherin (Abcam, 
ab185013), Alexa Fluor 555 conjugated anti-vimentin 
(Abcam, ab203428) and Alexa Fluor 647 conjugated 
anti-CD45 (Abcam, ab200317). There is a total of 377 
FOVs and each FOV has 5 channels (total of 1885 
images): one bright field, one nucleus channel (DAPI), 
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one epithelial CTC marker channel (E-cadherin), one 
mesenchymal CTC marker channel (vimentin) and 
one leukocyte marker channel (CD45). Each image is 
2560 × 1920 pixels. Based on this, three CTC 
phenotypes were defined: epithelial CTC (E-CTC) 
with DAPI+/CD45-/E-cadherin+/vimentin-, 
mesenchymal CTC (M-CTC) with DAPI+/CD45-/ 
E-cadherin-/vimentin+ and hybrid CTC (H-CTC) 
with DAPI+/CD45-/E-cadherin+/vimentin+. The 
counts of trained human analysts were taken as the 
ground truth. Five thousand one hundred and twenty 
(augmented from 1280) and 1216 (augmented from 
304) images from this set were used to train, validate 
and test the regression models and synthetic image 
classification models, respectively. The rest of the 
images were used for the comparison of ALICE 
performance against human analysts. A further 60 
FOVs were selected randomly for characterizing the 
processing time of ALICE. 

Feature extraction 
Two different groups of features were extracted 

from each preprocessed image. The first group 
pertained to the statistical information of the whole 
image histogram which included the mean, standard 
deviation, skewness, kurtosis, energy, entropy and 
smoothness, as previously defined [81]. Besides that, 
the image was split into 3 × 3 blocks of subimages and 
the same seven statistics were computed for each 
subimages in order to extract the spatial information 
of the images. Thus, the total number of features 
extracted for the first group was 7+7×9 =70. The 2nd 
group involved the Gabor features, which are features 
extracted after applying Gabor filters to the image. A 
total of 24 Gabor filters were employed using a 
combination of four different scales (2.0, 2.5, 3.0 and 
3.5 pixel/cycle) and 6 different directions (0°, 60°, 
120°, 180°, 240° and 300°). Next, the mean, variance, 
skewness and kurtosis of the Gabor-transformed 
image were extracted as the Gabor features, resulting 
in a total of 24×4 = 96 Gabor features per image. In the 
end, the Gabor features and the histogram statistical 
features were combined into one feature vector 
containing 166 features for each image. 

Machine learning models in ALICE 
Both regression and classification machine 

learning models are available in ALICE, with the 
former models used for the automated selection of 
threshold correction factors whereas the latter used 
for the automated detection of tampered and 
synthetic images. The available regression models in 
ALICE include linear (linear and robust terms), SVM 
(linear, quadratic, cubic, fine Gaussian, medium 
Gaussian and coarse Gaussian kernel functions), 

ensemble (boosting and random forest) and Gaussian 
process regression (GPR) (squared exponential, 
Matern 5/2, exponential, rational quadratic kernel 
functions). On the other hand, the classification 
models include decision tree (fine, medium and 
coarse trees), linear discriminant analysis, logistic 
regression, SVM (linear, quadratic, cubic, fine 
Gaussian, medium Gaussian and coarse Gaussian 
kernel functions), K-nearest neighbours (KNN) (fine, 
medium, coarse, cosine, cubic and weighted kernel 
functions) and ensemble (boosted, random forest, 
subspace discriminant, subspace KNN and 
RUSBoosted kernel functions). All models were 
trained and implemented in Matlab with default 
hyperparameter settings. The train and test sets were 
randomly split via a 80:20 ratio. The performance 
metrics for the machine learning models (using RMSE 
and MAE for regression models; sensitivity, 
specificity and accuracy for classification models) 
were evaluated on both sets by calculating the 10 × 10 
fold cross-validation results on the training set and 
the test results on the test set. 

Thresholding methods tested for ALICE 
For the development of ALICE, 16 different 

thresholding methods were tested and the best 
thresholding method was chosen and implemented in 
ALICE. 

Huang’s fuzzy thresholding (Huang) [82] 
This thresholding method utilizes the measures 

of fuzziness of an image to identify an appropriate 
thresholding value that minimizes the fuzziness of the 
image. 

Alternative implementation of Huang’s fuzzy 
thresholding (Huang2) 

This is an alternative implementation of Huang’s 
method with faster processing time when applied on 
16-bit images. 

Intermodes thresholding (Intermodes) [83] 
Two local maxima will first be found by 

iteratively smoothing the image histogram, then the 
thresholding value was computed by taking the 
average of the two maxima pixel values. 

Iterative selection thresholding (Iterative 
Selection) [84] 

This method first involves creating a binary 
image using an initial thresholding value and then the 
average of the background and foreground pixels are 
calculated to produce a new thresholding value. This 
process is repeated iteratively until the binary image 
produced remains the same for further iterations. 
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Li’s minimum cross entropy thresholding (Li) 
[85] 

This method computes the thresholding value by 
minimizing the cross entropy between the original 
image and the thresholded image using the one-point 
iteration method. 

Maximum entropy thresholding (Maximum 
Entropy) [86] 

The thresholding value as determined by the 
maximum entropy algorithm is based on the 
maximization of the entropy between the foreground 
and background pixels. 

Mean of grey levels thresholding (Mean) [87] 
This simple algorithm determines the 

thresholding value by taking the average of grey 
levels. 

Minimum error thresholding (Minimum Error) 
[88] 

This algorithm aims to minimize the average 
pixel classification error rate under the assumption of 
a normally distributed histogram to find the 
thresholding value. 

Minimum thresholding (Minimum) [83] 
Similar to the Intermodes thresholding, two local 

maxima will first be found using the same method 
and the thresholding value is determined as the 
minimum point between the maxima. 

Moment-preserving thresholding (Moments) 
[89] 

The thresholding value for this method is 
computed deterministically such that the moments of 
an input image histogram is preserved in the output 
image. 

Otsu’s threhsolding (Otsu) [90] 
The Otsu’s method first searches exhaustively 

for all possible thresholding values and the value that 
minimizes the intra-class variance, defined as the 
weighted sum variances of the foreground and 
background, will be selected. 

Percentile thresholding (Percentile) [91] 
50% of the pixels are assumed to be the 

foreground pixels and the thresholding value will be 
chosen accordingly. 

Maximum Renyi entropy thresholding (Renyi 
Entropy) [86] 

This method is the same as the maximum 
entropy method with the exception that the Renyi 
entropy is used instead of the Shannon entropy. 

Shanbhag’s thresholding (Shanbhag) [92] 
The original image is viewed to compose of two 

fuzzy sets, i.e. each pixel can have fractional 
membership values. The thresholding value will be 
determined by minimizing the information measure 
between the foreground and background. 

Triangle thresholding (Triangle) [27] 
A line connecting between the maximum and 

minimum of the input image histogram will first be 
constructed and the perpendicular distance from this 
line to all the values between the maximum and 
minimum will be calculated. The point with the 
maximum distance is chosen as the thresholding 
value. 

Yen’s thresholding (Yen) [93] 
The thresholding value is determined by 

minimizing the maximum correlation criterion that 
factors in both the discrepancy between the 
thresholded and original image as well as the number 
of bits required to represent the thresholded image. 

Filtering of non-nucleic objects and creation of 
cytoplasmic masks 

For the binarized nucleus image, non-nucleic 
objects will be filtered from the nucleus binary image 
based on the morphological characteristics of size and 
eccentricity (eccentricity of 0 represents a circle 
whereas an eccentricity of infinity represents a line). 
The rationale behind choosing these characteristics is 
because a cell nucleus has a finite range of sizes and 
has an oval shape in general. Any object in the 
nucleus binary image that has an area of < 200 pixels, 
> 2000 pixels or an eccentricity > 0.8 will be removed. 
For binarized cytoplasm marker images, the required 
cytoplasmic masks are created by multiplying 
together the appropriate combinations of binary 
cytoplasm images. If the non-expression of a 
particular marker is needed, then that particular 
image will first be inverted before creating the 
cytoplasmic mask. 

Enumeration of cell phenotypes 
Before enumeration, a two-step filtering 

procedure was applied. The first step involved in the 
filtering uses the same criteria as the binary nucleus 
image to remove any debris pixels. The second 
filtering step used the growing algorithm of a region 
to detect and remove any objects that have a nucleus 
size larger than the cytoplasm. The initial step of the 
region growing algorithm was to locate the centroid 
of a particular object in the masked nucleus image and 
this point will serve as the seed for region growing 
until the border of the object was detected. Next, the 
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area of the detected object in the masked nucleus image 
was calculated. The same two steps were again 
performed for the filtered nucleus binary image using 
the same point as the seed and the area was calculated 
as well. If the ratio of the two objects’ area 
(masked/filtered) is smaller than 1, then this 
represents that the nucleus is larger than the 
cytoplasm. To be conservative, only objects with an 
area ratio of < 0.6 was removed. This comparison of 
the area ratios will be performed for all objects in the 
masked image. After completing the two-step filtering 
process, the enumeration of the remaining cells was 
done using a blob detection algorithm. The location 
and the number of blobs will be labeled with unique 
colors on the filtered nucleus binary image. 

Anomaly detection among input images 
Anomalies in the input images are detected 

using robust principal component analysis (PCA) [30]. 
In brief, based on the extracted feature list of the input 
images, robust PCA combines projection pursuit 
techniques and robust covariance estimation in order 
to group the input images into four possible 
categories: regular observation, good leverage points, 
orthogonal outliers and bad leverage points as 
determined by the points’ orthogonal distance and 
score distance (see [30] for more details). In ALICE, 
input images that are categorized as bad leverage 
points are defined as anomalies and will be flagged. 
This (optional) step is performed separately for each 
of the channels. 

Localization of tampered region 
The localization of possible tampered regions 

will only be done if two conditions are met: 1) the 
input image is deemed as tampered by ALICE and 2) 
enabled by the user. First, as proposed by Zeng, Zhan, 
Kang and Lin, the input image was segmented into 64 
× 64 blocks as well as 32 × 32 blocks using a coarse-to- 
fine strategy and the noise level of each block was 
estimated using PCA [33]. Instead of the proposed use 
of K-means clustering algorithm to group the blocks 
into either pristine or tampered regions (binary 
attribution), we implemented and modified the 
algorithm of Hosseini and Kirchner [32] that allows 
non-binary attribution clustering by using 
hierarchical clustering. More specifically, the 
optimal/correct number of clusters was assumed to 
range from 1 to 5 and was automatically chosen based 
on the largest gap statistic and largest silhouette 
index, respectively, for the clustering of the 64 × 64 
blocks and the 32 × 32 blocks. The rationale of 
choosing the gap statistic for the former was to allow 
for the possibility of clustering into only 1 class (i.e. all 
pristine or all tampered) whereas the silhouette index 

for the latter case was chosen because this particular 
clustering validity index is considered to be one of the 
best [94]. The class with the least number of pixels was 
considered to be tampered. 

Exportation of results 
The labeled image and an Excel file containing 

the counts of each chosen cell phenotypes for each 
FOV will be exported to the output location specified 
by the user. Besides that, the user can also opt to 
export the thumbnails of the detected cell phenotypes 
and a bright field image containing the outline of each 
marker (if applicable). The exported thumbnails have 
a resolution of about 120 × 120 pixels. The exporting 
of these results allows the user to perform 
post-correction to the result or for other downstream 
analyses. Further, results pertaining to the flagging of 
anomalous, synthetic and tampered images can be 
optionally exported as well. 

Characterization of ALICE processing time 
For each image size, the time needed to process 

and enumerate 20 FOVs were analyzed for the P1 
phenotype and the experiment was performed in 
triplicate. The experiment was performed using a 
64-bit desktop computer with Intel Core i7-8700 CPU 
@ 3.20 GHz, 3.19 GHz and 32 GB RAM. 

Simulation of realistic synthetic fluorescent 
images 

In order to create synthetic images that are 
similar to the images in the BBBC022 image set, the 
average number of cells in 50 images in the image set 
and the distribution of the radius and eccentricity of 
500 cells were evaluated (Figure S6A-B). Based on this 
information, 3 nucleus populations with different 
nucleus radius were defined: 15.7, 20.3 and 11.1 
whereas the nuclear eccentricity and the extent of 
variation were set to 0.77 and 0.10, respectively, for all 
three populations in Simucell [34]. In terms of the 
marker settings, all 3 populations had the same 
settings: mean marker level = 0.65, marker level 
standard deviation = 0.15, multiplicative Perlin 
texture, noise amplitude = 0.2, length scale = 6, falloff 
frequency = 0.0025 and noise type of standard 1/f. 
Twelve of such images were simulated. Examples of 
the simulated images are shown in Figure S6C-E. 

Statistical analysis 
Statistical analysis was performed using SPSS 

version 24 (SPSS, Inc., Chicago, IL, USA) and 
MATLAB version 2018b (The MathWorks, Inc., MA, 
USA). Variables were first checked for normality 
using the Shapiro-Wilk test. Inferential analyses on 
the various machine learning models were performed 
by calculating the mean of the performance metrics 
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(RMSE and MAE for the regression models; 
sensitivity, specificity and accuracy for the 
classification models) and then, ranking these models 
in accordance with the mean value [95, 96]. 

For benchmarking purposes, the methodology 
proposed by the Broad Institute was adopted such 
that the percentage mean error between ALICE’s 
count and the ground truth was calculated. Further, 
the correlation between the ground truth and ALICE’s 
count was analyzed using Passing-Bablok regression. 
The assumptions of correlation and linear relationship 
were tested by Kendall’s tau coefficient and the 
cumulative sum linearity test, respectively, prior to 
the Passing-Bablok regression. A visual analysis of the 
agreement was performed using the Bland-Altman 
plot by graphing the difference between the two 
counts against the mean of the two counts. 

A nonlinear curve fitting procedure was first 
applied to the processing time of ALICE with respect 
to the different image sizes in order to reveal the 
relationship between the processing time and the 
image size. Next, the mean processing time 
with/without parallel processing and exporting the 
results under fixed image size were compared using 
repeated measures analysis of variance (ANOVA). If a 
significant result is obtained, a planned comparison 
with Bonferroni correction (corrected P = 0.025) was 
performed for the post-hoc analysis such that 
comparisons were only done for the following 4 pairs: 
i) “No parallel, no export” vs “No parallel, export”, ii) 
“No parallel, no export” vs “Parallel, no export”, iii) 
“No parallel, export” vs “Parallel, export” and iv) 
“Parallel, no export” vs “Parallel, export”. The 
comparison of “No parallel, no export” vs “Parallel, 
export” and “No parallel, export” vs “Parallel, no 
export” pairs were not done as they are a comparison 
between 2 factors simultaneously. 

For the comparison between human and 
ALICE’s counts on CTC phenotypes, owing to a large 
number of zeros in the count data, four different 
regression models, namely the Poisson regression 
model, negative binomial (NB) regression model, 
zero-inflated Poisson (ZIP) regression model and the 
zero-inflated negative binomial (ZINB) regression 
model were fitted to the data. The method of 
enumeration was entered into all of the 4 models as a 
factor with two levels: human manual enumeration 
and software enumeration. The model with the lowest 
AIC was selected for further interpretation. An 
agreement analysis between ALICE and human 
counts was performed using the Gwet’s AC1 method. 

The counts of CHC-1, CHC-2 and CHC-T were 
compared between groups either using the Kruskal- 
Wallis test or the Mann-Whitney U test. Receiver 
operating curves (ROCs) were drawn and the 

corresponding optimism-adjusted AUC was 
calculated via the bootstrap validation technique [45] 
in order to assess the internal validity of the 
biomarkers. Briefly, a bootstrap sample was created 
and a binary logistic regression model was fitted to 
the bootstrap sample, followed by the calculation of 
the AUC. The same model was then applied to the 
original sample and a second AUC was calculated. 
The difference between these two AUCs is defined as 
the optimism. The average optimism over 10000 
iterations was obtained and subtracted from the 
unadjusted AUC to get the optimism-adjusted AUC. 
This optimism-adjusted AUC represents a more 
accurate estimation of the diagnostic model’s 
performance in new, unseen datasets. The optimal 
cutoff point for each of the three CHCs was chosen 
based on the highest Youden’s index and the 
corresponding sensitivity, specificity, PPV, NPV and 
accuracy were calculated and validated using the 
leave-one-out cross validation (LOOCV) technique. 
The 95% confidence interval (95% CI) was computed 
using 1000 bootstrap iterations. A two-sided P < 0.05 
was considered to be statistically significant. 

Abbreviations 
ACCEPT: Automated CTC 

Classification,Enumeration & PhenoTyping; AI: 
artificial intelligence; AIC: Akaike information 
criterion; ALICE: Automated Liquid Biopsy Cell 
Enumerator; ANOVA: analysis of variance; AUC: 
area under the curve; CAD: computer-aided 
diagnosis; CCD: charged-couple device; CHC: 
circulating hybrid cell; CK: cytokeratin; CLAHE: 
contrast-limited adaptive histogram equalization; 
CTC: circulating tumor cell; ctDNA: circulating tumor 
DNA; DAPI: 4',6-diamidino-2-phenylindole; E-CTC: 
epithelial CTC; EpCAM: epithelial cell adhesion 
molecule; FOV: field of view; GPR: Gaussian process 
regression; GUI: graphic user interface; H-CTC: 
hybrid CTC; H&E: hematoxylin & eosin; HCS: 
high-content screening; HE4: human epididymis 
protein 4; IOT: internet of things; IRR: incidence rate 
ratio; KNN: K-nearest neighbours; LOOCV: 
leave-one-out cross-validation; M-CTC: mesenchymal 
CTC; MCC: Matthews correlation coefficient; MTC: 
mobile tumor cell; NB: negative binomial; NPV: 
negative predictive value; P: Poisson; PACE: Precise 
and Automatic CTC Enumeration; PBS: Phosphate 
buffered solution; PCA: principal component 
analysis; PDAC: pancreatic ductal adenocarcinoma; 
PPV: positive predictive value; PSA: prostate-specific 
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Pristine, anomalous, tampered (images); ROC: 
receiver operating characteristic; SVM: support vector 
machine; WBC: white blood cell; ZINB: zero-inflated 
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negative binomial; ZIP: zero-inflated Poisson. 
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