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Abstract 

Background: The incidence rates of cervical cancer in developing countries have been steeply increasing while 
the medical resources for prevention, detection, and treatment are still quite limited. Computer-based deep learn-
ing methods can achieve high-accuracy fast cancer screening. Such methods can lead to early diagnosis, effective 
treatment, and hopefully successful prevention of cervical cancer. In this work, we seek to construct a robust deep 
convolutional neural network (DCNN) model that can assist pathologists in screening cervical cancer.

Methods: ThinPrep cytologic test (TCT) images diagnosed by pathologists from many collaborating hospitals in 
different regions were collected. The images were divided into a training dataset (13,775 images), validation dataset 
(2301 images), and test dataset (408,030 images from 290 scanned copies) for training and effect evaluation of a faster 
region convolutional neural network (Faster R-CNN) system.

Results: The sensitivity and specificity of the proposed cervical cancer screening system was 99.4 and 34.8%, respec-
tively, with an area under the curve (AUC) of 0.67. The model could also distinguish between negative and positive 
cells. The sensitivity values of the atypical squamous cells of undetermined significance (ASCUS), the low-grade 
squamous intraepithelial lesion (LSIL), and the high-grade squamous intraepithelial lesions (HSIL) were 89.3, 71.5, 
and 73.9%, respectively. This system could quickly classify the images and generate a test report in about 3 minutes. 
Hence, the system can reduce the burden on the pathologists and saves them valuable time to analyze more com-
plex cases.

Conclusions: In our study, a CNN-based TCT cervical-cancer screening model was established through a retrospec-
tive study of multicenter TCT images. This model shows improved speed and accuracy for cervical cancer screening, 
and helps overcome the shortage of medical resources required for cervical cancer screening.

Keywords: Cervical cancer, ThinPrep cytologic test (TCT), Deep leaning, Convolutional neural network (CNN)

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea-
tivecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Cervical cancer is one of the most common malignant 
tumors in the world, and it is the fourth leading cause 
of cancer in women [1–3]. The morbidity and mortality 
of cervical cancer in the developing countries are dis-
tinctly higher than those in the developed countries [1, 
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4]. About four out of five medical cases occur in develop-
ing countries, and especially in China and India. Human 
papillomavirus (HPV) infections have been established as 
a main cause of cervical cancer [5–7]. Based on a survey 
of 30,207 cases at 13 Chinese medical centers, the HPV 
infection rate in China was found to be about 17.7% [8].

The incidence of cervical cancer can be reduced 
through early screening [9, 10]. For severe cervical can-
cer types, screening can help in avoiding cancer-related 
deaths [11]. In 2012, the National Comprehensive Cancer 
Network (NCCN) published clinical practice guidelines 
for cervical cancer screening. These guidelines show that 
the combination of HPV testing and cytology has been 
used as a primary option for cervical cancer screening in 
women [12].

In the United States, the number of deaths from cer-
vical cancer has decreased since the implementation 
of widespread cervical cancer screening from 2.8 to 2.3 
deaths per 100,000 women between 2000 and 2015 [13]. 
However, cervical cancer screening is still a problem with 
low diagnostic sensitivity and specificity, especially in 
developing countries. While cervical cancer goes unde-
tected in some patients, it is overtreated in others [14]. In 
short, it is important to improve the efficiency and accu-
racy of cervical cancer screening, especially in China and 
other developing countries.

In the 1990 s, ThinPrep cytologic test (TCT) technol-
ogy was approved by the Food and Drug Administra-
tion (FDA) for clinical applications. Compared with the 
pap smear, this technique reduced the effects of mucus, 
blood, and inflammation in cervical cancer screening. It 
can also effectively reduce the dissatisfaction rate of cell 
screening by maintaining or improving the sensitivity of 
disease screening [15–17]. According to Chinese guide-
lines for diagnosis and treatment of cervical cancer pub-
lished in 2018, the recommended preliminary screening 
method is TCT combined with HPV screening [18].

The diagnostic results of the TCT were classified using 
the Bethesda system [19]. This system represents an arti-
ficial screening method for determining the precancerous 
cervical lesions by microscopic assessment of the changes 
in cytoplasm, nuclear shape, and the fluid base color [18]. 
According to the Bethesda system, the smears are mainly 
divided into the following categories: Intraepithelial 
Lesion/Malignant Lesion cell (NILM), atypical squamous 
cells of undetermined significance (ASCUS), low-grade 
squamous intraepithelial lesion (LSIL), and high-grade 
squamous intraepithelial lesion (HSIL). Above all, this 
method requires trained pathologists to make a correct 
diagnosis at the cellular recognition stage.

In developing countries with a large population, like 
China, the following three problems are mostly observed 
in cervical screening that reduces its diagnostic accuracy: 

(1) identification of cells on TCT smear images is subjec-
tive and mostly relies on the experience and technology 
of the pathologists. It has been reported that the increase 
in pathologists’ workload also leads to a reduced diag-
nostic sensitivity [20]. (2) The correct diagnosis of TCT 
images requires much of the pathologists’ time. However, 
there is a significant shortage of pathologists in China. 
Indeed, 68.4% of the pathologists who provide cervi-
cal cancer screening services have only primary techni-
cal qualifications or no qualifications at all. (3)The gap 
between urban and rural medically trained pathologists 
has been increasing [21]. Moreover, it takes more time 
and effort for human eyes to read images, the number of 
readings per day is also limited [22].

With the rapid development of science and technol-
ogy, the emergence of artificial intelligence has provided 
more sensitive and effective solutions to many medical 
imaging problems [23, 24]. In recent years, deep learn-
ing algorithms have helped to identify patterns in clas-
sifying and quantifying medical images [25]. Significant 
progress has been made in the computer-aided diagnosis 
of medical images, such as the skin cancer diagnosis from 
melanoma images [25, 26] and the detection of pulmo-
nary nodules via computerized tomography (CT) images 
[27, 28] and image-base detection of hepatocellular car-
cinoma using multiphasic magnetic resonance imaging 
(MRI) [29]. The concept of deep learning originated from 
the area of artificial neural network (ANN), which was 
helpful to extracting appropriate features from medical 
images. Among them, one of the leading neural networks 
for image recognition is a convolutional neural network 
(CNN) [30]. At present, this method is applied in most 
deep learning applications to achieve good detection 
results[31, 32].

We have developed a target recognition system based 
on a CNN model to assist pathologists in the diagnosis 
of early cervical cancer screening. This method is based 
on faster region convolutional neural networks (Faster 
R-CNN)[33] to locate and identify lesion cells in the 
cervical TCT images, extract features, and automati-
cally optimize them through updating the convolutional 
kernel parameters in the cyclic training process [34]. 
Convolutional neural networks have the advantages of 
automatically learning features during training, and pos-
sessing strong inferential capabilities in comparison with 
conventional image processing methods in complex 
scenes [35, 36].

The trained faster RCNN model can automatically 
identify target regions and reduce the false detections of 
other non-target regions. As well, this model can gen-
erate region proposals on the feature map of the target 
region and its adjacent areas [33, 37]. The region proposal 
features can distinguish between target and non-target 
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regions through merging layers and classifiers. It can 
learn the common characteristics of cells of the same 
lesion grade and the characteristic differences among dif-
ferent lesion grade cells. The identification of generalized 
performance was reported to be better than performance 
of conventional image processing methods under the 
conditions of cell deformation and cell superposition.

In this research project, we have successfully devel-
oped an auxiliary diagnosis model for the diagnosis of 
early cervical cancer. This model separated the positive or 
negative images effectively, minimizing the rate of missed 
diagnosis. It also reduced pathologists’ workload by sav-
ing their time and improved the accuracy of cervical can-
cer screening.

Methods
The analysis pipeline for the detection of cervical cancer 
from the TCT smear using the Faster R-CNN is depicted 
in Fig. 1.

Study design and participants
Images of TCT were obtained from multiple collaborat-
ing hospitals and research institutes in China. The col-
laborating entities are: (1) The First Affiliated Hospital, 
Sun Yat-sen University, (2) The First Affiliated Hospital, 
Xi’an Jiaotong University, (3) Shanghai General Hospi-
tal, Shanghai Jiaotong University, School of Medicine, 
(4) Shanghai First Maternity and Infant Hospital, (5) The 
First Affiliated Hospital of Soochow University, (6) Tongji 
Hospital, Tongji Medical College, Huazhong University 
of Science and Technology, (7) The Central Hospital of 
Wuhan, Tongji Medical College, Huazhong University of 

Science and Technology, (8) Xiangyang Hospital Affili-
ated to Hubei University of Medicine, and (9) the Molec-
ular Department, Kindstar Global, Wuhan. About 16,000 
TCT images of cervical brush smears were randomly 
selected and collected from outpatients at the above nine 
hospitals. All TCT images were histopathologically diag-
nosed as with different grades of a lesion by at least two 
local experienced pathologists according to the Bethesda 
system. This diagnosis was used as the gold standard for 
subsequent experiments. The images were sent to Tongji 
Hospital affiliated to Tongji Medical College of Huazhong 
University of Science and Technology, and the abnormal 
cells were examined and labeled by a pathologist.

Image preparation and preprocessing
A pathologist from Tongji Hospital examined and pre-
processed all images. High-quality images that met the 
requirements were selected. The inclusion criteria were 
as follows: The cells were evenly spread on the slide, the 
field of vision was clear, and the number of cells in the 
slide were moderate, with fewer overlapping cells.

Images of non-JPG formats (such as scanned copies 
from slides) couldn’t be directly marked by pathologists 
because of the extra-large image size. So, these images 
were sent to Zhejiang University Rui Medical Artificial 
Intelligence Research Center for further processing and 
segmentation. One slide image was divided into 1407 sin-
gle-field images with enlarged cervical cytology images 
using seamless slider technology. Figure  2 displays the 
process of the seamless slider technique, with a scanned 
image size of 83,712 × 86,784 × 3. In this work, the eye-
piece has a 10X magnification, while the objective lens 

Fig. 1 Framework of the proposed convolutional neural network (CNN) system for cervical cancer screening. The convolution network extracts the 
image information to obtain the feature map, and the proposal network screens the target region to obtain the target position information on the 
basis of the feature map. The pathological cells and their locations were identified by a convolutional classifier based on the feature map and target 
location. Pathological cell information was obtained by combining the recognition results of the two networks. The results of the two models are 
similar. However, the two structural models are trained with images of different magnification levels of 200X and 400X, and the parameters of the 
two models are different
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has magnifications of 20X or 40X. Hence, images with 
combined magnification factors of 200X and 400X were 
obtained. Then, those images were sent to the Tongji 
Hospital for creating test data through labeling irregular 
cells in images. The LabelImg software (Version 1.5.0.), 
an open-source graphical image annotation tool, was 
used to annotate the lesion areas in the eligible images. 
The primary purpose of lesion labeling was to train a 
model to recognize the abnormal cells. After that, all 
images with abnormal cell labeling were sent to Zhejiang 
University Rui Medical Artificial Intelligence Research 
Center for model training.

Image processing
Image patching
  Cervical cytology has a more diverse form of color 
expression compared with the standard red and blue. 
Because of the differences in the staining methods and 
the severity of cervical cancer, the cells show varied and 
complicated cell morphology patterns. The image analy-
sis flow chart for the Faster R-CNN system for the detec-
tion of cervical cancer from the TCT smear is depicted 
in Fig.  1. In this paper, we created three different data-
sets. The first one was named as the training dataset 
with 13,775 images, of which 5414, 4292, and 4069 were 
ASCUS, LSIL, and HSIL images, respectively. These 
images showed 200X and 400X magnification levels. We 
used this dataset to train the Faster R-CNN model. The 
second dataset was named as the validation dataset with 

2301 images, of which 1000 images had a 200X magni-
fication and 1301 images had a 400X magnification. The 
detailed statistics of each kind of picture scan piece or 
field of view are presented in Table 1.

Image enhancement
Because the data samples in this study are limited, we 
employ image processing methods to simulate and 
transform the color and shape of the sample images in 
order to increase the data diversity and better simulate 
the real data variability. The image processing methods 
were implemented by an image rollover, changing the 
brightness, saturation, or adjusting the color deviation 

Fig. 2 An overview of the seamless slider technique. Use the seamless slider technology to segment non-JPG images or large scanned image parts 
at a 200X magnification level. The whole ThinPrep cytologic test (TCT) smear image in a was divided into a large number of single-field images as 
shown in b. For a sample of image details, a random image from b is enlarged as shown in c 

Table 1  Details of  sample sizes of  the  three datasets 
including  training dataset, validation dataset, and  test 
dataset

A: Training dataset

ASCUS LSIL HSIL Total

Images 5414 4292 4069 13775

B: Validation dataset

ASCUS LSIL HSIL Total

Images 801 780 720 2301

C: Test dataset

Normal ASCUS LSIL HSIL

Scanning copy 112 47 70 61

Images 157584 250,446
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within the original images. Figure  3 illustrates some of 
the images that are simulated or transformed during the 
enhancement process.

Network model
The processed cervical cytological images, 13,775 pic-
tures, were used as training samples, and the labeled 
boxes and the pathological changes in irregular cells 
within the images were used as training labels. The deep 
CNN architecture contains a convolution kernel, an acti-
vation function and a pooling function of 3 × 3 and 1 × 1 
sizes. During training, this architecture is used to extract 
image features and get feature maps. The feature map is 
fed into the region proposal network, and the IoU met-
ric is used to select the region proposals for real and 
interfering targets. The proposal box was used to select 
the feature map in the feature graph of the previous step 

and process it through the grid pooling layer to obtain a 
pooled feature map. Then, the real target and interference 
target features were identified contained in the pooled 
feature graph by classification network. The deviation of 
the proposal box and ground-truth box was calculated. 
The network was optimized by backpropagation com-
bining classification error and proposal box deviation, to 
achieve higher classification accuracy and more accurate 
localization of region proposals.

Loss function
During training, an objective loss function was used to 
measure the model localization and detection perfor-
mance. This function is defined as:

(1)
L({pi}, { ti} ) =

∑

i
Lcls

(

pi, p
gt
i

)

+
∑

i
p
gt
i Lreg

(

ti, t
gt
i

)

Fig. 3 Example image enhancement methods based on color and shape transformations. a Image rollover has alternating horizontal and vertical 
rollover components. Each time, one operation is randomly selected for image processing; b Processing of brightness image where the upper 
limit of the variation coefficient is set to 40, and an integer is randomly selected in the range [0–40] for brightness processing. c Processing of 
the saturation image where the range of the coefficient of change is set to [0.5,2], and the image color space is converted to the HSV space. A 
random value from the coefficient range is multiplied with the image in the saturation space each time. d Processing of the RGB color image where 
the coefficient of change is set to 60, the three R, G, B component values are randomly selected from [0,60]. In order to increase the image data 
variability, one or more of the four processing methods is are randomly selected each time
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where, i is the subscript of an anchor in a mini-batch, pi 
is the prediction possibility of an object in anchor i, and 
p
gt
i  is the ground-truth tag. If the anchor is positive, the 

ground-truth label pgti  is 1, otherwise, it is 0. ti represents 
four parameterized coordinates of bounding-box of the 
predicted target region, (anchor-based transformation), 
t
gt
i  is the ground-truth box corresponding to this positive 

anchor (transformation based on anchor) Lcls represents 
classification loss. Lreg stands for regression loss.

Regression loss
Regression loss Lreg

(

ti, t
gt
i

)

= R
(

ti, t
gt
i

)

 is the robust 
smooth-L1 loss function. pgti  indicates that regression 
loss is only activated when the value of positive anchor 
( pgti  ) is equal to unity. Therefore, the regression adopted 
the calculation stable smooth-L1 method and used it to 
calculate the deviation between the predicted target 
coordinates and ground-truth. Then it minimized the 
error to make the predicted target position closer to 
ground-truth to achieve an accurate model positioning. 
The smooth-L1 function is used to calculate the distance 
between the coordinates of the predicted and ground-
truth targets. The smooth-L1 loss is defined as:

Classification loss
There were two ways to classify the training samples. One 
was to divide the samples into normal or abnormal ones 
based on the presence of diseased cells. The classifica-
tion loss uses cross-entropy, which is a binary classifier 
(only in the case of yes and no). For each category, the 
two probabilities predicted by the model were p and 1-p, 
respectively, and the classification loss is defined as:

The other way was to divide the microscopic field of 
view into LSIL, HSIL, and ASCUS images based on the 
lesion degree. For the second classification method, the 
algorithm encoded multiple categories as a continuous 
sequence with 0 starting and 1 interval. The classification 
loss is as follows:

where, N represents the number of categories, i.e., the 
types of lesions, yc values 0 or 1, if the sample category is 
the same as category C, the value is 1, otherwise, it is 0. 
pc represents the probability that the prediction samples 
belong to category C.

(2)smooth− L1(χ) =

{

0.5χ2

|χ | − 0.5
if |χ | < 1
otherwise

(3)
Lcls

(

pi, p
gt
i

)

= −log
[

pi ∗ p
gt
i + (1− pi)

(

1− p
gt
i

)]

(4)Lcls

(

Pi,P
gt
i

)

= −
∑N

c
yc • logpc

Model identification
For the feature identification of the same area, the voting 
method was used to select the category. The number of 
probability values that each model could output was the 
same as the number of categories to be identified, i.e., each 
category corresponded to a probability value. The prob-
ability value is directly proportional to the possibility. The 
higher the probability value is, the higher the possibility 
value is. The probability outputs of the two models were 
averaged, and then the category corresponding to the max-
imum probability value was selected as the output category. 
The average value calculated by the voting algorithm is as 
follows:

where, i is the serial number of the category, N is the num-
ber of categories to be identified, pnetm(i) is the probability 
value of category i in the N probability values output by the 
M th model, and pave(i) is the average probability value of 
the model in category i, and m is the number of models. 
The category corresponding to the maximum probability 
value was selected as the final recognition category.

Statistical analysis
The receiver operating characteristic (ROC) curve was 
used to evaluate the ability of the auxiliary diagnosis model 
of cervical cancer to distinguish between the negative and 
positive images and to calculate the Area Under ROC 
Curve (AUC) values. AUC is a more objective evaluation 
index to measure the advantages and disadvantages of the 
two-classification model. The ROC curve and AUC value 
are calculated by Python (version 3.6) and scikit -learn 
(version 0.20.0).

Results
The samples were divided into normal, ASCUS, LSIL, and 
HSIL cells as well as squamous cell carcinoma (SqCa). Per-
formance indicators included sensitivity, specificity, posi-
tive predictive value (PPV), and negative predictive value 
(NPV), defined as follows:

(5)

Pave(i) =
Pnet1(i)+ Pnet2(i)+ · · · + Pnetm(i)

m
;

i = 0,1, 2, . . . ,N − 1

(6)specificity =
TN

TN+ FP

(7)sensitivity =
TP

TP+ FN

(8)PPV =
TP

TP+ FP
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where, TN, TP, FN, and FP represent the numbers of 
true-negative, true-positive, false- negative, and false- 
positive images, respectively.

Evaluation of positive and negative classification
Table  2 shows the confusion matrix of the classifica-
tion results of the TCT technique used for the test data 
composed of 290 scans of complete slides. Of the 112 
normal slides, 39 were correctly classified as normal 
and 73 were incorrectly classified as abnormal. Out 
of 178 abnormal slides, a total of 177 slides were cor-
rectly classified. This classifier resulted in a sensitivity 
of 99.4% and a specificity of 34.8%. The diagnostic test 
performance was better quantified using the positive 
predictive value (PPV) and the negative predictive value 
(NPV). The predictive value represented the probabil-
ity that an experiment could make a correct judgment 
and the actual clinical significance of the results. In our 
system, the PPV and NPV were 70.8 and 97.5%, respec-
tively. Furthermore, we constructed the ROC curve 
which is a comprehensive indicator of the continuous 
variables of sensitivity and specificity. The proposed 
system had an AUC of 0.67 for the ROC curve in Fig. 4.

Evaluation of lesiondegree classification
Our tests were performed on 1975 images generated 
after slide segmentation as shown in Fig. 2. This system 
didn’t provide a direct diagnosis but provided a refer-
ence for the pathologists according to the cells with the 
highest degree of the lesion. Table  3 shows the confu-
sion matrix used to test the results of TCT classification 
according to lesion degree. Of the 606 ASCUS images, 
541 were correctly classified. Also, 422 of the 590 LSIL 
images and 576 of the 799 HSIL images were classified 
correctly. Therefore, the sensitivities for the ASCUS, 
LSIL, and HSIL were 89.3, 71.5, and 73.9%, respectively.

(9)NPV =
TN

FN+ TN

Discussion
In this paper, we have proposed a cervical cancer screen-
ing method based on CNN, which could successfully 
extract features from TCT images. The pathological 
condition of glass slides was diagnosed by dividing the 
images scanned by glass slides into a large number of 
single visual field images to establish the model, and by 
integrating the results of the visual field processing. In 
general, this model could distinguish between nega-
tive and positive cells, with a recognition sensitivity of 
99.4%. Proper diversion of negative and positive marker 
images was also the focus of developing the cervical 
cancer-assisted screening system. This model achieved a 
99.6% accuracy to exclude negative images (i.e. normal 
or healthy populations), and the remaining suspicious 
images were analyzed and confirmed by pathologists.

The specificity of the system was only 34.8%, and hence 
many normal cells were misclassified as abnormal ones. 
However, the key goal of this model was to ensure that 
there were no false-negative images as much as possible, 
and thus reduce the rate of missed diagnosis. The PPV 
was 70.8%, which meant that the test-positive patients 

Table 2  Diagnostic performance in  classifying normal 
and abnormal cervical cells in the test dataset

CNN system Turth Total

Normal Abnormal

Normal 177 (TP) 73 (FP) 242

Abnormal 1 (FN) 39 (TN) 48

Total 178 112 290

Fig. 4 Receiver Operating Characteristic (ROC) curve of the Faster 
R-CNN system. ROC curve and area under the curve (AUC) of the 
primary test dataset for the Faster R-CNN system in comparison to 
the labeling by experienced pathologists

Table 3  Performance metrics for the Faster R-CNN model, 
assessed on  single filed images selected from  the  test 
dataset

ASCUS LISL HSIL

True-positive 541 422 576

False-negative 65 168 193

Total 606 590 779

Sensitivity 89.3% 71.5% 73.9%
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had a 70.8% chance of actually having the disease. The 
NPV was 97.5%, which meant that the test-negative 
patients had a 97.5% chance of actually not having the 
disease. Although the low specificity means that more 
than half of the normal women may be classified as sus-
picious cases for further diagnosis, the system had a low 
false-negative rate of 0.06%, which indicated that the rate 
of missed diagnosis greatly decreased and it could effec-
tively identify suspicious cases. This also helps patholo-
gists improve their disease diagnosis efficiency, so they 
can spend more time on analyzing complex cases and 
ensuring that diseases are diagnosed quickly and accu-
rately. Although cervical cancer screening has become 
very popular, there is an imbalance in medical resources 
and untrained pathologists in some parts of China. Our 
deep learning model may help solve the above problems, 
and lead to a more accurate and effective diagnosis.

Moreover, this model can be re-classified according to 
the abnormal cell details. The sensitivity of ASCUS, LSIL, 
and HSIL was 89.3, 71.5, and 73.9%, respectively. Accord-
ing to the degree of a lesion, the classification of cervical 
cancer cells indicated that the model has good sensitiv-
ity to identify the degree of a lesion in a single field. The 
diagnosis of the TCT smear is a synthesis of the results of 
a large number of the single-field images, and our system 
was able to assist the specialists in locating and identify-
ing different degrees of diseased cells quickly, allowing 
them to devote more time on more complex cases.

To our knowledge, only few studies on automatic diag-
nosis of cervical cancer were based on ThinPrep cyto-
logic test (TCT) images instead of pap smears. This is 
mainly because TCT images are relatively difficult to 
analyze compared to the pap smear images. More spe-
cifically: (1) the TCT images do not currently have a 
good database, and the collection of such an image 
database is more difficult compared to the Harlve data-
base of pap-smear images [38, 39]; (2) TCT images have 
many overlapping cells, which are not as easy to analyze 
as the single cells in pap-smear images [40, 41]; (3) the 
color and quality of TCT images obtained from different 
medical institutions may vary greatly. Therefore, these 
systems are poorly adapted for the proposed system, 
we trained it with data from hospitals at different lev-
els in different regions of north and south China, which 
ensured the high adaptability of the system. Theoretically, 
the CNN system has good robustness and low depend-
ence on smears staining and preparation. The system can 
adapt to the images from different hospitals and reduce 
the secondary examination caused by low-quality images. 
Future research is needed for further verification in other 
clinical applications.

A sensitivity screening system may help patholo-
gists to quickly diagnose some positive lesions with a 

computational speed of 70 − 10 milliseconds per single 
field. Therefore, this system can relieve the burden of 
the pathologists to some extent. In addition, the system 
not only reduces the influence of appellate factors, and 
ensures consistency in diagnosing images of different 
pathologists from different hospitals, but also increases 
the possibility of remote diagnosis. Meanwhile, because 
the automatic cervical cancer diagnosis system is mainly 
based on CNN models, the construction and diagnosis 
costs are very low.

However, our proposed system also has several major 
limitations. Firstly, Due to a high number of overlapping 
and adhesion cells, the differences between diseased cells 
and normal cells were not distinct. It was difficult for the 
system to learn the characteristics of cells, and hence 
its accuracy was relatively low. Secondly, the collected 
dataset didn’t have enough samples of some pathologi-
cal types such as atypical squamous cells-cannot exclude 
high-grade squamous intraepithelial lesion (ASC-H) or 
atypical glandular cells (AGC). This scarcity can’t lead to 
effective training and accurate classification. Therefore, 
we plan to collect more samples and enlarge our dataset 
in order to arrive at more valuable findings. Ultimately, 
it is difficult to obtain complete TCT image information 
from outpatients. Future research should focus on more 
relevant patient information, such as age, HPV infection, 
or vaginal inflammation. Similarly, large amounts of data 
will be needed to design prospective follow-up studies to 
enhance the stability and accuracy of the model. In addi-
tion, with the discovery of new biomarkers, tumor diag-
nosis based on molecular imaging may be explored as a 
viable path [42–44].

Conclusions
The CNN-based TCT cervical cancer cell classification 
system proposed in this paper can effectively exclude 
negative smear samples, and identify the suspicious pop-
ulation in cervical cancer screening. It also showed high 
sensitivity and excellent performance in the identifica-
tion of cervical cancer screening, which can save time for 
pathologists and provide an excellent secondary preven-
tion effect. In comparison to the conventional diagnostic 
methods, this system has good robustness, objectivity, 
and small computational cost. Meanwhile, our system 
provides a possibility for online diagnosis of TCT images 
and is expected to contribute to the construction of pri-
mary medical care.
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