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Around 10% of all hematologic malignancies are classified as multiple myeloma (MM), the
second most common malignancy within that group. Although massive progress in
developing of new drugs against MM has been made in recent years, MM is still an
incurable disease, and every patient eventually has relapse refractory to any known
treatment. That is why further and non-conventional research elucidating the role of new
factors in MM pathogenesis is needed, facilitating discoveries of the new drugs. One of
these factors is the gut microbiota, whose role in health and disease is still being explored.
This review presents the continuous changes in the gut microbiota composition during our
whole life with a particular focus on its impact on our immune system. Additionally, it
mainly focuses on the chronic antigenic stimulation of B-cells as the leading mechanism
responsible for MM promotion. The sophisticated interactions between microorganisms
colonizing our gut, immune cells (dendritic cells, macrophages, neutrophils, T/B cells,
plasma cells), and intestinal epithelial cells will be shown. That article summarizes the
current knowledge about the initiation of MM cells, emphasizing the role of
microorganisms in that process.

Keywords: multiple myeloma, gut microbiota, intestinal immune system, fecal microbiota transplantation, B cell,
plasma cell
1 INTRODUCTION

Multiple myeloma (MM) is a hematological neoplasm deriving from clonal plasma cells. In almost
every case, it is preceded by a premalignant stage called monoclonal gammopathy of undetermined
significance (MGUS) (1, 2). In 3-4% of the whole population over the age of 50, the diagnosis of
MGUS could be stated (3). The median age at the time of diagnosis of MM is approximately 70 years
(4). The global incidence of MM steadily increases, which can be only partly explained by aging,
with the highest score in Western European, North American, and Australasian populations
reaching in 2016 about 5 cases per 100 000 persons. In 2019 the global incidence of MM amounted
to 155 688 cases, compared to 138 509 in the year 2016. The age-standardized incidence rate (ASIR)
was 1.92/100 000 in 2019. During the 2019 year, 113 474 deaths were noted due to MM, whereas 98
437 were in 2016. That short period of three years shows the dynamics of the new MM cases
org March 2022 | Volume 13 | Article 8535401
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increase. From 1990 to 2016, the incidence of new MM cases
increased by 126% (52.9% was attributed to aging, which is
typical for cancers that mainly affect the older population), while
deaths due to MM increased by 94% (5, 6). The incidence of MM
in the population <30 years is infrequent (0.02-0.3%) (7).
Fortunately, the prognosis for patients with MM significantly
improved during the last years, which is due to many new drugs,
better availability of autologous hematopoietic stem cell
transplantation (ASCT), and constantly emerging new
therapies such as CAR-T cells (8). To better illustrate the
progress: the 5-year survival rate of MM in 1975-1977 was
25% and reached 49% in 2005-2011 (9).

As mentioned before, almost all cases of MM pass through an
utterly asymptomatic phase referred to as MGUS, in which
monoclonal, malignant in their nature plasma cells live in the
patient’s body (2). Normal plasma cells carry on their surface the
following combination of antigens: CD19+/CD56-/CD45+/
CD38+, while the malignant plasma cells are losing CD19 and
CD45 and acquiring CD56 (10). The threshold, when the
abnormal plasma cells are still in a pre-cancerous entity,
MGUS, is set on less than 10% of all bone marrow
mononuclear cells (11). The oncogenesis is usually initiated
within germinal centers of the lymph node during the isotype
class switching and somatic hypermutation (SHM) occurrence
(12). The leading role in the normal plasma cells transformation
into malignant ones is attributed to cyclin D family proteins
mutations enabling G1/S transition (13). Only 1-2% of MGUS
patients progress to symptomatic MM per year (14). To become
malignant, plasma cells must gain the proliferation and growth
potential by self-renewing clone.

The two oncogenes believed to play a critical role in that
process are Ras and Myc (15, 16). Interestingly, the mutations
found in MM cells are also largely present at the MGUS stage,
suggesting that genetic mutations are necessary but insufficient
for myeloma development (17). The bone marrow environment
plays a complementary role in that process. In addition to genetic
factors and aging, environmental factors appear critical to
forming a cancerous cell in MM. During our lifetime, our body
cells, especially immunocompetent cells located in the lymphatic
tissues of the structures that separate us from the outside world,
e.g., in the intestines, skin, or liver, interact millions of times with
various environmental factors - animate and inanimate. The
more environmental signals for recombination and proliferation,
the greater the likelihood of mutation in plasma cells, as in any
other. It seems logical that chronic antigenic stimulation
provokes many rounds of proliferation and selection of B cells,
which means an increased risk of mutational changes starting
oncogenesis when not repaired. Finally, the last stage of the
disease is associated with stroma-independent growth and results
in extramedullary diseases or plasma cell leukemia (PCL). The
main pathway in this process is characterized by constitutive NF-
kB activation, which influences the expression of adhesion
molecules, such as VLA-4 (18).

In our previous work, we have described the role of the gut
microbiome in pathogenesis, biology, and treatment of plasma
cell dyscrasias (19). This review will gather all the information
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about the sophisticated interplay between the immune cells and
the gut microbiota and how this could potentially lead to
MM development.
2 GUT MICROBIOTA – SIGNIFICANCE
DURING OUR LIFE

One of the most surprising data regarding the first steps in gut
colonization was that gut microbiota starts its development
already in utero. Previously, the fetus’s intestine was considered
germ-free, but that view was challenged with the results of a few
studies. The microorganisms were detected in the amniotic fluid
(20, 21), umbilical cord (22), placenta (23), and the most critical –
meconium, which is the first excretion that derives from all that
has been ingested or secreted before the delivery (24, 25). What is
particularly interesting, in the mice model, microorganisms
within the fetus’s gut resemble those which are colonizing the
mother’s intestine (24). Therefore, these microbes should efflux
the mother’s systemic circulation to reach the placenta.

Moreover, during the late pregnancy, the intestinal
translocation of bacteria to the vessels is enhanced, which
could play a role in the initial colonization of the fetus’s gut
(26). A study conducted by Gosalbes et al. showed that the gut
microbiota of infants during their first weeks of life includes the
microorganisms found in the meconium, which were still
detectable even seven months after birth (27). In addition,
Brosseau et al. recently presented the study results, which
shows that supplementation of prebiotics for pregnant women
leads to the transmission of specific microorganisms and
immune factors from mother to fetus allowing the
development of the tolerogenic immune system imprinting
that influences other health outcomes (28). However, these
data contradict the recently published work, which shows that
gut colonization starts after birth and bacteria found in
meconium were the effect of skin contamination (29).

Right after birth, the gut is being rapidly colonized, and
during that period, the mode of delivery plays a crucial role in
establishing gut microbiota composition. For example, infants
delivered vaginally possess the gut microbiota, mainly consisting
of lactobacilli living in high abundance in the vagina (30). On the
other hand, infants born through C-section are frequently
colonized by the microorganisms such as Clostridium species
and facultative anaerobes. Moreover, infants delivered by C-
section are colonized by the Bacteroides genus with delay (31),
and only 41% of their fecal microbiota is identical to the mother’s
gut microbiota composition (72% in vaginally delivered
infants) (32).

The gut microbiota composition during the first year of life
changes, while the diversity of microorganisms colonizing the
gut increases (33). Its composition resembles more and more of
that seen in adults, but it takes another two years to establish a
typical pattern of adult-like microbiota (34, 35). However, some
studies showed that the maturation of human gut microbiota
lasts for more than the first three years of life and can change its
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composition even till 12 years (36). The whole process of
intestinal colonization by newer and newer microorganisms is
remarkably similar to the dynamic development and growth of the
repertoire of immunocompetent cells. These are mechanisms that
go hand in hand, at the same time, and are strongly interdependent.

The impact of proper gut microbiota development is evident
regarding the risk of immune disorders. Lack of balanced gut
microbiota can result in various autoimmune and atopic diseases
(37, 38). It is not surprising given the fact that the largest area of
contact between microbes and immune cells is within the
intestine. Our immune system is constantly stimulated by the
enormous plethora of ligands presented by microorganisms
colonizing the gut, such as lipopolysaccharides (LPS), flagellin,
or unmethylated CpG motifs (39). These ligands shape the
further differentiation of naïve T cells into T regulatory type
(Treg) or the Th1, Th2, and Th17 cells (40). Tregs can inhibit the
differentiation of naïve T cells towards Th types (41), suppress
eosinophils, basophils, mast cells (42), and the production of
immunoglobulin (Ig) E (43). Conversely, different types of Th
cells can inhibit the other ones amplifying through that process
the immune response (44).

For a long time, the researchers were focused on the role of
balance between Th1 and Th2 cells. Excessive activation of one
type of cell causes autoimmune and chronic inflammatory diseases
(Th1) or allergic diseases (Th2) (45, 46). The role of Th17 cells in
diseases classically associated with an imbalance of Th1/Th2
activation was also shown (47). Taking into consideration the
role of balance between Treg and Th cells and also the fact that
such balance is closely related to the composition of gut
microbiota, it leads to the conclusion that gut microbiota is the
initial factor in the pathogenesis of a wide variety of chronic
inflammatory, allergic and autoimmune disease (48, 49).

There is also one other proof of how vital well-balanced gut
microbiota is for maintaining the immune system in shape.
Experiments on germ-free mice, free of any microorganisms,
showed that gut microbiota is obligatory for Tregs differentiation
(50). Other experiments showed that different bacteria and their
products induce the activation of Tregs in mice (51). On the
other hand, segmented filamentous bacteria (SFB) facilitate the
differentiation of naïve T cells towards proinflammatory Th17
cells in mice (52). Together, these experiments showed us the key
role of balanced gut microbiota in health and disease.
3 THE ROLE OF THE B-CELL CHRONIC
STIMULATION IN MULTIPLE
MYELOMA PATHOGENESIS

The process of immunoglobulins (Ig) production starts within
the germinal centers (GCs) of secondary lymphoid organs. This
is where naïve B cells encounter T cells accountable for selecting
B cells eligible for future combat against pathogens or antigens
(53). Given that, one can easily conclude that the whole process
of Ig production starts there – in the secondary lymphoid organs,
Frontiers in Immunology | www.frontiersin.org 3
especially in the gut-associated lymphoid tissue (GALT), and
that is where the defense of the whole organism begins.

In the GCs, B cells are selected based on the higher affinity of
B-cell receptors (BCR) towards the antigen. This is the initial step
in immunity organization that will last for long years (53).
During that process, the naïve B cells undergo two
sophisticated DNA changes by which only B cells with the
highest affinity against the antigen are selected. One of these
processes is somatic hypermutation (SHM) with antigen
selection, and the second one – immunoglobulin heavy chain
(IgH) switch recombination. These two types of DNA
modifications are the source of mutations and breaks of
double-strand DNA, sometimes also in oncogenes (54). When
the oncogene is positioned near the site of the Ig enhancer, then
it results in dysregulation and potent proliferation of B cells.
These are the initial cells that will constitute multiple myeloma
(MM) (55). Many B cell neoplasms share the same feature, which
are the translocations that are mediated by errors during
recombination in V (variable), D (diversity), and J (joining)
gene segments or the abovementioned two more subtle changes
in DNA sequence (56).

The association between chronic intracellular infection with
viruses [HCV, HSV, EBV (57)] or bacteria [Helicobacter pylori
(58)] and the increased risk of neoplasms development was
shown many years ago. It is now established that up to 20% of
malignancies are microbiota-dependent (59). The transformation
of a normal cell into malignant may occur indirectly via chronic
antigenic stimulation of the BCR or directly via B cell infection
and transformation (60). The main proof for the role of chronic
antigenic stimulation in the pathogenesis of MGUS and MM is
the specificity against some viruses of monoclonal Ig produced by
mutated clone (61–63). Moreover, in some cases, the antiviral
therapy against chronic HCV infection alone was sufficient to
reach the regression in the MM that had features compatible with
MGUS (64–66). On the other hand, patients with Gaucher’s
disease have an increased risk of transforming normal B cells into
myeloma cells (67). Some reports indicate that lyso-
glucosylceramide 1 (LGL1) and lyso-phosphatidylcholine
(LPC), which are accumulated in Gaucher’s disease, become
antigens that drive the selection of B cells and therefore
contribute to the pathogenesis of MM (68).

Although very intriguing, these reports require few words of
explanation. Only in the subset of MM patients, the abnormal
immune response to infection may play a role in the
pathogenesis of MM (69). However, the infectious agent was
not detected or remains unknown in the rest of them.

Considering the reports about the role of an abnormal immune
response against infectious agents in the pathogenesis of MGUS
and MM, it seems highly probable that the continuous and large-
scale interactions between B cells and the gut microbiota could
play a role in the pathogenesis of gammopathies. Therefore, it is
crucial to detect whether the monoclonal Ig is targeting specifically
against some bacteria that colonize the gastrointestinal tract and
whether temporal changes in the composition of the gut
microbiota could influence the initiation of gammopathies.
March 2022 | Volume 13 | Article 853540
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4 THE INTERACTION BETWEEN GUT
MICROBIOTA AND OTHER CELLS

4.1 Epithelial Cells
Recent studies showed that gut epithelium plays a critical role in
regulating the host immune system and the luminal microbiota.
Intestinal epithelial cells (IECs) include Paneth cells, absorptive
epithelial cells, and goblet cells, and their two central roles are to
segregate and mediate between the microorganisms colonizing
the gut and the immune system. The former function of IECs is
possible because of the physical and chemical barriers which
prevent the intestinal inflammation that could start because of
conflict between these “two armies’’ of cells. The latter function
means that IECs can forward signals deriving from the gut
microbes and their metabolites and transform that signal for
the language “understandable’’ for the immune cells (70). One
example of such crosstalk where IECs play a crucial role was seen
in mice when segmented filamentous bacteria (SFB) colonized
the gastrointestinal tract of germ-free mice attached to the
surface of the IECs and induced the production of serum
amyloid A (SAA) (52). That, in turn, caused the facilitation of
the Th17 differentiation and IL-23 receptor-dependent IL-22
production by innate lymphoid cells 3 (ILC3) (71). On the other
hand, IL-17 and IL-22 from Th17 and ILC3 cells induce the
production of antimicrobial molecules such as antimicrobial
peptides (AMPs) and the regenerating islet-derived 3 (Reg3)
family of proteins by epithelial cells, which control the
composition of the gut microbiota (72).

What is particularly important from the point of view of this
review is to know that IECs drive the IgA class switching in B
cells, which are occupying the lamina propria, via the production
of a proliferation-inducing ligand (APRIL) through toll-like
receptor (TLR) signaling (73). The fraction of cells mainly
engaged in that process is the M cells, which specialize in the
uptake and delivery of antigens derived from the lumen to the
antigen-presenting cells (APC) such as dendritic cells (74).
Essential for that aim is glycoprotein A (GP2), a transcytotic
receptor of M cells responsible for transporting antigens from the
lumen to the other side of the wall (75).

Therefore, as was presented, the IECs are responsible for the
transition of signals (by TLRs and other receptors and M cells)
between the gut microbes and the immune cells that are staying
on the two sides of the wall and by secretion of chemokines,
cytokines, and hormones they maintain the balance between
“both armies.”

4.2 Immune Cells
Immune cells engaged in the crosstalk with the gut microbiota
are predominantly seen in the lamina propria. The most
common ones are T regulatory cells, NK cells, and invariant T
cells. Dendritic cells infiltrate very deeply into villi and closely
contact with the IECs (76) (Figure 1).

4.2.1 Dendritic Cells (DCs)
The immune cells at the site of the gut epithelium should
generate tolerance to the antigens found in the food, but
Frontiers in Immunology | www.frontiersin.org 4
simultaneously they must be ready for immediate response to
the emergence of pathogens. DCs are APCs known to be the
central players in the immune system together with
macrophages. These cells can uptake the antigens from the gut
microbes with the mediation of epithelial cells or directly extend
their dendrites through the inner mucosal lining to connect with
the environment colonized by the microorganisms (77).
Through those mechanisms, the DCs eventually shape the
composition of the gut microbiota by sampling the microbes
and then giving the special orders to activate appropriate
response (78). The key role processes occur in the mesenteric
lymph nodes where the antigens derived from the lumen are
presented to the naïve T cells by the DCs (79). These DCs are
characterized by the inability to leave the mesenteric lymph
nodes and reach the spleen, thus preventing the organism from
inducing a commensal-specific systemic response (80). The
specific type of DCs, occupying the lamina propria is
characterized by the expression of CD103 on its surface and
the production of TGF-b, which causes the differentiation of
naïve T cells into CD4+CD25+Foxp3+ T cell of regulatory
phenotype (81). This is particularly peculiar given the fact that
usually DCs release the inflammatory cytokines and drive the
differentiation of Th1 cells. Therefore, researchers hypothesize
that the local environment of IECs can stimulate this specific
phenotype of DCs. That local environment means, for instance,
the thymic stromal lymphopoietin (TSLP) released by the IECs,
which was shown in humans to induce the release of the APRIL
and BAFF by DCs and in turn supports the class switching of the
B cells to IgA (82) or the switching of IgA1 to the IgA2
production which are characterized with protease-resistant
phenotype (73). Nevertheless, as will be mentioned further, the
epithelial cells are not the only ones to modulate the function of
DCs because the other immune cells, like macrophages, can also
regulate the function of that population.

4.2.2 Macrophages
Macrophages share some similarities with CD103+ DCs. One of
them is the ability to induce the differentiation of the Treg cells
(83). However, contrary to the DCs, macrophages’ migration to
the mesenteric lymph nodes has not been shown yet, so they
probably do not induce oral tolerance (79). One of the existing
hypotheses is that macrophages associated with the gut
epithelium support the maintenance of Treg cells. Additionally,
macrophages can tune the proinflammatory function of DCs by
inhibiting their ability to drive Th17 differentiation (83).

Unlike the macrophages residing other than gut tissue, the
subtype of macrophages associated with the gut does not possess
the CD14 on their surface, responsible for the LPS-induced cell
activation and proinflammatory cytokines production (84).
Furthermore, these cells produce anti-inflammatory cytokines
such as IL-10 and help the DCs maintain the population of Treg
to prevent the mucosal auto-inflammation (83). However,
although human gut macrophages are known for anti-
inflammatory functions, they do not lose their ability to
phagocyte and perform defense functions (84). There is also
known that within the gut, the population of CD14+
March 2022 | Volume 13 | Article 853540
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macrophages reside and can produce proinflammatory cytokines
such as IL-23 and TNF-a, leading to the further accumulation of
similar cells (85).

4.2.3 Neutrophils
Flagellin is the protein of gram-negative bacteria such as Proteus
or Escherichia that stimulates the TLR5/MyD88 signaling in
IECs. This pathway promotes the production of IL-8 by IECs,
which causes the recruitment of neutrophils to the lamina
propria (86).
Frontiers in Immunology | www.frontiersin.org 5
Neutrophils are known to promote or inhibit the growth of
the tumor (87). Moreover, they can switch from promoting to
the inhibiting mode and stop the tumor’s progression (88). On
the other hand, the interactions between neutrophils and the gut
microbiota were shown to impact the tumor’s growth rate. An
example of that is a mouse model of serrated polyps, a
premalignant lesion of the colon. Throughout the intestine, the
endothelial growth factor receptor ligand is produced, but only
the cecum is the site where that molecule promotes the
development of polyps. That is because the growth of polyps
FIGURE 1 | The intestinal immune system. Bacteria currently colonizing the gut are sensed by DCs presenting their antigens in mesenteric lymph nodes or Peyer’s
patches. In lymph nodes, DCs are accountable for further differentiation of T cells into Treg, Th17, Th1, and Th2 cells producing pro or antiinflammatory “profile” of
cytokines. From the “myeloma point of view” particularly important is the balance between Treg/Th17 cells. The latter is accountable for pro-inflammatory cytokines
such as IL-17 production, which are known to facilitate the development of multiple myeloma. Created with BioRender.com.
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requires the specific gut microbiota composition in the cecal
mucosa. Furthermore, it was shown that administration of
antibiotics or depletion of neutrophils resulted in inhibition of
serrated polyps’ development, suggesting the crucial role
of bacteria and neutrophils in that process (89).

4.2.4 T Cells
We limit the interplay between T cells and the gut microbiota to
the role of the Th17/Treg cells balance because of their great
importance in switching the mode of the immune system from
pro to anti-inflammatory and vice versa. Such imbalance was
reported to play a role in chronic inflammations (90), allergic
diseases (91), cancers, and autoimmune diseases (92, 93). Germ-
free mice were shown to have decreased number of both
populations of cells (94), but it has also been shown that
specific metabolites such as ATP and short-chain fatty acids
(SCFA) can induce differentiation of Th17 and Treg cells,
respectively (95, 96). SCFA are the bacterial products produced
from the dietary fiber by the anaerobic gut microbiota (97).

4.2.5 B Cells and Plasmacytes
The gut microbiota is known for its impact on the development,
differentiation, activation, and function of the B cells. Regarding
the development of human innate-like B cells and marginal zone
B cells, the gut-associated lymphoid tissue (GALT) may be the
site of a growing repertoire of B cells (98). Interestingly, a subset
of human immature B cells, known as transitional 2 (T2) B cells
from the bone marrow, tend to reside in the intestine for their
activation. The maturation process relies on eliminating self-
reactive B cells from the developing repertoire. Failure in that
process is seen in the systemic lupus erythematosus (SLE), which
suggests that this site constitutes a checkpoint against
autoimmunity (99).

The intestinal microbiota may influence the B cells through
the direct and indirect modes. The former depends on B cells’
direct activation via BCR recognition of the carbohydrates and
proteins produced by the gut microbes, which act as antigens
(100). That is T-dependent B-cell activation, but B cells can be
activated T cell-independently. That is because they have TLRs
on their surface, which are extremely important for their survival
and function (101). For example, Oh et al. showed that mice
lacking the TLR5 could not develop immunity against seasonal
influenza vaccination because of the inability to sense the gut
microbiota (102). Similarly, the metabolites of the bacteria can
also activate the B cells. For instance, SCFAs may affect B-cell
metabolism and facilitate the differentiation of B-cell, hence
promoting immunoglobulin promotion (103).

Although some papers showed in recent years that a
repertoire of B cells could develop within GALT with the help
of the gut microbiota, there are still many gaps in that field.
However, that potentially shed light on the possibility that the
composition of the gut microbiota could shape the repertoire of
B cells and that dysbiosis could be potentially accountable for the
chronic antigenic stimulation of B cells and subsequent genesis
of MGUS and MM (Figure 2).
Frontiers in Immunology | www.frontiersin.org 6
5 POSSIBLE MECHANISTIC PATHWAY
OF MYELOMA CELL INITIATION IN THE
CONTEXT OF MICROBIOTA

It is well known that the IgA is produced in the intestine by B
cells, but little is known about the production of other subtypes
of immunoglobulins. However, there is already evidence that the
gut microbiota may induce the TLR4-dependent production of
IgG and that these antibodies are efficient in fighting against
systemic infection (104). Furthermore, some other studies show
that the SCFAs regulate the production of immunoglobulins in
different ways. For example, it was shown that after the
administration of cholera toxin, the SCFAs facilitate the
production of BAFF and retinoic acid (RA) by DCs to
upregulate the synthesis of IgG and IgA (105). Given that, it is
reasonable to think that SCFA may play an active role in
regulating the production of immunoglobulins.

Considering what was said before that the gut microbiota
could potentially drive the repertoire of BCR, it seems probable
that dysbiosis could affect that process. MGUS starts when the
monoclonal globulin starts to be detectable and when there are
less than 10% of clonal plasma cells within the bone marrow.
Nevertheless, the first mutated cell is probably created a long
time before the diagnosis of MGUS or MM. Therefore, we
speculate that this first step towards entirely symptomatic MM
could start within the gastrointestinal wall. Given that microbes,
their antigens, and metabolites are recognized by B cells, activate
them, and provoke proliferation, it seems reasonable to think
that lack of balanced gut microbiota with overgrowth of sparse
species of bacteria and then chronic antigen stimulation could
lead to fully symptomatic MM. Thus, a mechanistic vision of gut
microbiota-dependent myeloma formation could be like we
deliberate below.

Because of acquired or resulting from genetic predispositions
dysbiosis, there is an overgrowth of selected microorganisms in
the gut. Sometimes, even subtler changes such as overgrowth of
one bacteria species or even the presence of one antigen that is
constantly produced within the gut by microbes could constantly
stimulate the immune system of the GALT. Then DCs occupying
this area are continuously activated with the help of IECs in that
process. DCs, after first contact with antigen, are migrating to
mesenteric lymph nodes, which is the place of the “crime,” where
B cells are stimulated by a minimal number of antigens presented
by DCs. That stimulation leads to numerous rounds of
proliferation done by B cells, during which they are
accumulating mutations during the processes of SHM and
class switching. Eventually, the first mutated cell emerges, but
that does not necessarily mean that progression of MM is
initiated here. Changed plasma cells after rounds of
proliferation reach the bone marrow, where they will produce
immunoglobulins. As said before, the additional events must
occur within the bone marrow to facilitate the progression from
MGUS, through SMM, to fully symptomatic MM, and eventually
to PCL. That progression is supported by the proinflammatory
cytokines, which are stimulating osteoclasts to destroy the bones
March 2022 | Volume 13 | Article 853540
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Jasiński et al. Gut Microbiota in Multiple Myeloma
to “make space’’ for quicker and quicker proliferating myeloma
cells (106). We postulate that this is another process in which the
gut microbiota could play the role since papers show that the lack
of balanced gut microbiota results in a more proinflammatory
state of the immune system, and for instance, differentiation of T
cells within the gut is skewed towards Th17 cells. Moreover, the
work of Jian et al. showed that “crosstalk on distance” of
myeloma cells and the gut microbes is possible and that these
two groups of cells cooperate and support the growth
mutually (107).

Considering that, it is worth asking whether there are any
changes in the gut microbiota between different stages of the
disease from MGUS to PCL? An initial, small study done by
Pepeljugoski et al. proves that such changes occur (108) and that
Frontiers in Immunology | www.frontiersin.org 7
progression in the disease is associated with developing
dysbiosis. Additionally, it would be very interesting to check if
dysbiosis or even subtle changes in the gut microbiota
composition could be a risk factor for MGUS. Perhaps, at least
some of the cases of MGUS/MM are producing a monoclonal
protein targeting antigens deriving from the gut. That hypothesis
will be discussed further, but to show that dysbiosis is a critical
player in the progression of the disease, a correlation study that
will link the gut microbiota composition with the immune-
related gene expression profile is needed. Our group has
initiated a study on newly diagnosed MGUS, SMM, and MM
patients recently, in which we are going to search whether there
is such correlation and how it is changing with time and
applied treatment.
A B C

F E D

G H I

FIGURE 2 | How the hypothetical pathway from dysbiosis to multiple myeloma looks? The sequence of events is as follows (A) lack of balanced gut microbiota
which means overgrowth of selected species of bacteria (B) these bacteria are accountable for constant, oligo- or even monoclonal stimulation of DCs (with help of
IECs) which migrate to mesenteric lymph nodes and/or Peyer’s patches (C) there, B cells, T cells and mentioned DCs meet each other (D) DCs are presenting this
oligo-, monoclonal antigens to T cells (E) which then are responsible for selection of B cells that are going to have required features to combat the antigen
(F) because of continuous stimulation in the gut the process of B cell selection is intense and these cells undergo numerous rounds of proliferation which are
preceded by SHM and class switching, associated with DNA changes (G) one initial B cell with driver mutation emerges, transforms to plasma cell that produces
oligo-, monoclonal antibodies against the antigen, and proliferates (H) then plasma cells migrate to bone marrow which is the site of constant immunoglobulins
production (I) when mutated plasma cells acquire additional mutations and are surrounded by favorable milieu then initial state of MGUS changes into SMM, MM
and eventually to PCL. Created with BioRender.com.
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6 THE EFFECTS OF GUT MICROBIOTA
COMPOSITION ON TREATMENT
RESULTS IN MM

Lack of balanced gut microbiota can lead to the lack of “training’’
given to the immune system by microbes. That, in turn, can lead
to the inhibition of the active immune system that can combat
new cancer cells created every day. Therefore, along with
changing the paradigm to an immune-dependent approach,
the gut microbiota role in the effectiveness of immunotherapy
or cellular therapy should be revised. For instance, it is probable
that by restoring the balanced gut microbiota, the results of
mentioned therapies could be enhanced. Such a prove we can
learn from immune checkpoint inhibitors and cancer treatment
(109). However, this could also lead to more pronounced adverse
events (110).

Cyclophosphamide was shown with very low efficacy when
mice were injected with tumor cells and then treated with
antibiotics to achieve a germ-free microenvironment. Thus, a
lack of balanced gut microbiota causes low sensitivity of tumor
cells for cyclophosphamide (111).

Autologous stem cell transplantation (ASCT) is currently a
standard of care for patients in good condition. Until the
engraftment, the patients are in critical pancytopenia and
prone to opportunistic infections and therefore very usually
treated with antimicrobials. However, before that, patients
receive conditioning therapy that influences the composition of
the gut microbiota and has a gross impact on intestinal
epithelium. That altogether leads to the dysbiosis and
monodominance of microbes such as Enterobacteriaceae (112).
Researchers have also shown that butyrate, one of the SCFAs
produced by the Eubacterium halii and Faecalibacterium
prausnitzii, is associated with minimal residual disease
negativity after the induction therapy for MM (113).

Regarding the proteasome inhibitors (PIs), which are
commonly used to treat MM, it is worth noting that their
adverse event is diarrhea. Unfortunately, the pathophysiology
of gastrointestinal toxicity of PIs is poorly understood. However,
as it is known that the SCFAs and PIs regulate the NF-kB
pathway, the gut microbiota probably influences the risk of
adverse events after PIs (114).
7 NOVEL APPROACHES IN METHODS
EXPLORING THE ROLE OF GUT
MICROBIOTA IN MGUS AND MM
DEVELOPMENT

Calcinotto et al. published a study on mice where they showed
that one specific species of the microorganisms colonizing the
gut, namely Prevotella heparinolytica induced differentiation of
Th17 cells. They then migrated to the bone marrow of Vk*MYC
mice (which are the transgenic mice that develop disease
mimicking MM) and favored the progression of MM. That
agrees with the notion that SMM patients with a higher level
Frontiers in Immunology | www.frontiersin.org 8
of IL-17 in the bone marrow have faster progression of the
disease (115).

Moreover, the relationships between myeloma cells and the
gut microbes should be elucidated by identifying the gut
microbiota composition that predicts a higher probability of
MGUS development. It would be essential to know the specificity
of the monoclonal protein produced by the mutated clone and
correlate the results with the gut microbiota. A hypothesis is that
pathogenic species colonizing (even temporally) the gut or state
of dysbiosis when particular species of bacteria overgrowth could
be responsible for the chronic antigenic stimulation and
development of at least part of MGUS and MM cases.

Additionally, it would be interesting to see whether the gut
microbiota composition influences the cytokines produced by
the leukocytes in the blood. For example, maybe the state of
dysbiosis provokes the production of proinflammatory cytokines
by leukocytes and, therefore, indirectly promotes the progression
of MM or MGUS.
8 NEW POTENTIAL TARGETS OF
TREATMENTS IN MULTIPLE MYELOMA

As it was said in the previous paragraph, it is worth checking
whether the treatments targeting IL-17 or IL-17R could work by
lowering the risk of progression of the MGUS/SMM/MM. Such
drugs are already registered by the FDA (anti-IL-17A
antibodies), making it even easier to conduct such a study (116).

Preclinical studies suggest that some species of bacteria
colonizing the gut promote the progression of MGUS or MM.
Papers are mounting about the role of the gut microbiota in
the pathogenesis of many diseases, and great hope is seen in the
procedure of fecal microbiota transplantation to restore the
balanced gut microbiota. Maybe such a procedure or
probiotics/prebiotics could lower the risk of progression of
MGUS to more advanced stages of the disease. Currently, the
patients with MGUS or SMM are offered with watchful waiting
strategy since the risk of progression, especially in the case of
MGUS, is particularly low. Perhaps in the future, the gut
microbiota composition of these patients is going to be known
in detail. The patients with an exceptionally high risk of
progression could be treated with prebiotics/probiotics or even
with fecal microbiota transplantation (FMT) to diminish the risk
of progression completely.

Jian et al. showed recently that the bacterial diversity of the
gut microbiota of newly diagnosed MM patients is significantly
increased with enrichment of nitrogen-recycling bacteria such as
Klebsiella and Streptococcus. The researchers assume this is
because of the progression of MM associated with the excessive
accumulation of urea. Then the urea reaches the intestinal wall
and selects nitrogen-recycling bacteria for overgrowth. In turn,
microbes can produce L-glutamine, which is then delivered to
the host and promotes the proliferation of myeloma cells since
they cannot produce it on their own. Thus, the authors propose
that the gut microbiota alterations, namely reduction of
Klebsiella and Streptococcus populations, which are also present
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in the normal microflora, could lower the risk of progression of
MM (107). Furthermore, MM patients are also prone to
infections, for instance, pneumonia with a common etiology of
Klebsiella or Streptococcus (117). Therefore, the reduction
of these populations could additionally mitigate the risk of
infections during the disease. Additionally, it was also found
that SCFA-producing bacteria were depleted in MM, and the
addition of such bacteria in mice resulted in the mitigation of
tumor progression (107).
9 CONCLUSIONS

To sum up, it seems highly probable that there is a role of the gut
microbiota in the pathogenesis and treatment of MM. With ever-
growing numbers of papers published in that field, the hope for an
entirely new type of prophylaxis of progression of MGUS or
treatment of MM is growing in parallel. Our previous work shows
the remarkable efficacy of FMT in preventing colonization of a
single, in that case, antibiotic-resistant bacteria (118). Also, in the
model of graft-versus-host disease, we have shown that it is
possible to stop the inflammatory process in the gut by FMT,
Frontiers in Immunology | www.frontiersin.org 9
shedding new light on the immunomodulatory effect of the gut
microbiota (119, 120). Given that single species of bacteria,
Klebsiella and Streptococcus were shown to play a role in the
progression of MM, it seems that further studies on gut
microbiota in the treatment of MM are warranted. Additionally,
these bacteria are often responsible for infections in that
population of patients. Therefore, the possible efficacy of FMT
in the elimination of these “microbial partners in crime’’ would
be multidirectional.
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