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Abstract: Bacterial artificial chromosome (BAC) vectors were first developed to facilitate 

the propagation and manipulation of large DNA fragments in molecular biology studies for 

uses such as genome sequencing projects and genetic disease models. To facilitate these 

studies, methodologies have been developed to introduce specific mutations that can be 

directly applied to the mutagenesis of infectious clones (icBAC) using BAC technologies. 

This has resulted in rapid identification of gene function and expression at unprecedented 

rates. Here we review the major developments in BAC mutagenesis in vitro. This review 

summarises the technologies used to construct and introduce mutations into herpesvirus 

icBAC. It also explores developing technologies likely to provide the next leap in 

understanding these important viruses. 
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1. Introduction 

Members of the viral family Herpesviridae are characterised by double-stranded DNA genomes 

ranging in length from 125 to 240 Kbp. The genetic stability and potential for incorporating large 

amounts of foreign DNA have made the herpesviruses a promising target for the development of gene 

therapy and vaccine vectors. For these purposes, replication-limited herpesvirus vectors have been 

developed through the deletion of an essential viral gene, which can subsequently be provided in trans 

to permit virus replication in a controlled or limited manner in vivo (for a review see [1]). While many 

early studies based on these techniques were successful, the scope of determining viral gene function 

was limited by two factors. Firstly, genes could only be manipulated using homologous recombination 

in virus-susceptible cells. To successfully use this approach, the cells had to be amenable to a method 

of introducing foreign genetic material, to permit the introduction of the DNA transgene-material 

encoding the required modification. Secondly, it was difficult to efficiently generate mutant viruses 

with altered or deleted genes that are essential for virus replication. These types of mutations required 

the co-delivery of functional copies of the deleted genes to permit virus replication. This was generally 

achieved by the generation of stably transformed cell lines that constitutively expressed the gene of 

interest or by using helper viruses. As a result of these limitations, the development of novel vectors 

and gene function studies could be achieved, however it was a time consuming process. These 

requirements severely limited the capacity to efficiently generate viruses with the desired mutations 

and deletions. In contrast, the generation of BAC mutants is a much quicker process. However 

mutations affecting essential viral genes still require the gene product to be provided in trans to 

generate infectious virions. 

2. Infectious Clone Technologies 

A key step in the development of herpesviruses as biological vectors, and herpes biology in general, 

was the development of infectious clone technologies. Initial efforts to improve the efficiency for 

herpesvirus genomic manipulation involved the use of Escherichia coli plasmid replicons known as 

cosmids. As these cosmids can only accommodate up to 45Kbp of foreign DNA, a series of vectors 

that contained overlapping segments of the herpesvirus genome were required to facilitate the 

generation of recombinant viruses [2]. Typically modifications were made to one fragment, followed 

by the rescue of infectious virus by introducing the complementing cosmids into cells to generate 

infectious virus. 

Luckow et al. [3] were the first to demonstrate the cloning of the complete genome of a large 

double-stranded DNA virus as a bacterial artificial chromosome (BAC) vector. This was achieved by 

cloning a baculovirus genome to permit propagation and manipulation of the viral genome in 

Escherichia coli and subsequent rescue of infectious virus. Messerle et al. (1997) subsequently 

extended this technique to the herpesvirus family by cloning the complete genome of murine 

cytomegalovirus into a BAC [4]. This facilitated the recovery of infectious virus once reintroduced 

into susceptible cells. Since this initial study the genomes of at least 20 herpesviruses of human and 

veterinary importance and their derivatives have been used to create infectious clones using BAC 

technologies (icBAC) [5–25]. More recently, BAC technology has also been extended to other DNA 
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viruses including poxviruses [26,27], and to RNA viruses including coronaviruses and flaviviruses, 

through the development of infectious cDNA clones [28,29]. 

3. Advantages of Bacterial Artificial Chromosomes 

The cloning of large fragments of genomic DNA for the past three decades has underpinned 

advances made in genome sequencing, identification of the causative genetics of disease and the 

development of disease models. The three major vector types utilized in these studies are BACs, yeast 

artificial chromosomes (YAC) and mammalian artificial chromosomes. While each of these systems 

have their own advantages depending on the research question to be addressed, BACs are undoubtedly 

the system of choice for studying herpesviruses. BAC vectors are based on the E. coli fertility factor 

(F-factor) replicon which is maintained as a circular supercoiled extrachromosomal single copy 

plasmid in the bacterial host [2,30,31]. BACs can accept inserts up to 300 Kb in length, which is 

sufficient to allow the genomes of all known herpesviruses to be maintained as an icBAC. The 

principal advantage BACs have over the traditional YAC systems is stability of insert propagation over 

multiple generations. This is an essential property in the context of herpesvirus biology, as the 

genomes of many of these viruses contain a variety of repetitive sequence elements that could promote 

instability. However many studies have successfully propagated icBAC over multiple passages without 

detecting rearrangements [4,5,7–10,12,26,32,33]. Although YACs are capable of maintaining very 

large DNA inserts of up to 1Mb, they have numerous disadvantages, including instability, chimaerism 

and handling difficulties such as shearing of DNA [30,31].  

The capacity to continually propagate a viral genome with high fidelity also provides the 

opportunity to explore other avenues of herpesvirus biology, compared to tradition cell-based 

methodologies. Each BAC clone represents a single replicative template that has been cloned during 

the replication process, termed clonal selection. As such, BAC clones permit an assessment to be made 

not only of the genomic variation that exists within a virus isolate, but also how these differences 

impact on viral biology. Although the concept of quasispecies is used almost exclusively to describe 

RNA virus populations because of the relatively high error rate of RNA polymerase [34], sequence 

heterogeneity has recently been identified for BAC clones of murine cytomegalovirus and Gallid 

herpesvirus 2 and for plaque-purified pseudorabies virus stocks [35–38].  

Further, a BAC clone can help ameliorate the effects of in vitro passage of virus isolates. There are 

numerous examples where attenuation of the virulence of a herpesvirus can be achieved by repeated 

passage in susceptible cells [39–41]. While this is sometimes the aim of passage, for example in the 

development of an attenuated strain for use as a vaccine, the apparent accumulation of mutations can 

make it difficult to effectively study important viral properties such as virulence. An icBAC not only 

allows the efficient production of many copies of virus genome, it also provides the mechanism to 

return to the first passage without the need for in vivo back-passaging in the natural host and 

subsequent re-isolation. 

4. BAC Construction 

The primary methodology for developing icBAC is dependent on some knowledge of the viral 

genome sequence. This approach was first described by Messerle et al. (1997) who developed a 
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transfer vector to facilitate the use of homologous recombination to transfer a BAC vector into the 

genome of murine cytomegalovirus. In order to increase the likelihood of successful transfer, a 

selection cassette was included in the vector. This approach has been widely used to generate the 

majority of icBAC [9,11]. 

Other methods of icBAC construction have also been reported, although the utility of these 

techniques across a broader range of viruses has yet to be demonstrated. 

Smith and Enquist (1999) generated an icBAC of pseudorabies virus by first using homologous 

recombination in eukaryotic cells to insert a single loxP site into the viral genome. This construct then 

recombined at this site with a plasmid containing the BAC vector [9].  

Where available, the complete genome sequence of a virus can be used to identify unique restriction 

endonuclease sites that can be used to increase the efficiency of homologous recombination in host 

cells. This approach was used by Mahony et al. (2002) to facilitate the construction of an icBAC for 

Bovine herpesvirus 1 (BoHV-1) [12]. 

Recently Ooi and coworkers [42] have also demonstrated BACs maintained as linear replication-

competent constructs. This was achieved by inserting a bacteriophage N15 tos site into a circular BAC 

that was then resolved in vivo to produce hairpin telomeres that capped the ends of the linearized 

BAC [42]. These linear BACs have been shown to be as amenable to recombination techniques as 

more traditional circular BACs [43]. This technique has not yet been applied to viral icBACs.  

Due to these handling features, it is not surprising that BAC vectors have dominated the development 

of infectious herpesvirus clones. 

The limitation of availability of genomic sequence in the construction of herpesvirus clones has 

potentially been overcome by two recent reports that described the insertion of BAC vectors into viral 

genomes using transposon-mediated methodologies [44,45]. However, so far this method has only 

been reported for a murine herpesvirus-68 strain and a baculovirus shuttle vector. 

The generation of recombinant viruses prior to the application of icBAC was reliant on low 

frequency homologous recombination in virus-susceptible eukaryotic cells [3]. Typically this would 

require the development of a transfer or shuttle plasmid containing the transgene of interest flanked by 

regions of virus sequence upstream and downstream of where the transgene was to be inserted. The 

transfer vector was then introduced into virus-susceptible cells followed by virus infection, and the 

recombinant virus was plaque-purified. Various strategies were used to increase the efficiency of this 

process, including the addition of selectable markers or the co-transfection of infectious viral DNA and 

shuttle plasmid DNA [46]. Overall these were time-consuming and labour intensive methods, and due 

to these limitations, the focus turned to utilizing the powerful recombination machinery of bacteria. 

The large size of DNA inserts in BACs limits the efficient application of traditional restriction 

endonuclease and ligation techniques to introduce mutations, however some methods involving 

restriction enzymes have been successfully utilized. RecA-assisted restriction endonuclease (RARE) 

cleavage involved protecting a specific restriction site by using a complementary oligonucleotide that 

prevented methylation when bound to the complementary sequence [47]. After dissociation of the 

complex, the restriction site was amenable to routine restriction and ligation procedures. This 

technique was used to generate a chimaeric BAC and then introduce deletions in a BAC containing the 

full-length LRP-1 gene [47]. NotI sites have been used to retrofit selectable markers into mammalian 

BACs due to the infrequent occurrence of NotI sites in mammalian genomic DNA [48]. These 
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applications were limited by the location of pre-existing restriction sites and successful manipulation 

was laborious. 

The application of BAC clones in the development of human disease models facilitated the 

development of strategies to apply bacterial genetics to increase the efficiency and precision of BAC 

manipulation using sequence-dependent and independent technologies. BAC engineering of viral 

icBACs is now common practice both to elucidate gene function and for the generation of recombinant 

viruses. Methods have been established for both site-specific changes, such as point mutations, 

insertions, deletions or gene fusions, and for random mutagenesis utilizing transposable elements. In 

contrast to the use of homologous recombination to generate recombinant viral progeny in eukaryotic 

cells, mutated genomes within icBAC can be fully characterized before attempting to recover 

infectious virus, avoiding time-consuming selection steps [4]. Following transfection of the modified 

icBAC into permissive eukaryotic cells, infectious recombinant virus may be rescued. Existing 

methodologies continue to be improved to enhance the efficiency of recombinant virus production and 

to remove marker and BAC vector sequences for use in transgenic studies. 

5. Bacterial Genomic Recombination  

Mutagenesis of BACs within E. coli was originally mediated by RecA, part of the DNA repair 

machinery of the bacterial cell [49]. In E. coli, double-strand breaks of the bacterial chromosome are 

repaired mainly through the RecBCD pathway. During this process, bacterial RecA identifies  

double-strand homologous sequences and strand invasion occurs, whereby RecA unwinds the dsDNA 

and assimilates it to its complementary sequence. The displaced single-stranded DNA is digested by 

exonuclease activity and DNA ligase completes the repair process (reviewed in [50,51]). Utilising 

constitutive bacterial recombination pathways for BAC mutagenesis is limited because the majority of 

laboratory strains of E. coli have been engineered to be recombination negative to maintain stability of 

DNA inserts by preventing unwanted recombination, deletions or rearrangements. Also, linear  

double-stranded DNA molecules are degraded due to exonuclease activity in RecBCD E. coli strains. 

Thus for BAC manipulation, RecA-mediated homologous recombination has to occur in a  

temporally-controlled manner. This can be achieved by either transferring the BAC construct to a 

recombination positive bacterial strain for manipulation, or by transiently inducing recombination 

functions that are encoded by either the host chromosome or on a helper plasmid. Homologous 

recombination techniques allow any type of mutation, point, insertion, deletion or gene fusion, to be 

efficiently introduced. The probability of a recombination event occurring is dependent on the length 

of the homology arms, and is increased by the presence of Chi sequences within the homology  

arms [52]. These Chi sequences signal RecBCD exonuclease to begin the process of DNA repair that 

facilitates recombination.  

5.1. Inducible Rec-A Mediated Homologous Recombinations 

The RecA-mediated recombination process involves co-integration of the shuttle plasmid, usually 

containing positive or negative selection markers, via homologous recombination of sequences 

specifically targeting the transgene [2,4]. This can be a two-step ‘pop-in/pop-out’ process in which the 

co-integration step is followed by resolution, to remove the selection marker and other operational 
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sequences as outlined in Figure 1. This is based on the technique originally developed for manipulation 

of plasmids [2]. Alternatively, to achieve gene disruption, only one step co-integration is required [53]. 

The mutation of interest, with homology arms no shorter than 200 bp to 500 bp, is cloned onto a 

circular shuttle plasmid. The mutation can be generated by restriction digestion and ligation or by PCR 

using primers to synthesize the homology arms, and is ligated to the shuttle plasmid using standard 

methods. The use of a circular plasmid rather than a linear DNA fragment is necessary to prevent 

degradation of linear DNA by cellular RecBCD exonuclease [54]. When recombination functions are 

induced, this shuttle plasmid then co-integrates into the BAC by a single crossover event with one 

homology arm. These co-integrates undergo dual positive selection for the markers encoded for on the 

BAC and on the shuttle plasmid. In a second single crossover event, resolution occurs via 

recombination at the second homology arm to produce either the wild-type BAC or the desired 

recombinant. Recombinants must be identified, usually by counterselection. Linear DNA substrates 

can be used for RecA-mediated recombination only in recBCD negative E. coli strains [55,56], 

however this occurs only at low efficiency [57].  

Recombination functions can be induced in various ways. E. coli strains such as the CBTS strain 

generated by Dr O’Connor are conditionally RecA-positive [58]. In this particular strain, 

recombination is active at 30 °C, but is lost at temperatures higher than 37 °C [58]. Alternatively, the 

RecA gene can be incorporated into the shuttle vector. This method was developed by Yang et al. 

(1997) who produced pSV1.RecA [49]. The plasmid is temperature sensitive and is lost at restrictive 

temperatures above 42 °C. By expressing RecA from a conditional plasmid, recombination can be 

induced in recombination-deficient strains and the plasmid can be easily lost to minimize the 

recombination window and maximize stability [49]. Other conditional plasmids have also been used, 

including pSC101 which is temperature sensitive similar to pSV1.RecA, ColE1 plasmids which are 

unable to replicate in polA mutant E. coli strains and pir-dependent plasmids which have a conditional 

R6Kγ origin of replication [59–61]. RecA-mediated recombination has a number of disadvantages 

including the need for intensive construction of building and shuttle vectors and long homology  

arms [62]. Also, RecA is activated for a relatively long time period when compared directly with more 

recent recombination methods and this extended recombination window may compromise stability [63]. 

Jessen et al. [64] aimed to improve efficiencies of RecA-dependent recombination by incorporating 

precisely placed Chi sites in the shuttle vector, however Chi-stimulated recombination is generally 

inefficient despite long regions of homology [57]. A key disadvantage of RecA-mediated recombination 

is the laborious construction of the shuttle plasmid. In an effort to improve the efficiency of vector 

construction, Misulovin et al. [65] developed a method to modify shuttle vectors by PCR. Homology 

arms were generated from the BAC template using primers with overlapping regions. PCR products 

from this first step were subjected to a second round of multi-template PCR to generate a hybrid 

product which was then cloned into a shuttle vector. This process reduced the time required for 

construction of the shuttle plasmid when compared to restriction enzyme-based cloning techniques, 

however despite these modifications, alternative recombination systems have been developed that offer 

further advantages over RecA-dependent systems and are now preferred.  
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Figure 1. (a) A shuttle plasmid containing the mutation of interest flanked by homology 

arms >200 bp along with a positive selection marker is transformed into an E. coli strain 

containing the BAC construct. Recombination functions are induced, either from the E. coli 

chromosome or from a conditional plasmid. (b) Co-integration of the shuttle plasmid 

occurs via a single crossover event at one homology arm, and is selected for under positive 

selection. (c) Resolution occurs under selection for the BAC construct only via a second 

single crossover event at the remaining homology arm to result in the BAC construct 

containing the mutation of interest. 
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Figure 1. Cont. 

 

5.2. ‘Recombineering’ Methods 

To improve the efficiency and stability of BAC manipulation, strategies were developed that utilize 

the naturally occurring recombination functions from various bacteriophages. Murphy et al. [57] 

reported the utilization of the recombination mechanisms of the bacteriophage λ Red operon, while 

Zhang et al. [66] demonstrated the successful application of the recombination functions from the 

cryptic prophage Rac. The use of phage-derived recombination functions was later termed 

recombinogenic engineering, or recombineering, and is now widely used for BAC engineering [67]. 

Recombineering involves integrating a linear DNA molecule (transgene) into the target BAC clone 

at a defined location. This process is facilitated by the use of homologous sequences between the two 

DNA molecules, resulting in a one-step double crossover event as demonstrated in Figure 2.  

Both phage systems utilize linear DNA in the recombination process as opposed to circular DNA in 

the RecA-dependent system described previously [57,66]. Linear DNA can be either a double-stranded 

PCR product or short single-stranded oligonucleotides [57,66,68]. Efficiencies are 10 to 100 times 

higher when using these oligonucleotides when compared with double-stranded DNA and construction 

is simpler [62,69,70]. When using oligonucleotides, the lagging strand produces higher recombination 

efficiencies than the leading strand [68]. Oligonucleotides can also be used for recombination without 

selection. This has been demonstrated by Swaminathan et al. [71] who screened recombinants by PCR 

amplification of the mutated region on pooled cultures.  
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Figure 2. A PCR product or oligonucleotide with 50bp homology arms is transformed into 

an E. coli strain containing the BAC construct. Recombination functions are induced, 

either from the E. coli chromosome or from a conditional plasmid. The mutation is 

integrated by a double-crossover event, and is selected for by the positive selection marker. 

 

5.2.1. Bacteriophage λ Red Recombination 

The bacteriophage λ Red recombination genes are Redα (Exo) and Redβ (Beta). The molecular 

mechanisms behind this form of recombination have been described elsewhere [72,73]. More recently 

a new model for double-stranded DNA recombination has been proposed, termed beta recombination, 

which may have future implications on Red recombineering [74]. Redα is a 5' to 3' exonuclease which 

when activated, results in the production of a single-stranded 3' overhang that is the binding site of 

Redβ [54]. Redβ is a single-stranded binding protein that promotes annealing of complementary 

strands of DNA [75]. In the Rac prophage, recombination occurs via RecE and RecT, which are 

homologous to Redα and Redβ respectively, and hence this system is termed ET cloning [66,76]. 

When recombineering using single-stranded oligonucleotides Redα function is not required, and only 

Redβ function is necessary [68]. The addition of Gam (γ) from bacteriophage λ to the basic phage 

recombination functions has led to increased efficiency of the system by protecting linear DNA from 

host RecBCD exonuclease activity, and it is now standard to provide gam with these other  

functions [57]. An important advantage of the phage-based recombination systems is that in contrast to 

the RecA system, only short DNA sequences from around 50bp in length are required to target the 
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transgene to the site of interest, and these can be simply constructed using PCR methods [66]. 

Recombineering is simple, precise, rapid, efficient and inexpensive and has now become the 

cornerstone for recombinant BAC generation [77]. One drawback of this approach, however, is that the 

genomic sequence of the target region must be known; therefore its application in manipulation of 

uncharacterized viral genomes can be limited. 

Murphy et al. [57] was the first to demonstrate λ phage recombineering. Red recombination 

functions were initially expressed from a multi-copy plasmid but were subsequently integrated into the 

E. coli KM22 chromosome through replacement of chromosomal RecBCD with the Plac-Red operon. 

This system was RecA-independent, in that recombination could occur in the complete absence of 

RecA, however efficiencies and cell survival have been demonstrated to be improved when RecA is 

expressed concurrently [45]. Efficiencies from the plasmid-based expression system were 15–130 

times higher than those seen in recombination proficient E. coli strains, and were higher again when 

recombination functions were expressed from the bacterial chromosome [57]. Because of the improved 

efficiencies, Red recombination has also been used to simultaneously insert two selectable cassettes 

concurrently at individual loci [78]. No cloning of vectors is required and the method is mobile and 

applicable to other E. coli strains via P1 transduction. Similarly, Yu and coworkers [69] constructed  

E. coli strains containing a defective λ prophage integrated into the bacterial chromosome, however the 

intact pL operon in these strains was under control of the temperature-sensitive λ cI857 repressor.  

At 32 °C, the repressor is active and recombination functions are inhibited, while at temperatures 

above 42 °C, the repressor is inactivated and recombination can proceed [69]. Due to the strength of 

this promoter, 15 minutes was ample time for recombination to occur, and approximately 1 in 500 

clones carried the desired mutation [69]. Because recombination functions are expressed under the 

control of the natural promoter, this system is very efficient, tightly regulated and genes are expressed 

in their physiological molar ratio [79]. This temperature-sensitive repressor system was also 

constructed on a non-replicating circular plasmid termed mini-λ [80]. A range of other conditional 

plasmids, both high and low copy number, carrying recombination functions have also been used, 

similar to those described above for RecA-dependent recombination [79,81,82]. The use of plasmid 

constructs to provide recombination functions limits the range of plasmids that can be used for 

subsequent manipulations [69]. However an advantage of the plasmid-based system is the ease of 

mobility between strains, while some strains in which the recombination functions have been 

integrated into the host chromosome can be difficult to transform [83]. 

5.2.2. ET Cloning  

ET cloning was first demonstrated by Zhang et al. (1998) in sbcA K12 E. coli hosts that contain the 

Rac prophage integrated into the E. coli chromosome and therefore, express RecE and RecT 

recombination functions [66]. In these hosts, the sbcA mutation activated the RecET recombination 

pathway. To enable this system to be mobile, the plasmid pBAD-ETγ was then created [66]. In the 

pBAD system, RecE is under control of the arabinose-inducible promoter pBAD, while RecT is under 

control of the strong constitutive promoter EM7 and gam is under the constitutive Tn5 promoter. 

Replacement of RecE and RecT with λ Redα and Redβ gave rise to pBAD-αβγ, which was shown to 

be one to three times more efficient than pBADET-γ [76]. The constitutive expression of gam has 
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since been shown to reduce cell viability and may limit recombination efficiency [84,85]. Because of 

this, an ET cloning vector was modified to create pGETrec [86]. In this plasmid, recE, recT and gam 

expression are all under the control of the pBAD promoter and hence expression of all three genes is 

tightly regulated. Published reports state that the plasmid is rapidly lost from bacteria once positive 

selection for the plasmid is removed [10,76]. ET recombination has also been used for sub-cloning 

from BACs to plasmids at high efficiency, although some background from re-circularisation of 

‘empty’ plasmids has been reported [87]. Bacteriophage P22 recombination functions encoded by arf, 

erf, abc1 and abc2 have also been demonstrated to stimulate recombination, however efficiencies were 

only 5 to 10% that of λ phage Redα and Redβ [57,88].  

5.3. Counterselection Methods 

To identify recombinant clones, selection and counterselection methods, also referred to as 

positive/negative selection, are frequently used. Figure 3 outlines an insertion into a BAC using 

selection and counterselection. This process allows scarless removal of operational sequences such as 

selection markers, as well as aiding in identification of recombinant clones. Various methods have 

been used, however counterselection is generally much less efficient than positive selection due to a 

large number of false positive background colonies. This occurs because any mutation in the 

counterselection gene that reduces gene expression will be selected for [66].  

Figure 3. (a) A positive selection marker is integrated into the BAC construct using 

homologous recombination and recombinants are isolated under positive selection.  

(b) A second round of homologous recombination is used to replace the positive selection 

marker with the mutation of interest. Recombinants are selected for under negative 

(counter-) selection. 

 

Common counterselection methods used for BAC mutagenesis include fusaric acid, neo-sacB, 

ccdB, rpsL-neo and galK [49,63,66,89]. Original recA-dependent recombination frequently used 
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tetracycline resistance as a positive selection marker, followed with counterselection by bacterial 

growth on plates containing fusaric acid [49]. Colonies that retained the tetracycline resistance marker 

were unable to grow on fusaric acid medium, while those that had lost the tetracycline marker did 

grow [90]. However, growth was slow and this selection procedure showed only 4% efficiency during 

resolution [66,91]. Sucrose-based counterselection against sacB has been widely reported, however it 

has been noted that spontaneous mutations occurred frequently (~1 in 104) in the sacB region, resulting 

in selection for these mutations and thus significant background which requires further characterization 

to identify true recombinants [77,92,93]. For example, Muyrers et al. [92] reported that up to 90% of 

colonies after counterselection were false positive colonies. An additional drawback of this system is 

the poor efficiencies for transfer vector construction due to the large size (3 Kb) of the sacB gene [77]. 

RpsL-based counterselection for BAC mutagenesis was initially demonstrated by Imam and  

coworkers [63]. Specific rpsL mutant strains, when provided with the wild-type rpsL allele, become 

streptomycin-sensitive but resistant to a second antibiotic through a second selectable marker [94,95]. 

Resolved recombinants then returned to the streptomycin-resistant state when the rpsL allele was 

replaced. This selection method is only applicable to specific streptomycin-resistant rpsL bacterial 

strains, although the common BAC host strain DH10B strain is suitable. Spontaneous mutants are rare 

compared to sacB counterselection and selection is very efficient [63,96,97]. Counterselection has also 

been achieved by using a cassette containing a I-SceI restriction site and antibiotic resistance  

marker [98]. The cassette was replaced by a PCR product with the desired mutation, and after 

digestion with I-SceI, recombinants were selected as those that did not linearise. This technique was 

also prone to spontaneous mutations in the restriction site, resulting in a high background of false 

positive clones [89,98]. 

Another approach used E. coli strains that have had the galactose operon deleted to allow galK 

gene-based selection [89]. galK was first inserted into the BAC construct and recombinants were 

selected for by growth on media containing galactose as the sole carbon source. galK encodes the 

galactokinase enzyme which is necessary for galactose utilisation [89]. Galactokinase also 

phosphorylates 2-deoxy-galactose (DOG) which upon further metabolism, produces the toxic end 

product 2-deoxy-galactose-1-phosphate [89]. The galK gene was replaced by the foreign DNA insert 

via homologous recombination. Loss of the galK gene, hence insertion of the foreign DNA, was then 

screened for by growth on media containing DOG and glycerol. Non-recombinants still containing the 

galK gene were selected against by the formation of toxic 2-deoxy-galactose-1-phosphate. galK 

selection is useful because it can be used for both positive and negative selection, there is minimal 

background, the galK cassette can be recycled and the cassette is small, which simplifies development 

of transfer constructs [89]. However counterselection against galK is inefficient, it is only suitable for 

use in specific galK-negative E. coli strains and PCR screening of potential recombinants is required 

because of the risk of spontaneous mutations [77,99]. The use of thymidylate synthase A (thyA) shares 

similar advantages and disadvantages with galK selection [100]. Specific thyA-null E. coli strains, such 

as QW1, are required and the thyA gene is first integrated and then replaced to obtain the desired 

recombinant [100]. In the presence of thyA, colonies are able to grow in a minimal medium that lacks 

thymine. Once thyA has been eliminated, recombinants are selected for in media containing thymine 

and trimethoprim. 
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6. Site-Specific Recombinases (SSRs) 

Site-specific recombinases (SSRs) have been used in conjunction with homologous recombination 

techniques in bacteria to further manipulate and produce recombinant BACs. SSRs have been used to 

delete sequences such as prokaryotic regulatory sequences, selection markers and the BAC vector 

backbone. This is discussed in further detail in Section 7. SSRs have also been used to insert sequences 

into BACs (see Figure 4) [101]. Deletions occur at higher efficiencies than insertions, as insertions are 

kinetically unfavourable, however SSRs are still very useful tools and large insertions have been 

achieved [102]. The most common SSRs used are Cre recombinase and Flp/Flpe recombinase.  

These recombinases target specific loxP or FRT sites respectively, and efficiencies are extremely  

high [67,76,103]. By flanking sequences to be removed, such as BAC vector sequences, with 

recognition sites in the same orientation, upon expression of recombinase functions, intervening 

sequences are looped out and excised [9,26,78,104,105].  

Figure 4. (a) The mutation to be inserted contains a positive selection marker flanked by 

loxP or FRT sites. This mutation is inserted into the BAC using a homologous 

recombination method. (b) Once the mutation has been integrated into the BAC and 

selected for using the positive selection marker, the site-specific recombinase is induced. 

(c) This results in removal of the positive selection marker, leaving a single persistent loxP 

or FRT site. 

 

Insertions can be created by co-integrating a shuttle plasmid such as pRETRObac into the BAC 

clone via a single loxP site, however this can only occur at one location on the BAC vector and thus is 
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not useful for specific gene modifications [101]. The ‘flip-flop’ and HSVQuik systems for herpes 

simplex virus have also used site-specific recombination for the creation of BAC vectors and insertion 

mutagenesis [106,107]. The flip-flop system developed by Kuroda et al. utilized both Cre and Flpe 

recombinase to first integrate the BAC vector and mutation of interest into HSV and then to remove 

the BAC vector backbone [106]. It was specifically designed so that non-recombinants exceeded the 

maximum packaging capacity of the virus and were therefore unable to grow, simplifying the 

screening process [106]. The HSVQuik system from Terada et al. [107] similarly used sequential  

site-specific recombination to first insert the transgene into the BAC in bacteria and then to remove the 

BAC backbone in eukaryotic cells [107]. In this system, typically 90% of resultant virions correctly 

had the BAC backbone removed [107].  

7. BAC De-Engineering 

A major potential concern of BAC engineering, particularly for in vivo transgenic or vaccine 

applications, is the presence of residual BAC and marker sequences in the final recombinant. Various 

methods have been developed for markerless BAC mutagenesis, including the use of site-specific 

recombinases as detailed above [4,9,15,17,19,20,22,26,32,66,83,104,108–110]. One of the disadvantages 

of using SSRs, particularly in transgenic studies, is the persistence of a single 34 bp restriction site or 

‘scar’ that remains after recombination has occurred [108]. However the presence of this small scar in 

viral vectors or engineered vaccines is generally not a concern. Wagner et al. [111] and Tischer and 

coworkers [112] utilized sequence duplications on the insertion DNA to delete BAC sequences by 

stimulating recombination once reconstituted in eukaryotic cells. Markerless constructs have also been 

created through co-targeting of a selectable marker to the E. coli chromosome [113]. This was 

achieved by using an excess of the BAC targeting cassette, which resulted in a high probability that 

those colonies containing the selectable marker in their chromosome would also contain a mutation in 

the BAC they harbor. Pofsai et al. [114] co-integrated the mutation of interest into the host 

chromosome and subsequently utilized the homing endonuclease I-SceI to create a double-strand break 

at a pre-engineered restriction site. This stimulated intramolecular recombination, and recombinants 

were screened for by allele-specific PCR, eliminating the need for selection markers. Recombination 

efficiencies varied, but were low for large deletions, and high efficiencies were only achieved with 

repetitive colony selection [114]. Herring and coworkers [115] used a similar technique they termed 

“gene gorging”. This required a donor plasmid carrying the mutation of interest to be linearised with  

I-SceI in vivo to stimulate Red recombination functions. These were provided on separate mutagenesis 

plasmids. Again no selection was required and screening for recombinants was by PCR [115].  

Tischer et al. [116] refined this method, later termed “en passant” recombineering, by using I-SceI 

cleavage to provide the substrate for additional recombination steps. Subsequent intramolecular 

recombination of sequence duplications resulted in removal of the selectable marker. Assisted large 

fragment insertion by Red/ET-recombination (ALFIRE) also utilized I-SceI [117]. Other homing 

endonucleases such as I-CeuI have been used for BAC mutagenesis, for example in the Homingbac 

baculovirus cloning system [118]. Parent Homingbac baculoviruses were pre-engineered to contain a 

eukaryotic GFP fluorescent marker gene. Digestion with I-CeuI resulted in excision of this GFP 

marker and transgene DNA with compatible end sequences could then be ligated into the parent 
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baculovirus [118]. Although unlikely to be 100% efficient, background parental virus could not be 

detected in this study.  

8. Random Mutagenesis 

While site-specific mutagenesis techniques are necessary to target specific genetic loci, these 

techniques are not suited for global genome analysis. In contrast, random mutagenesis is particularly 

useful for the rapid generation of libraries of gene disruptions. These libraries can then be screened to 

identify mutations in specific genes and to elucidate the effect of the mutation on virus function. The 

most widely used random mutagenesis methods rely on transposon technologies to achieve gene 

disruption. Transposons are mobile genetic elements originally discovered in maize by McClintock [119] 

and multiple transposon families have since been characterized . These elements can be activated by a 

transposase to induce movement and can be engineered to contain SSR recognition sites, foreign DNA, 

primer binding sites, regulatory elements and antibiotic selection markers between their end  

sequences [120]. Although many transposon families exist, the most useful and efficient for BAC 

modification are those that preferentially insert into negatively supercoiled plasmid DNA [121,122]. 

The major advantages of transposon mutagenesis are that the target sequence does not have to be 

known, only very small amounts of DNA are required and a large number of mutants can be rapidly 

generated, which can then be screened to identify the insertion site of the transposon [123].  

A disadvantage of this method is that multiple insertions can occur leading to deletions and 

rearrangements of the BAC construct, however this can be controlled by varying the insert to vector 

ratio [123]. Because of the advantages of this technology, transposable elements occupy a unique niche 

in BAC mutagenesis. 

Although transposons were used extensively preceding the development of BACs, including for 

mutagenesis of herpes simplex virus 1 [124], the technology was first applied to BAC constructs in 

1999. Brune and coworkers [125] utilized Tn1721, a member of the Tn3 transposon family, in a  

mini-transposon system called TnMax, originally developed in 1993 [121], to rapidly identify essential 

and non-essential genes of murine cytomegalovirus. The transposon construct was delivered into  

E. coli harbouring the BAC construct on a temperature-sensitive plasmid, and at permissive temperatures 

transposition occurred [125]. Simultaneously, Smith et al. [9] used a mini-Tn5 transposon on a 

delivery plasmid for mutagenesis of a pseudorabies virus BAC clone and this technology was later also 

applied to a human cytomegalovirus BAC clone [126]. These systems relied on transposition occurring 

within bacteria, and required further characterization to ensure the transposon had inserted into the 

BAC and not into the bacterial chromosome. In 2004, an in vitro Tn5 transposition system was used to 

create a gene disruption library of a bovine herpesvirus-1 BAC clone [12]. This utilized a hyperactive 

Tn5 system developed for mutagenesis of plasmids by Goryshin in 1998 [127]. Because the reaction is 

performed in vitro, transposition only occurs into target BAC DNA and mutants can then be easily 

isolated after transformation into bacteria. Other transposition systems used for random mutagenesis of 

herpesvirus BACs have included a Tn3-based system for mutagenesis of a murine cytomegalovirus 

BAC and the use of MuA transposition for a bovine herpesvirus-4 BAC [128,129]. Transposition 

methods have been used to produce nested deletions and small insertions, however the major use of 

these transposon systems is the rapid creation of gene disruption libraries [130].  



Viruses 2012, 4  

 

 

226

Transposon technology can also be applied to targeted BAC mutagenesis. The Tn7 transposon is 

site-specific, targeting attTn7 sites when transposition is activated [131]. In initial studies when applied 

to cytomegalovirus BACs, partial and complete deletions were reported to occur frequently [132]. 

However, others have used Tn7 transposition systems with great success [3,133,134]. Recently, Tn7 

has again been used for site-specific transposition by introducing a Tn7 transposon target site into a 

varicella vaccine virus BAC by RecA-mediated recombination and subsequently introducing foreign 

sequences by site-directed transposition [135]. Currently, transposition-based technologies are the 

system of choice for global mutagenesis studies of herpesviral genes due to the rapid speed in which a 

large number of mutants can be generated.  

9. Conclusions 

The development of BACs has revolutionized molecular cloning of large DNA molecules and they 

are now widely used in many applications, including investigations into herpesvirus biology. The 

stability, large insert size and ease of manipulation of the BAC constructs within the E. coli host has 

rapidly led to the preference for BACs over YACs and cosmids. Protocols for cloning viral genomes as 

BACs are now widely published. The use of homologous recombination, using both λ Red 

recombination and ET cloning, allows precise site-specific mutagenesis for characterization of viral 

genes and genetic engineering of recombinant virus strains. This has widespread implications in 

delivery of therapeutics, particularly in the area of DNA vaccine development. Alternatively, BACs 

can support rapid characterization of viral genes through random transposon mutagenesis. This is 

particularly useful in initial studies into newly isolated, unstudied viruses where genomic sequence 

data is still unknown. BACs are currently widely used in transgenic and knock out studies and are 

being used to monitor gene expression and target specific tissues in vivo. Due to the diverse 

applications for BACs, they will continue to be a cornerstone of virological research.  
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