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ABSTRACT: A middle-resolution coarse-grained model of DNA is
proposed. The DNA chain is built of spherical and planar rigid bodies
connected by elastic virtual bonds. The bonded part of the potential
energy function is fit to potentials of mean force of model systems. The
rigid bodies are sets of neutral, charged, and dipolar beads. Electrostatic
and van der Waals interactions are parametrized by our recently
developed procedure [Maciejczyk, M.; Spasic, A.; Liwo, A.; Scheraga,
H.A. J. Comp. Chem. 2010, 31, 1644]. Interactions with the solvent and
an ionic cloud are approximated by a multipole−multipole Debye−
Hückel model. A very efficient R-RATTLE algorithm, for integrating the
movement of rigid bodies, is implemented. It is the first coarse-grained
model, in which both bonded and nonbonded interactions were
parametrized ab initio and which folds stable double helices from separated complementary strands, with the final conformation
close to the geometry of experimentally determined structures.

■ INTRODUCTION

DNA is a blueprint of life. Since Watson and Crick proposed its
three-dimensional structure,1 much effort has been spent to
understand its structure and dynamics. Formation of the
Watson−Crick double-helix from separated strands is a
biologically very important process observed during replication,
translation, or DNA repair. It has been the subject of many
experimental biochemical and biophysical studies. Also,
recently, the rapidly growing field of computer simulations of
biological systems has developed models and tools that can
provide some insight into this important process.
All-atom molecular dynamics (MD) methods offer the

deepest insight into the time evolution of DNA at the atomic
level. The CHARMM2 and AMBER3 simulation packages have
been used to study the duplex dynamics of DNA, mainly in the
vicinity of equilibrium. The highlights of near-equilibrium all-
atom DNA molecular dynamics simulations include the
systematic study of nearest-neighbor effects on various short
DNA sequences performed by the Ascona B-DNA Con-
sortium,4 and the microsecond simulations of the Drew-
Dickerson dodecamer5 or the κB DNA element.6 Although all-
atom MD simulations have proven to be very useful for
studying near-equilibrium dynamics, their very high computa-
tional cost, related to the large number of degrees of freedom
and high-frequency oscillations, forcing a short time-step of
integration, currently render them unsuitable for simulating
long time-scale nonequilibrium processes, such as formation of
duplex DNA from separate strands. Only recently, those
enhanced sampling methods, such as replica exchange,7

facilitated simulations of formation of very short (4 base pair
(bp)) duplexes of DNA.8 The combination of metadynamics9

and replica exchange, called BE-META method,10 was applied
to slightly larger system, DNA hexamer,11 but the more-
important biological process of formation of long helices
remains prohibitively expensive for all-atom MD simulations
and has recently become a target for coarse-graining method-
ology.
Coarse-grained models can be divided into three categories:

statistical models, continuum models, and reduced interaction-
center models. In the first category, the early work of Zimm and
Rice12 and Poland and Scheraga13 neglected all structural and
dynamical information and used only the free-energy gain per
base-pair formation for computation of the partition function,
which, in turn, was transformed into a thermodynamic picture
of the process of helix formation. The continuum models
approximate dsDNA as a continuum elastic rod and by design
cannot be applied to the DNA formation process.14−16 The last
category covers all models in which groups of atoms are
replaced by a reduced number of interaction centers connected
by elastic and/or rigid virtual bonds.17−45 A properly designed
coarse-graining procedure should reduce the number of
interaction centers, leading to a significant speedup of
computations, but simultaneously, the simplified potential
energy function should include the most important interactions
that determine the behavior of the real system. There are two
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common approaches to the problem of parametrization of a
coarse-grained model.37 In the “top-down” parametrization
method, selected parameters are adjusted to reproduce large-
scale properties of the investigated systems. In the “bottom-up”
parametrization method, interactions are directly determined
from either all-atom molecular dynamics simulations or
quantum chemistry computations applied to some model
systems.
In the past decade, many coarse-grained models of DNA

have been developed, but only several of them managed to
form double-stranded DNA from separated complementary
chains. A three-bead-per-nucleotide model of de Pablo and co-
workers27 was successfully used to study DNA melting30 and
the renaturation processes.31 The model was designed around
the potential energy function, which effectively depends on the
single parameter ϵ, which was optimized to reproduce
experimental melting curves. The base−base interactions were
approximated by a Go̅-like potential.46

The model of Ouldridge et al.37 successfully addresses the
phenomena of single-strand stacking, duplex hybridization, and
DNA hairpin formation processes. The model was also applied
to study DNA Holliday junctions self-assembly32 and DNA
nanotweezers.36 Although both models successfully fold
double-stranded DNA from separate complementary chains,
they rely on base−base nonbonded potentials, which either
distinguish between native and non-native pairs27 or nearest-
neighbors and all remaining pairs.32 Such an approach should
speed up the in silico folding process, because many
“unwanted” free energy local minima are eliminated, but in
the real physical system, the nonbonded potential energy of
two interacting bases does not depend on their sequential

position in the polynucleotide chain but rather depends on
their relative position and orientation in space.
The third model named NARES-2P, which does not

incorporate any Go̅-like potentials and successfully folds
double-stranded DNA from separate strands was recently
published by our group.43 NARES-2P model was developed in
parallel to the rigid-body model presented in this paper.
NARES-2P is a lower-resolution model with two interaction
centers per nucleotide (located on phosphate groups and
bases), and it seems to be a minimal physics-based model
capable of folding of a double-helix from separate strands. The
rigid-body model presented here has more interaction centers
and more internal degrees of freedom than NARES-2P, and
consequently, it is computationally more demanding. Although
the conformational space of rigid-body model is larger than in
case of NARES-2P, it is still capable of locating double-helical
structures in simulated annealing process started from separate
strands. The advantage of the dipolar-bead model over recently
published NARES-2P is its higher resolution.
Another model, which is capable of folding dsDNA from

separate strands, was published recently by Cragnolini et al.45

The degree of coarse-graining (6−7 interaction sites per
nucleotide) is similar to that of our dipolar-bead model.
However, as opposed to our dipolar-bead model, which places
more emphasis on the representation of nucleic-acid bases, the
model of Cragnolini et al. elaborates on the nucleotide
backbone, which is represented by 5 sites per nucleotide than
on the nucleic-acid bases, which are represented by 1 or 2
interaction sites, depending on the kind of base; it also utilizes a
classical bonded potential and a many-body nonbonded
potential responsible for correct Watson−Crick hydrogen-
bonding and was parametrized in a “top-down” fashion. This

Figure 1. Coarse-grained representation of fragments of the DNA chain superimposed on the atomic representation. Four basic building blocks A, T,
G, C attached to small fragments of backbones are shown. Charged beads, which replace phosphate groups, are marked red; neutral beads, which
replace deoxyriboses, are marked dark blue. Dipolar beads have different colors for different bases: A, pink; G, green; T, cyan; and C, yellow. Dipolar
beads symbols are defined for all building blocks. The internal degrees of freedom used for the definition of the bonded part of the potential energy
function (eq 2) are defined in Tables 1−4. For clarity, symbols of beads used for definition of bonded potentials of the backbone are shown for
thymine only. The longer fragment of coarse-grained strand of DNA with ATGC sequence overlapped on the atomic model is shown in the right
panel. Sequential numbers of consecutive building blocks are assigned.
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model does not incorporate any Go̅-like potentials and does
not treat the interactions between nearest-neighbor nucleotides
differently than those between the other pairs of nucleotides.
In this paper, we present a physics-based, middle-resolution

model of DNA, which is capable of folding the double-helical
structure from separate complementary strands. The model was
parametrized in the “bottom-up“ fashion, although some
adjustment of parameters was necessary to obtain correct
balance of key interactions. The non-bonded pairwise
potentials do not depend on the sequential position of
interacting bases in the polynucleotide chain because the native
and non-native, nearest-neighbors, and all other pairs rely on
the same potential energy function, which includes a Lennard-
Jones and an electrostatic term. The full, physics-based (PB
model) version of model keeps stable canonical B DNA double
helices in a long room-temperature simulations and folds short
DNA molecules. The reduced version of the model, in which
base−base intrastrand interactions are limited to nearest
neighbors (NN model), successfully folds canonical B DNA
from separate complementary strands for all tested systems.

■ METHODS
The Model. The coarse-grained model of DNA is built of

three types of particles:

• neutral bead, uncharged Lennard-Jones sphere,
• charged bead, Lennard-Jones sphere with an electric

charge located in its center,
• dipolar bead, Lennard-Jones sphere with an electric

dipole located in its center.

The DNA chain is built of six types of chemical units:
phosphate group (P), deoxyribose (S), adenine (A), thymine
(T), guanine (G), and cytosine (C). In the coarse-grained
approximation, atoms that constitute each unit are replaced by
the three types of beads defined above. The deoxyribose ring is
replaced by one neutral bead, the phosphate group is replaced
by one charged bead and each base is replaced by a set of
dipolar beads. The distances between the dipolar beads of each
base are fixed.47 A schematic representation of the coarse-
grained units overlapped on their atomic representation is
shown in Figure 1. The parametrization of the bead model is
described in the Parametrization section.
Each chemical unit in the coarse-grained approximation

constitutes a rigid body. The origin of the local coordinate
frame of each rigid body is located at its center of mass, and its
axes are aligned with the principal axes of the moment of inertia
tensor. The position and orientation of each rigid body with
respect to the global coordinate frame is described by a vector−
tensor pair (R,Q), where R is the position of the center of mass
and Q is the rotation matrix. In the model, two types of rigid
bodies can be distinguishedspherical (P and S) and planar
(A,T,G,C). The spherical rigid bodies interact with other
particles only by central forces (see “Potential Energy
Function”), and their orientation is irrelevant; therefore, a
constant rotation matrix Qsphere = const is assigned to them.
The orientation of each planar rigid body is described by a 3 ×
2 rotation matrix Qplanar and varies as the rigid body changes its
orientation during a simulation run. The geometry of the chain
is defined in vector−tensor space (Ri,Qi) where i = 1,...,N and
N is the number of rigid bodies. The relations between global
coordinates (Ri, Qi) and distances between various beads, used
for definitions of nonbonded interactions, are shown in Figure
2.

Rigid bodies are connected by elastic virtual bonds and form
a nucleic acid chain as shown in Figure 1. Three rigid bodies
connected by two virtual bonds form a virtual-bond angle and
four rigid bodies connected by three virtual bonds form a
virtual-bond dihedral angle. All virtual bonds, virtual-bond
angles, and virtual-bond dihedral angles are listed in Tables 1, 2,
and 3, respectively.

Equations of Motion. The algorithm of Leimkuhler and
Reich,48 which is based on the RATTLE49 constraint method
applied to rotation matrices, was used for the description of
rotation of rigid bodies. A slightly different version of this

Figure 2. Relations between global coordinates (R,Q) and distances
between beads for interactions of (a) two spherical rigid-bodies, where
there is only one distance rij = |Rij|; (b) spherical and planar rigid body,
where distances between interacting beads are functions of global
coordinates given by eq 9; and (c) two planar rigid-bodies, where
distances between interacting beads are given by eq 13.

Table 1. Definitions of Virtual Bonds and Parameters of the
Bonded Part of the Potential Energy Functiona

virtual bond kd (kcal/(mol Å2)) d0 (Å)

P5−S 12.45 3.86
P3−S 25.85 3.58
S−B(Pur) 26.55 4.82
S−B(Pyr) 54.23 4.20

aFor definition of symbols see Figure 1.
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algorithm, based on the SHAKE50 (rather than the RATTLE)
constraint method, showed superior stability51 compared to the
other commonly used quaternion-based integration scheme.
However, this algorithm (based on SHAKE) was not
implemented in our work.
The time-evolution of the system is defined in the vector-

tensor phase space (Ri, pi, Qi, Pi), where pi and Pi are the linear
momentum and generalized angular momentum of the i-th
particle, respectively. For a planar rigid body, the rotation
matrix is a 3 × 2 tensor, subject to the orthogonality condition
QT·Q = I2, where I2 is a 2 × 2 unit diagonal matrix.
The leapfrog (Verlet) algorithm was used for propagation of

translations, and the R-RATTLE (rotational RATTLE)
discretization scheme was applied to the rigid-body rotations.48

Potential Energy Function. As in our UNRES model of
polypeptide chains developed earlier,52 the effective energy
function of our nucleic-acid model stems from the potential of
mean force (PMF) of polynucleotide systems immersed in
water. The PMF is then to be expanded into a cluster-cumulant
series, which, in general, gives rise to the neo-classical local and
two-body and nonclassical multibody terms.52 However,
because we keep more explicit degrees of freedom than in
the UNRES model, the multibody terms do not seem to be
necessary. In particular, in contrast to the UNRES and NARES-

2P models, we do not average over any degrees of freedom of
the nucleic-acid bases, the interactions between which are
highly directional. In the UNRES model, we did average over
the angles of rotation (λ) of the peptide groups about the
Cα...Cα axes; hence, the multibody terms in the UNRES force
field are important.52 In our highly reduced NARES-2P model
of nucleic acids,43 averaging is carried out over the rotation of
nucleic bases about their long axes.
The potential energy function of the system is a sum of the

bonded and nonbonded parts:

= +U U UR Q( , ) bonded nonbond (1)

Although both the bonded and nonbonded parts depend on the
Cartesian-rigid-body degrees of freedom (R,Q), it is more
convenient to define the former as a function of the internal
degrees of freedom defined in Tables 1−4 (the internal degrees

of freedom are functions of the (R,Q) vector). The bonded
part has a commonly used form

= + + +U U U U Ubonded bond bondangle dihedralangle improper

(2)

where:

∑= −U k d d( )
i

N

i ibond d 0
2

bonds

(3a)

∑ α α= −αU k ( )
i

N

i ibondangle 0
2

angles

(3b)

∑ ∑ θ θ= +
=

U C n D ncos( ) sin( )
i

N

n
i n i i n idihedralangle

0

4

, ,

dihedrals

(3c)

∑ γ γ= −γU k ( )
i

N

i iimproper 0
2

improper

(3d)

Table 2. Definitions of the Virtual-Bond Angles and the
Parameters of the Bonded Part of the Potential Energy
Functiona

virtual-bond angle kα (kcal/(mol·rad
2)) α0 (rad)

P5−S−P3 10.69 2.11
S5−P5−S 7.59 1.66
P5−S−B(Pur) 7.02 1.83
P5−S−B(Pyr) 8.68 1.62
P3−S−B(Pur) 10.47 1.90
P3−S−B(Pyr) 13.18 2.00
S−B−X(Ade) 32.87 2.71
S−B−Y(Ade) 32.87 1.97
S−B−X(Thy) 42.82 1.10
S−B−Y(Thy) 42.82 2.64
S−B−X(Gua) 31.61 2.22
S−B−Y(Gua) 31.61 0.67
S−B−X(Cyt) 43.95 2.31
S−B−Y(Cyt) 43.95 2.38

aS−B−X and S−B−Y are virtual-bond angles between the S−B virtual
bond and the X and Y axes of the moment of inertia tensor of a rigid
body. (cf. Figure 1)

Table 3. Definitions of the Virtual-Bond Dihedral-Angle Parameters of the Bonded Part of the Potential Energy Functiona,b

virtual-bond dihedral angle C0 C1 C2 C3 C4 D1 D2 D3 D4

P5−S−P3−S3 0.553 −0.340 0.453 0.001 −0.044 0.102 −0.240 0.090 −0.145
S5−P5−S−P3 0.985 0.422 −0.485 −0.002 −0.053 −0.230 −0.343 −0.084 −0.057

S5−P5−S−B (Pur) 1.168 −0.772 −0.310 −0.008 0.023 0.530 −0.380 0.150 −0.245
S5−P5−S−B (Pyr) 1.246 −0.403 −0.212 0.095 0.082 −0.092 −0.661 −0.038 −0.067
S3−P3−S−B (Pur) 0.478 0.098 0.126 −0.043 −0.028 0.251 0.202 −0.045 −0.033
S3−P3−S-B (Pyr) 0.706 −0.069 0.316 −0.151 −0.125 −0.201 −0.085 0.043 −0.049
P5−S−B−X (Ade) 3.500 3.202 1.412
P5−S−B−X (Thy) 3.500 3.499 0.731
P5−S−B−X (Gua) 3.500 −3.497 0.650
P5−S−B−X (Cyt) 3.500 −3.497 0.153

aP5−S−B−X virtual-bond dihedral angle describes rotation of the base around the S−B pseudoglycosydic bond. bcf. Figure 1. All parameters in
kcal/mol.

Table 4. Definitions of the Virtual-Bond Improper Dihedral
Angles and the Parameters of the Bonded Part of the
Potential Energy Functiona

virtual-bond improper dihedral angle kγ (kcal/(mol·rad2)) γ0 (rad)

P5−P3−S−B(Pur) 7.74 2.10
P5−P3−S−B(Pyr) 7.74 1.90

acf. Figure 1.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4006689 | J. Chem. Theory Comput. 2014, 10, 5020−50355023



Both bond-stretching and angle-bending terms are approxi-
mated by harmonic potentials. kd and di0 are harmonic force
constants and equilibrium distances for bond stretching
interactions; kα and αi0 are harmonic force constants and
equilibrium angles for the bond-angle bending potential. The
general form of the dihedral-angle torsion potentials is a fourth-
order Fourier series, although such a long expansion was used
only for the backbone dihedral angles (see details in the
Parametrization section). Ci,n and Di,n are fourth-order Fourier
expansion coefficients. The torsional terms are the only higher
(second52) order terms that are present in the energy function;
however, they still belong to the neo-classical term set. The
harmonic Uimproper potential was introduced to maintain the
correct position of the center of mass of the base with respect
to the sugar ring and surrounding phosphate groups. kγ and γi0
are harmonic force constant and equilibrium values of the
improper dihedral angles. For a detailed geometric definition of
the internal degrees of freedom related to the bonded
potentials see Figure 1 and Tables 1−4. The force constants
and equilibrium positions were determined by fitting the
analytical expressions to the potentials of mean force for model
systems. The procedure is described in the Parametrization
section.
The nonbonded energy is a sum of van der Waals and

electrostatic energies and is given by

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

= + +

+ + +

< < <
U U U U

U U U

i j i i j i i j i

i j i j i j

nonbond PP S S B B

PS S B PB

i j i j i j

i j i j i j

(4)

where the P, B, and S symbols denote the phosphate group,
base, and sugar ring, respectively. The sugar−sugar and sugar−
phosphate energy

=U U r( )ijS S LJi j (5a)

=U U r( )ijPS LJi j (5b)

include only the Lennard-Jones term and depend only on the
distance rij between two beads. The Lennard-Jones potential
has a commonly used form

= −U r
A

r

B

r
( )LJ

LJ
12

LJ
6 (6)

where, ALJ and BLJ are Lennard-Jones coefficients. The
phosphate−phosphate energy additionally includes the
charge−charge repulsion term

= +−U U r U r( ) ( )q q ij ijPP LJi j (7)

The three remaining energy terms of eq 4 involve interactions
with the planar rigid-bodies (bases). The sugar−base energy is
a sum of excluded volume interactions between a neutral bead
and the dipolar beads. This kind of all-repulsive term is also
used in the UNRES force field to account for excluded-volume
interactions between the peptide groups and side chains53

∑=U U r( )
k

N

ij
k

S B EXi j

j

(8)

where Nj is the number of dipolar beads of the j-th base and rij
k

is the distance between the neutral bead of the i-th sugar and

the k-th dipolar bead of the j-th base. It should be noted that rij
k

distances are functions of the distance Rij between the sugar
and the base and the orientation Qj of the base (see Figure 2).

= + ′r R Q rij
k

ij j j
k

(9)

where r′jk is the position of the k-th dipolar bead in its rigid-
body local coordinate frame. The excluded volume potential
has a form

= +U r
A
r

B
r

( )EX
EX
12

EX
6 (10)

where the parameters AEX and BEX depend on the type of
interacting beads. The phosphate-base interaction additionally
includes the charge-dipole terms

∑= +−U U U rr[ ( ) ( )]
k

N

q d ij
k

ij
k

PB EXi j

j

(11)

The final term of eq 4 has the most complicated form and
describes the interaction between the dipolar beads of two
bases

∑ ∑= +−U U U rr[ ( ) ( )]
k

N

l

N

d d ij
kl

LJ ij
kl

B Bi j

i j

(12)

where Ni and Nj are the number of dipolar beads located on the
i-th and j-th bases, respectively. The distances rij

kl between
dipolar beads are functions of the relative position Rij and
orientations Qi, Qj of the rigid bodies

= + ′ − ′r R Q r Q rij
kl

ij i i
k

j j
l

(13)

where r′i(j)k(l) is the position of the k-th (l-th) dipolar bead in the
local coordinate frame of i-th (j-th) base.
The electrostatic interactions are approximated by a

multipole−multipole Debye−Hückel model54

=−U r D r
q
r

( ) ( )q q

2

(14a)

= −
·

−U C r q
r

A rr
p n

( ) ( ) ( )q d
j

2 (14b)

=
−

−U C r
A r B r

r
r

pp pn p n
( ) ( )

( ) ( ) 3 ( ) ( ) ( )
d d

i j i j
3 (14c)

where q = eq is the negative unit charge located on phosphate
group, n = r/r is a unit vector pointing from the first to the
second interaction center, and pi(j) are electric dipole vectors
described in the global coordinate frame:

= ′jp Q p( )i i j i ij( ) ( ) (15)

where p′i(j) is an electric dipole vector in the local coordinate
frame of the i-th (j-th) base. Four functions

κ= +A r r( ) 1 (16a)

κ κ= + +B r r r( ) 1
1
3

( )2

(16b)

π
κ=

ϵ ϵ
−C r r( )

1
4

exp( )
0 int (16c)
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π
=

ϵ ϵ
D r

r
( )

1
4 ( )0 (16d)

approximate the screening of the electrostatic interactions by
ions and solvent, where κ−1 is the Debye screening length. For
charge−charge interactions distance-dependent dielectric con-
stant of the following form was applied:40,55

ε α

κ

=

ϵ <

ϵ − < <

ϵ >∞

⎧
⎨
⎪⎪

⎩
⎪⎪

r

r r

r r r r r

r r r

( )

for

exp[ ( )] for

exp( ) for

int 0

int 0 0 1

1 (17)

where ϵinf = 78.0 is a dielectric constant of bulk water and ϵint is
a dielectric constant of the helix “interior”, which was taken to
be 8.0. The switching distances r0 and r1, which determine
boundary between unscreened and screened electrostatic
interactions, were set to the values of 4 Å and 13 Å.40 The α
parameter was adjusted to keep continuity of dielectric
constant.
Because the interactions between the nearest neighbors, that

is, particles separated by less than three virtual bonds, are
included in the bonded part of the potential, they were
excluded from the nonbonded interactions.
Parametrization. Nonbonded Interactions. The non-

bonded interactions and solvation effects are very important
for DNA folding and its conformational stability and were
approximated by the excluded-volume potential (eq 10) for P−
B and S−B, the Lennard-Jones potential for the remaining
nonbonded interactions (eq 6), and a multipole-multipole
potential energy function with Debye−Hückel screening. The
optimization procedure developed previously47 was applied to
the extended system, which now includes the phosphate group,
deoxyribose, and the four bases. The parameters of the B−B
interactions, including the positions r′ of the dipolar beads in
the local coordinate frame, the electric dipole vectors p′ in the
local coordinate frame, and the Lennard-Jones parameters
ALJ,BLJ, were retained from the 3445 model of ref 47. For
convenience, they can also be found in Tables A-II to A-V of
Supporting Information. The missing parameters for the
extended system are the charges located on neutral and
charged beads, their positions in the local coordinate frame, and
the Lennard-Jones parameters of P−P, P−S, S−S, S−B and P−
B interactions. The charge of a neutral bead was, by definition,
set to zero, the charge of a charged bead was set to −|eq|, which
is equal to the charge of the phosphate group in the DNA
backbone. The positions of the charges in both the neutral and
charged beads were fixed at the center of mass of the
corresponding unit. Consequently, the only parameters, which
must be determined by the optimization procedure were the
Lennard-Jones ALJ and BLJ for P−P, P−S, S−S, S−B, and P−B
interactions. The reference energy grids for missing Lennard-
Jones interactions were computed in the same manner as the
reference grids in ref 47 and the optimization procedure47 was
applied to the extended system.
Although it was initially planned that the Lennard-Jones

potential would be applied to all pairwise interactions in the
system, extensive testing of dsDNA dynamics showed that its
stability was improved when the Lennard-Jones potential of P−
B and S−B interactions was replaced by the excluded-volume
one. Therefore, the potential was switched to an excluded
volume of the form of eq 10, and the ALJ and BLJ parameters
were retained from the fitting procedure, that is, AEX = ALJ, BEX

= BLJ. The values of the computed Lenard-Jones and the
excluded volume parameters, presented in the form of σ = (A/
B)1/6 and ϵ = B2/(4A), are collected in Table A-I of the
Supporting Information.
The Debye screening length κ−1 was set to 8 Å, which

corresponds to the physiological ionic concentration.56 In this
work, the dielectric constant parameter of the bulk water ϵ∞
was set to 78.0. The stability of the helix and folding efficiency
was tested with several values of ϵint and various distances r0
and r1 of the dielectric constant function (eq 17) (see
Conformational Stability in the Results and Discussion
section).

Bonded Interactions. The virtual bond, virtual-bond angle,
and virtual-bond dihedral angle parameters were derived to
reproduce the behavior of model systems in the all-atom
representation. The interactions between atoms were modeled
by the AMBER ff99bsc057−59 force field. The potentials of
mean force (PMF) of each internal degree of freedom of the
coarse-grained model were calculated by using the umbrella
sampling method.60−62 Analytical functions of the form of eqs
3a−3d were then fitted to the numerical PMF’s obtained from
the WHAM procedure.
The parameters of all virtual bond, virtual-bond angle, and

virtual-bond dihedral angle degrees of freedom were computed
by using four model systems, which were obtained from three-
nucleotide backbones with methyl end groups. The base of the
middle nucleotide was either adenine, cytosine, guanine, or
thymine, for a total of four different model systems. One such
system with a cytosine base in the middle nucleotide is shown
in Figure 3. This is a minimal size molecule for which every

internal degree of freedom of our coarse-grained model can be
defined. Terminal bases were removed to avoid implicitly
including electrostatic and van der Waals interactions of bases
since our model has the nonbonded parameters derived
separately.47

Umbrella sampling simulations, described in the Supporting
Information, of different model systems produced results that
are similar for each internal degree of freedom. Figure A-I in the
Supporting Information shows the individual and average
PMFs for several virtual bonds, virtual-bond angles, and virtual-
bond dihedral angles. The other degrees of freedom from
Tables 1−3 show similar trends. Therefore, it was decided to

Figure 3. One of four model systems used in deriving the bonded
potentials. Model systems for parametrization were created from
three-nucleotide chains by removing the bases from the nucleotides at
the 5′- and 3′-end and replacing them with methyl groups. The middle
nucleotide was left unchanged and can be cytosine (in the figure),
thymine, adenine, or guanine.
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average the degrees of freedom for purines (model systems
with adenine or guanine) and pyrimidines (model systems with
cytosine or thymine), except for the degrees of freedom such as
the S−P−S virtual-bond angle and the P5−S−P3−S3, S5−P5−
S−P3 virtual-bond dihedral angle, which contains two
deoxyriboses, and therefore, the base type cannot be uniquely
assigned. For these angles, the averaging was done across all
four model systems (bases). Some degrees of freedom, which
influence orientation of bases with respect to glycosidic bond,
were assigned separately for each type of base (see Tables 2 and
3). For each degree of freedom, the distributions of data from
each window and for appropriate model systems were
combined, the biasing potential was removed, and the PMF
along that coordinate was calculated by using the WHAM
procedure60−62 implemented in a program by Dr. A. Gross-
field.63

The analytical expressions of the form of eqs 3a−3d were
then fitted to PMF’s. The fitting was done using a trust-region64

nonlinear least-squares fit algorithm as implemented in
MATLAB software. Figure A-II shows the comparison of
several PMFs derived from the simulations with the potential
calculated using analytical expressions.
Although both the force constants and the equilibrium

positions for the virtual bonds and virtual-bond angles were
determined by fitting to the PMFs of model systems, it was
decided to shift them slightly to match the equilibrium values of
the “ideal” B-DNA conformation,65 in the coarse-grained
model. The minima of the virtual-bond dihedral angles were
left unmodified. Additionally, harmonic virtual-bond improper
P5−P3−S−B with arbitrary force constant and an equilibrium
values set to those of the “ideal“ B-DNA65 were incorporated.
The rotation of the base around the virtual glycosidic bond (S−
B) was restricted by a cosine-shaped potential with the
minimum corresponding to the anti conformation of the base
and the barrier height was preliminary set to 7.0 kcal/mol. The
internal degrees of freedom for which the bonded terms were
determined and used in the model are listed in Tables 1−4.
We note that a model system and bonded degrees of

freedom almost identical to those presented here were used in
work by Morriss-Andrews et al.34 However, the predicted
values for the equilibrium values and force constants were
somewhat different. There are several reasons for this, first,
Morriss-Andrews et al. use statistics from free simulations and
CHARM27 force field to calculate the degrees of freedom while
this work used umbrella sampling along the degrees of freedom
and Amber’s ff99bsc0 force field. Most importantly though, the
position of the sugar in our model is at the center of mass of
sugar ring while they set it at the C1′ atom. This affects not
only the equilibrium values but the force constants as well,
which makes the direct comparison between bonded degrees of
freedom of two models difficult.
Model Systems. The model was tested on the following tree

systems, for which the structure was determined experimen-
tally:

• Drew−Dickerson dodecamer, 12 base-pair dsDNA with
the sequence 5-CGCGAATTCGC-3′ and its compli-
ment, which has exactly the same sequence (PDB code
1BNA),

• Narayana−Weiss hexadecamer, 16 base-pair dsDNA with
the sequence 5′-ACTACAATGTTGCAAT-3′ and its
compliment 5′-ATTGCAACATTGTAG-3′ (PDB code
3BSE).

• 21 base-pair dsDNA with the sequence 5′-ACAGCT-
TATCATCGATCACGT-3′ and its compliment 5′-
ACGTGATCGATGATAAGCTGT-3′ (PDB code
2JYK).

The following 60-nuclotide sequence of ref 34 was used for
computation of persistence lengths of single and double
stranded DNA:

• HETSS = d(CATCCTCGACAATCGGAACCA-
GGAAGCGCCCCGCAACTCTGCCGCGATC-
GGTGTTCGCCT)

• HETDS = HETSS + complementary strand

Canonical and Microcanonical Ensemble Simulations.
Simulated Annealing. For canonical ensemble simulations,
Berendsen’s thermal-bath weak-coupling algorithm66 was
implemented. The coupling time was set to 0.1 ps. The initial
velocities of the rigid bodies were drawn from the Maxwell
distribution.
The stability of the integration algorithm was checked by

simulations of the model system in the microcanonical
ensemble. The energy of the system was minimized and initial
velocities were assigned from the Maxwell distribution; then,
the integration of the equations of motion was performed
without coupling of the system to the thermal bath.
The ability of the model to fold double-stranded DNA from

separated chains was tested with a two-stage simulated-
annealing67,68 procedure. Two complementary strands of each
molecule were separated by a random distance and randomly
rotated with respect to each other. The separation distance
ensured that two strands did not overlap for any random
orientation and was different for chains of various lengths. For
1BNA, the separation distance between centers of mass was
picked randomly from 40 to 45 Å interval and for 3BSE and
2JYK separation intervals were 50−55 Å and 60−65 Å,
respectively. In the first stage, the initial structure was heated up
to 600 K (620 for 2JYK) with velocities randomly assigned
from Maxwell distribution for 0.1 ns and then cooled to 300 K
(320 for 2JYK) with a temperature step ΔT = 50 K. The final
temperature was set approximately around 20 K below melting
temperature of each molecule. The simulation at each
temperature was 0.1 ns long. At the end of each simulation,
the presence of contacts between any two bases from separate
strands was checked. A contact was assumed to be present
when the centers of mass of any two bases from separate chains
came within a distances of at most 6.5 Å. If at least one contact
was present, the simulation was extended by 1.5 ns for Drew−
Dickerson (2.0 ns and 2.5 ns for Narayana−Weiss and 2JYK,
respectively) at 300 K in the second stage of the canonical
simulation; otherwise, the cycle was terminated and the final
structure was excluded from the analysis. The total simulation
time of a two-stage simulated annealing cycle was 2.2−3.2 ns
(depending on the chain length), and each one was followed by
a short energy minimization with Powell’s algorithm.69 The
cycle was repeated several thousand times. The number of SA
cycles performed for each system is shown in Table 5.
Dissociation of chains was prevented by application of a flat-
bottom restraint on the distance between their centers of mass
with a force constant kCM−CM = 1 kcal/(mol Å2) and a
minimum distance of d0 = 40 Å for 1BNA (50 Å for 3BSE and
60 Å for 2JYK), at which the attractive harmonic force was
switched on. The artificial restraint force was switched off when
the distance between the centers of mass dropped below 40 Å
for 1BNA (50 Å for 3BSE and 60 Å for 2JYK).
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The final structures of the simulated annealing cycle were
compared to the experimental reference by computing the all-
bead RMSD.
Mechanical Properties of DNA: Persistence Length. The

persistence length lp is a measure of flexibility of a polymer and
can be computed from decay of correlation function of unit
vectors tangent to helical axis

⟨ ̂ ̂ ⟩ = −
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟s

s
l

t t( ) (0) exp
p (18)

where s is the position along the length of the chain.70,71

For ssDNA the tangent vector is defined as a normalized
vector between consecutive neutral beads (centers of mass of
deoxyriboses). For dsDNA tangent vector is defined as
normalized vector connecting midpoints of sugar−sugar
distances of complementary bases, separated by 5 base pairs.
Implementation. A new software package for this coarse-

grained model, composed of rigid-bodies, was developed. The
software is written in C/C++ programming language and
currently can perform the following tasks: read the PDB-format
structure and transform it into the coarse-grained representa-
tion, optimize the geometry of the molecule (by energy
minimization), perform microcanonical and canonical ensemble
simulations with Berendsen’s weak thermal-bath coupling, and
perform simulations of heating and simulated annealing cycles.
The force and energy calculations were parallelized using
OpenMP libraries.72 The efficiency of the parallelization up to
12 cores is shown in Figure 4. The test was performed on the
Drew−Dickerson dodecamer.

■ RESULTS AND DISCUSSION
Numerical Stability, Time Step, and Speedup. The

stability of the Verlet-R-RATTLE algorithm was tested on the
Drew−Dickerson double-helix. Microcanonical simulations of
10 ns length were run with various time-steps: dt = 10, 12, 14,
16, 18, 20, 22, 24, 26, 28 fs. The stability of the total energy is
shown in Figure 5. The algorithm maintains good stability up to
dt = 22 fs resulting in an order of magnitude speedup compared
to the commonly used all-atom time-step of 2 fs (with SHAKE
applied on hydrogens), and shows superior stability compared
to the quaternion-based rigid-body integration scheme, applied
previously19 to the model of a DNA chain. The drift of the
energy over a 20 ns trajectory with dt = 22 fs was only 0.017

kcal/mol, compared to ∼10 kcal/mol over 1 ns simulation with
the same time-step using a quaternion integration scheme (see
Figure 5 in ref 19). The drifts of the energy and the RMS
fluctuations for various time-steps are collected in Table 6. All
canonical simulations and simulated annealing cycles utilized
time-step dt = 10 fs.
The efficiency of the model was compared to that of all-atom

simulations performed with the AMBER 11 package. The
model system was the Drew−Dickerson dodecamer immersed
in a truncated octahedron box filled with 5099 TIP3P water
molecules. A 10 Å cutoff and the particle-mesh Ewald
summation method were applied for electrostatic interactions.
The simulation of 1 ns took 17476 s on 8-cores using Intel
Xeon E5645 2.4 GHz CPUs of the computing cluster of the
Chemistry Research Computing Facility of Baker Laboratory of
Chemistry and Chemical Biology, Cornell University. The same
simulation with our coarse-grained model and dt = 20 fs took
235 s with the same CPU, leading to almost 2 orders of
magnitude speedup. It should be noted that almost 2 orders of
magnitude speedup was achieved without any cutoffs applied to
the nonbonded interactions. Implementation of cutoffs,
especially to the short-range Lennard-Jones (U ∼ r−6) and

Table 5. Statistics of dsDNA Folding for the Nearest-
Neighbor (NN) Modela

1BNA 3BSE 2JYK

trajectories 1352 2428 1937
long trajectories 670 100% 147 100% 161 100%
0 native contacts 160 24% 63 43% 68 42%
<25% no. contacts 277 41% 54 37% 67 42%
25−50% no. contacts 21 3% 2 1% 2 1%
50−75% no. contacts 54 8% 4 3% 0 0%
>75% no. contacts 158 24% 24 16% 24 15%

aThe first row shows the total numbers of simulated annealing cycles
computed for each molecule. The second row shows the number of
trajectories for which the cooling cycle ended up with at least one
contact between bases. Statistics of contacts for these trajectories,
which were extended by 1.5 ns to 2.5 ns canonical simulation, is shown
in the next 5 rows. Numbers of long trajectories with various
percentage of native contacts are presented in rows 3−7.

Figure 4. Efficiency of code parallelization.

Figure 5. Stability of the Verlet-R-RATTLE integration algorithm over
0.1 μs microcanonical simulation of the Drew−Dickerson dodecamer
with time-steps ranging from 10 fs to 28 fs.
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the dipole−dipole (U ∼ r−3) interactions will further increase
the speed of computation, especially for long chains.
Conformational Stability. The conformational stability of

double-helices was tested with the following procedure. The
initial crystal structure (3BNA, 3BSA, and 2JYK) was heated
from 100 to 300 K with ΔT = 50 K. The simulation at each
temperature was 0.1 ns long, and the production run at 300 K
was 0.1 μs long. Snapshots of trajectories were recorded every 1
ps.
The initial simulations of the Drew−Dickerson dodecamer

led to a collapse of the helical structure, caused by
overestimation of the strength of the Lennard-Jones
interactions with phosphates and sugars, which were fitted to
reproduce the AMBER potential energy in vacuum. The
stability of the system was improved by scaling of Lennard-
Jones interaction energy between neutral and charged beads
(P−P, S−P, and S−S) by a factor of 0.1.
The stability of a double-helix was also tested with varying r0

and r1 parameters of eq 17. Table 7 shows the average number

of native contacts as a function of distances r0 and r1 for Drew-
Dickerson dodecamer with ϵint = 8.0. The largest average
number of native contacts is located in the lower right corner of
Table 7, which means that sufficient electrostatic repulsion of

phosphate groups of interacting chains is necessary for stability
of double-helix. Smaller switching distances r0 and r1 causes
instability of the helix termini, which can even destabilize helix
interior. On the other hand the reduced (and less physical)
model, in which intrastrand base−base interactions were
limited only to nearest-neighbors, was tested. The NN model
generates very stable double helices even for short switching
distances r0 = 4 Å and r1 = 13 Å, as applied in the ref 40. It
seems that stronger electrostatic repulsion of phosphate groups
is necessary to prevent deformations of helix termini caused by
base−base intrastrand interactions. On the other hand, stronger
electrostatic repulsion affects folding rate in the fast simulated
annealing procedure (see section Folding of dsDNA from
Separate Chains).
Table 8 collects mean helical parameters obtained from

trajectories for three model systems for full physics-based
model and for the simplified nearest-neighbor model. These
parameters were calculated from coarse-grained representations
of experimental reference structures and the structures obtained
in simulations, respectively. A precise determination of all
helical parameters would require conversion of the coarse-
grained structurs to an all-atom representation; however, the
values calculated by using a coarse-grained representation are
sufficient for comparison of the simulated structures with the
respective experimental structures. For all model systems, the
average number of native contacts is larger for the NN model.
For shorter molecules, 1BNA and 3BSE, the radius of gyration
within NN approximation is close to the value obtained for
experimental structure. For the PB model applied to 1BNA and
3BSE the radius of gyration is slightly too short, which is caused
by deformation of helix termini. For the longest molecule both
models overestimates the radius of gyration. Both models
underestimate helix radius and overestimate helical rise for all
dsDNAs, although these discrepancies are relatively small.
Larger deviations are observed for the size of minor groove,
which is significantly overestimated by both models. The major
groove size is relatively well preserved.

Table 6. RMS Fluctuations and Drifts of the Total Energies Obtained from 10 ns Simulations of the Drew−Dickerson
Dodecamer in the Microcanonical Ensemblea

Δt (fs) 10 12 14 16 18 20 22 24 26 28
RMSF (kcal/mol) 0.05 0.06 0.09 0.12 0.15 0.20 0.23 0.39 1.0 1.7
drift (kcal/(mol ns)) 0.0002 0.007 0.0011 0.0021 −0.015 −0.015 0.017 0.053 0.371 1.8

aRMS fluctuations were calculated for each trajectory with drift subtracted. Drift was calculated as a difference between the averages of the last and
the first 1 ns of each trajectory.

Table 7. Average Number of Native Contacts Obtained from
0.1 μs Trajectories of Drew−Dickerson Dodecamer for
Various Dielectric Constant Switching Values r0 and r1 (See
Equation 17)a

r1(Å)

r0(Å) 13 14 15 16 17 18 19 20

4 7.2 8.6 8.6 8.2 8.5 9.0 9.1 9.0
6 8.0 6.7 7.8 8.9 9.4 9.0 9.5 8.6
7 7.0 8.6 9.2 8.9 9.7 9.9 9.5 9.9
8 8.3 7.8 8.3 9.3 9.9 10.0 9.6 10.2

aThe dielectric constant of helix interior was set to 8.0.

Table 8. Mean Parameters Describing the Geometry of the Helix During 0.1 μs Simulation and Comparison to the Crystal
Structure Geometrya

param. (Å) native contacts radius of gyration helix diameter riseb major groove width minor groove width

Drew−Dickerson (PB) 7.3(2.0) 12.5(0.4) 18.1(0.9) 3.4(0.6) 15.5(2.2) 15.5(2.0)
Drew−Dickerson (NN) 10.5(1.2) 13.5(0.3) 18.1(0.7) 3.7(0.4) 16.2(2.6) 15.6(1.8)
Drew−Dickerson (Exp) 12.0 13.2 18.9(0.6) 3.5(0.2) 17.5(0.5) 11.1(1.8)
Narayana−Weiss (PB) 11.8(1.9) 16.6(0.5) 18.2(0.8) 3.5(0.5) 15.9(2.3) 15.7(2.1)
Narayana−Weiss (NN) 13.3(1.6) 17.1(0.4) 18.3(0.7) 3.7(0.4) 16.3(2.2) 15.8(2.0)
Narayana−Weiss (Exp) 16.0 17.1 19.2(1.0) 3.4(0.1) 18.2(0.8) 11.6(1.2)
2JYK (PB) 16.3(1.9) 20.7(0.6) 18.3(0.7) 3.5(0.6) 16.2(2.5) 15.7(2.0)
2JYK (NN) 18.0(1.6) 21.4(0.6) 18.3(0.7) 3.7(0.4) 16.6(2.4) 15.8(1.9)
2JYK (Exp) 21.0 19.0 19.3(0.2) 3.5(0.3) 17.7(1.0) 10.8(1.3)

aNumbers in parentheses are standard deviations. PB and NN denotes the full physics-based and the nearest-neighbor model, respectively. bThe
helical rise is approximated by the distance between consecutive centaral points of lines connecting centers of mass of Watson−Crick-paired bases.
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Persistence Length. Persistence lengths of both HETSS
and HETDS were computed from 0.1 μs canonical simulations
at 300 K with 145 mM salt concentration for both full PB and
simplified NN model. The results are presented in Table 9. For

both chains PB model produces smaller persistence lengths
than NN model, although the relative difference is much bigger
for ssDNA. This behavior is expected, because switching off
some of the intrastrand base−base interactions should decrease
bending of the chain, especially for ssDNA, in which bases are
exposed to solvent and can easily form intrastrand hairpins with
complementary bases. Figure 6 presents typical configurations

of HET60SS and HET60DS molecules taken from T = 300 K
canonical simulation. The conformation of ssDNA taken from
full PB model simulation differs significantly from the one taken
from NN approximation. The ssDNA obtained from full PB
model bends and forms hairpins, which can act as kinetic traps
in the folding process of dsDNA.
The value of persistence length of ssDNA obtained with NN

model agrees reasonably well with experimental values.73 The
persistence length of dsDNA appears to be around three times
too small compared to experimental values,74−77 and it is close
to the value computed by early version of 3SPN model.27

Although the agreement with experimental data is not perfect it
appears to be quite satisfactory for “bottom-up”-parametrized
physics-based coarse-grained model and this discrepancy will be
corrected in next versions of the model.
Mismatches. The influence of mismatches was tested on

the 30-bp system of 10 G/G pairs flanked by 10 A/T pairs at
both 5′ and 3′-end. During the 0.1 μs canonical simulation at
300 K, opening of mismatched G/G pairs was not observed.
Although interaction of complementary bases is different than
that between mismatched bases, the model does not seem to be

very specific with respect to base−base interactions. This
problem may be result of exaggeration of base−base Lennard-
Jones interactions with respect to electrostatics and will be
addressed in the next version of the model.

Folding of dsDNA from Separate Chains. The simulated
annealing (SA) procedure described in the Methods section
was applied to some model systems. The folding efficiency of
the full PB model was low. Only 3 out of 2100 trajectories led
to the final helical structures with more than 10 native base−
base contacts for Drew−Dickerson dodecamer. Longer
molecules did not fold at all. Much better folding rate was
achieved with NN model in which intrastrand kinetic traps
(hairpins), resulting from intrastrand long-range base−base
interactions, were eliminated. The statistics of the folding
process of three model systems within NN approximation are
presented in Table 5. After the majority of simulated annealing
cooling cycles (first stage), the chains did not come into contact
because of electrostatic repulsion of the highly charged chains
and the relatively short time of the simulation. The frequency
of making at least one contact after a cooling cycle is different
for each simulated system and changes from 50% for the
dodecamer to 6% for the hexadecamer, and to 8% for the 21-bp
system. This phenomenon can be explained by increasing
volume of an accessible space for longer chains, which
decreases probability of making contact during fast cooling
process. The effect is enhanced by increased electrostatic
repulsion of the longer negatively charged backbones.
After the second stage of simulated annealing, native-like

structures were obtained. The percentage of the native-like
structures, based on the number of native contacts, is shown in
Table 5. It should be noted that the numbers summarized in
Table 5 were obtained from SA calculations which do not
reflect the actual amount of the native-like structures that a
force-field can produce. The cooling time is always too small to
obtain an equilibrated ensemble. The amounts of contacts in
Table 5 are, therefore, underestimated.
Nevertheless 24% of extended trajectories led to double-

helical structure with more than 10 native contacts for 1BNA
molecule. Roughly the same number of structures broke up into
separate chains or formed misfolded structures without native
contacts. 41% trajectories ended up in misfolded structures with
1−3 native contacts, which were mostly parallel dsDNA’s, in
which 5′-end of one chain makes nonative contacts with 5′-end
of the other chain. Figure 7 shows the potential energy of final
structures as a function of all-bead RMSD computed with
respect to experimental structure. Two low-energy clusters of
structures are clearly visible. The one located in the lower left
corner of Figure 7 is a cluster of correctly folded antiparallel
dsDNA’s and the other one represents misfolded parallel
dsDNA’s, in which 3′-ends (and 5′-ends) of chains are paired.
The important observation that comes from this graph is that
lowest energy structure is clearly located in the correctly folded
group and its energy is around 10 kcal/mol lower than
misfolded parallel dsDNA, although the lowest energy structure
is not the structure with lowest RMSD. The mean potential
energy of antiparallel dsDNA cluster is around 8 kcal/mol
lower than the mean energy of the parallel DNA cluster, which
clearly favors correctly folded structures, although this differ-
ence for real systems might be larger (experimental structures
of the parallel Drew−Dickerson dodecamer were not observed)
and further refinement of the electrostatics and/or Lennard-
Jones balance of the model is required to increase this gap and
improve specificity of base−base interactions.

Table 9. Persistence Lengths of HET60SS and HET60DS for
Full PB and Reduced NN Modelsa

persistence lengths (Å) HET60SS HET60DS

full PB model 6.5 151.7
reduced NN model 28.3 158.3

aPersistence lengths were obtained by fitting of eq 18 the the
correlation functions obtained from canonical ensemble trajectory
computed at 300 K with 145 mM salt concentration.

Figure 6. Typical configurations of HET60DS (left panel), HET60SS
within nearest-neighbor approximation (middle panel) and HET60SS
for full physics-based model (right panel).
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The reference structure marked by bigger dot in Figure 7 is
the energy-minimized experimental structure. The optimization
of experimental structure was necessary to remove small steric
clashes in original structure caused by imperfectness of the
coarse-grained model. The potential energy of original 1BNA
molecule is more than 100 kcal/mol higher than that of the
optimized one, but the all-bead RMSD between the optimized
and original structure is only 0.4 Å. This effect can be expected
for the coarse-grained model with force-field parameters
developed in the “bottom-up” fashion. The potential energy
of the reference structure is almost exactly the same (<1 kcal/
mol) as the lowest-energy structure obtained from simulated
annealing procedure.
The folding efficiency of longer polymers decreases as the

dimensionality of phases spaces increases (see Table 5). 16% of
long trajectories of 3BSE molecule led to final structures with
more than 75% of native contacts (13−16 contacts). For the
2JYK molecule, the folding rate is almost the same as that for
3BSE and equals 15%. Nevertheless, the energy vs RMSD
graphs (Figures 8 and 9) are qualitatively similar to these
obtained for 1BNA molecule (Figure 7). In both cases, two
clusters of antiparallel and parallel dsDNAs are clearly visible
and correctantiparallel cluster has mean potential energy

around 20 kcal/mol lower than this of incorrectparallel
dsDNA cluster. These values should effectively discriminate
misfolded structures in the real-, long-time folding process. This
mean-energy difference increases to 22 kcal/mol for the longest
2JYK molecule. The energy-minimized reference structures,
marked by bigger dot in Figures 8 and 9, have RMSD only 0.6
Å away from original structure. In both cases, the reference
structures have potential energy around 10 kcal/mol lower than
these obtained from simulated annealing procedure. This
observation suggests that longer cooling process should lead to
improvements in geometry of final structures, as the minimum
of potential energy was not reached by any simulated annealing
cycle for longer model systems.
Figure 10 presents the three lowest-energy structures of

tested molecules superimposed on their experimental structure.
The all-bead RMSDs of 1BNA, 3BSE, and 2JYK molecules with
respect to experimental references are 2.1 Å, 3.1 Å, and 4.2 Å,
respectively, and as expected, they increase with the length of
polymers. All structures clearly form double-helices, although
some discrepancies of the geometry are visible, especially for
the longest molecule, for which overestimation of the size of
minor groove is clearly visible.
Analysis of 158 trajectories of 1BNA, which led to structures

with 10−12 native contacts revealed two qualitatively different
mechanisms of folding.
The representative of the first most common mechanism (93

of 158 trajectories) is shown in Figure 11. Two separated
chains (0 ns) were heated to 600 K and evolved into random
chains (0.11 ns, T = 550 K). At 0.56 ns (T = 350 K) the 5′-
GCGC-end established native contacts with the complemen-
tary 3′-CGCG-end, and since then, more native contacts were
formed, and the dsDNA molecule was zipped. At 0.68 ns, all
native Watson−Crick hydrogen bonds were formed. This type
of folding mechanism is referred to as zippering.31

A different and less common folding process (65 of 158
trajectories) is shown in Figure 12. It was started from two
separated ssDNA chains, which were heated to 600 K and, after
0.3 ns (T = 500 K), evolved into a completely random
conformation. First, contacts between the bases of the 5′-ends
of the chains were established after 0.49 ns. It should be noted
that these are non-native Watson−Crick G/C contacts. After
that, the chains started to slide with respect to each other along
a Watson−Crick interface. After 0.89 ns, two G/C contacts
were estabilished but also A/C and A/G mismatched pairs were
formed. A 1.4 ns snapshot shows a molecule with 10 contacts

Figure 7. Energy vs RMSD with respect to the experimental structure
for the 1BNA dodecamer. Two major clusters, corresponding to
antiparallel and parallel dsDNA, and the energy-minimized exper-
imental structure are pointed by arrows.

Figure 8. Same as Figure 7 but for the 3BSE hexadecamer.

Figure 9. Same as Figure 7 but for the 2JYK molecule.
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established and with distorted termini. After 1.7 ns a full helix
with all native base−base contacts was formed. This type of
folding mechanism is referred to as slithering.31

As can be expected, the zippering mechanism was also
observed for longer molecules, 3BSE and 2JYK. Nevertheless,
some trajectories with a slithering folding mechanism were also
recorded. At first, this observation is surprising because, as
opposed to the 1BNA molecule, the initial mis-alignment of the
two strands creates a number of mismatched base−base pairs.
Therefore, the fact that the simulated folding of 3BSE and 2JYK
proceeded almost as frequently by the zippering and by the
slithering mechanism probably resulted from low base−base
pairing specificity of the model. The snapshot from helix
initiation process for 3BSE molecule is shown in Figure 13a).
The 3′-end of a complementary strand made contacts with 3′-
end of the leading strand. Besides three nonative Watson−
Crick contacts (two A/T and one G/C) and two mismatched
contacts (G/T and T/T) were established. Three Watson−
Crick pairs and two mismatched pairs form initial structure
from which monomers start slithering with respect to each
other until final proper double-helix is formed. The helix
nucleation occurred between nucleotides of 3′-ends but also the

mechanisms where 3′-end (or 5′-end) of one chain made a
contact with midsection of the other chain were observed.
For the longest chain, the slithering mechanism was observed

only for two out of 22 folding trajectories. In one case,
nucleation started from formation of contacts of 3′-end of one
chain with middle section of the other chain (see Figure 13b).
In the second slithering trajectory, the 5′-end made initial
contact with middle section of the other chain. No trajectory
where two 3′-ends (or 5′-ends) made initial contact was
recorded.
At this point, the analysis of DNA duplex hybridization is

reduced only to qualitative observations presented above.
Further development of the model is necessary, especially
further reduction of computational cost via implementation of
cutoffs, to obtain large set of trajectories, which is required for
proper analysis of thermodynamics and kinetics of DNA
hybridization process.
Nevertheless, the mechanism of hybridization can be

qualitatively compared to hybridization mechanisms proposed
by de Pablo30 and Doye44 groups. The former group showed
two mechanisms also called slithering and zippering, which
follows double-helix nucleation process.30 The former mecha-

Figure 10. Lowest-energy structures of 1BNA, 3BSE, and 2JYK molecules obtained from extended simulated annealing procedure, superimposed on
experimental structures. Their all-bead RMSDs are 2.1 Å, 3.1 Å, and 4.2 Å, respectively. The reference structures are shown in red. The backbone of
the computed structures is shown in blue and the bases are A (cyan), T (pink), G (green), C (yellow).
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nism is dominant for repetitive sequences and zippering is
characteristic of random sequences. Both mechanisms seem to
be similar to folding mechanisms obtained with our dipolar
bead model, although it should be noticed that sequences of
simulated systems are not exactly the same. The Drew−
Dickerson dodecamer is symmetric and might have pathways of
folding that are similar to slithering mechanism observed for
3SPN model. Our model shows that slithering and zippering
mechanisms for 1BNA are almost equally probable. The 3BSE
and 2JYK molecules have a sequence that can be described as
random, and their dominant folding mechanism is molecular
zippering.
The zippering mechanism was also observed for the model of

Ouldridge et al.44 They showed that there is a bias toward
initial structures with contacts between ends of the strands, an

observation that can be confirmed by our model. Almost all
zippering trajectories were initiated by contacts of monomers
termini. One of the mechanisms of duplex formation observed
for repetitive sequences, so call inchworm mechanism, was not
observed in our simulations, although we did not test polymers
with exactly the same sequence. The inchworm mechanism
may also be related to the specificity of base−base interactions.
It should also be noticed that tendency for slithering, instead of
inchworm-like behavior, in our model may result from
insufficient specificity of base−base interactions. This problem
will be addressed in the future development of the model.
Finally, it should be stressed that these results were obtained

in unrestrained simulations started from separated chains. This
mode of simulations is different from that of many other works
in which simulations are started from the experimental

Figure 11. Snapshots of trajectory of a zippering mechanism of the folding process of the Drew−Dickerson dodecamer.

Figure 12. Snapshots of trajectory of a slithering mechanism of the folding process of the Drew−Dickerson dodecamer.
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structure. Unlike many other force-fields developed for DNA,
our force-field, therefore, has ab initio folding capacity.
Influence of Backbone Dihedral Angle Potentials on

the Formation of Double-Helix. In our recent paper, it was
shown that dihedral angle bonded potentials are not
prerequisites for double-helix formation, which is rather driven
by base−base dipole interaction.43 Also, the model developed
by Ouldridge et al. does not require backbone dihedral angle
potentials to obtain DNA duplex hybridization.36 A question
can, therefore, be asked: Are the backbone potentials a
necessary factor for double-helix formation, or is this process
solely dependent on the base stacking and pairing? The
problem was addressed by running the simulated annealing
procedure with P5−S−P3−S3, S5−P5−S−P3, S5−P5−S−B,
and S3−P3−S−B dihedral angle potentials switched off. The
test performed on the Drew−Dickerson dodecamer showed the
same efficiency of double-helix hybridization process (24%).
The lowest energy structure shown in Figure 14a is only 3.2 Å
away from the experimental structure. Next, improper rotamer-
like potentials P5−P3−B−S, P5−S−B, and P3−S−B were
additionally switched off. The lowest energy structures have a
ladder-like shape, as shown in Figure 14b. It seems that
backbone dihedral angle potentials are not really necessary for
DNA duplex hybridization. Switching off rotamer-like poten-
tials (P5−S−B, P3−S−B, and P5−P3−S−B) causes formation
of ladder-like structures instead of double-helices. This effect
might be related to the lack of specificity of base−base
interactions, which might be the result of overestimation of
base−base van der Waals interactions with respect to dipole−
dipole electrostatic interactions. Nevertheless, the dipolar-bead
model suggests that only backbone bond-stretching, angle-
bending, and rotamer-like potentials are necessary for double
stranded DNA hybridization.

■ CONCLUSIONS

A physics-based rigid-body coarse-grained model of DNA is
proposed. The model was parametrized in the “bottom-up”
fashion. The bonded interactions are fitted to the potentials of

mean force of the model system. The equilibrium virtual-bond
lengths and virtual-bond angles were set to the values of the
ideal B-DNA double-helix. The nonbonded interactions are
approximated by Lennard-Jones, excluded volume and electro-
static interactions of charges and dipoles. The solvation and
ionic cloud screening is approximated by the Debye−Hückel
model. The model does not incorporate any Go̅-like potentials,
which force the structure toward the experimental one. In the
full physics-based model, nonbonded potentials do not
distinguish between near-neighbors and any other base pairs.
A full physics-based version of the model the nearest-neighbor
approximation, in which intrastrand base−base interactions are
limited to nearest-neighbors only, was tested. It should be

Figure 13. Examples of slithering pathways of DNA hybridization of (a) 3BSE and (b) 2JYK molecules.

Figure 14. Lowest energy structures obtained from simulated
annealing procedure with the NN model with some of bonded
potentials switched off. (a) Dihedral angle potentials S5−P5−S−P3,
P5−S−P3−S3, S5−P5−S−B, and P3−S3−S−B switched off. (b)
Additionally, rotamer-like potentials P5−S−B, P3−S−B, and P5−P3−
S−B switched off.
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stressed that in the reduced model all interstrand base−base
interactions are present.
The R-RATTLE rigid-body integration algorithm, imple-

mented in our software package, demonstrated superior
stability compared to a quaternion-based algorithm, with low
drift of the total energy even for a time-step as long as 20 fs.
The total speedup of computations compared to all-atom
simulations is close to 2 orders of magnitude. This result was
achieved without application of cutoffs on the nonbonded
interactions.
Stable double-helix trajectories were obtained for both PB

and NN models after adjustment of several force-field
parameters as discussed in the Conformational Stability section.
The geometry of two experimental DNA structures is preserved
during 0.1 μs simulations at 300 K. The persistence lengths of
ssDNA and dsDNA are underestimated by the factor of 2−3
compared to experimental data, discrepancy that seems to be
reasonable for physics-based model designed in the “bottom-
up” fashion. The other drawback of the model, which seems to
have the same origin as discrepancy in persistence lengths, is
insufficient specificity of base−base interactions, which affects
simulations of dsDNA with mismatches. Opening of mis-
matched pairs was not observed during 0.1 μs canonical
simulations at 300 K.
Nevertheless, the model successfully folds short (12−21 bp)

DNAs from separated strands. The full PB model is only able to
fold shortest double-stranded DNA dodecamer from separated
chains with relatively low efficiency caused by formation of
intrastrand hairpinskinetic traps in the folding process. The
reduced NN model removes kinetic traps and greatly improves
the folding efficiency. All three tested molecules with lengths
varying from 12 to 21 bp were folded from separate strands by
NN model, although the efficiency of folding drops with
increasing size of the simulated system. The possible
explanation is that the cooling process is too fast to sample
conformational space effectively and find the global minimum
on the complicated multi-minima free energy hyper-surface.
Application of a replica-exchange method, which will be
implemented in our software package, should help to explain
the cause of the low helical populations produced by the
simulated annealing procedure.
The model predicts two mechanisms of dsDNA hybrid-

ization. The more frequent process called zippering starts from
formation of native base−base contacts between 3′ and 5′-ends
of two chains and is followed by helix propagation. In the
second, less frequent process called slithering, initial non-native
Watson−Crick contacts (also mismatched contacts for 3BSE
and 2JYK) are established between 5′-ends (or 3′-ends) of two
strands; then, chains slide with respect to each other along the
Watson−Crick interface until all native contacts are formed.
This process was observed for all model systems although it is
much more frequent for the dodecamer, which has specific
sequence, than for other molecules. The slithering process
might also be an artifact caused by insufficient specificity of
base−base interactions.
Finally, the influence of backbone dihedral angle and

rotamer-like potentials on a double-helix formation process
was tested. The backbone dihedral potentials do not seem to be
a necessary prerequisite for dsDNA hybridization, but without
rotamer-like potentials, ladder-like structures instead of double
helices were observed.
The model has some weaknesses, such as low specificity of

base−base interactions, underestimation of persistence lengths

of both single and double-stranded DNA, and small influence of
mismatched pairs on double-helix dynamics. The origin of
mentioned problems most probably arises from overestimation
of Lennard-Jones base−base interactions, and we will address
these problems in the next evaluations of the dipolar bead
model.
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