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ABSTRACT
Human genetic adaptation to high altitudes (>2500 m) has been extensively studied over the last few years,
but few functional adaptive genetic variants have been identified, largely owing to the lack of deep-genome
sequencing data available to previous studies. Here, we build a list of putative adaptive variants, including 63
missense, 7 loss-of-function, 1,298 evolutionarily conserved variants and 509 expression quantitative traits
loci. Notably, the top signal of selection is located in TMEM247, a transmembrane protein-coding gene.
The Tibetan version of TMEM247 harbors one high-frequency (76.3%) missense variant, rs116983452
(c.248C>T; p.Ala83Val), with the T allele derived from archaic ancestry and carried by>94% of Tibetans
but absent or in low frequencies (<3%) in non-Tibetan populations.The rs116983452-T is strongly and
positively correlated with altitude and significantly associated with reduced hemoglobin concentration
(p= 5.78× 10−5), red blood cell count (p= 5.72× 10−7) and hematocrit (p= 2.57× 10−6). In
particular, TMEM247-rs116983452 shows greater effect size and better predicts the phenotypic outcome
than any EPAS1 variants in association with adaptive traits in Tibetans. Modeling the interaction between
TMEM247-rs116983452 and EPAS1 variants indicates weak but statistically significant epistatic effects.
Our results support that multiple variants may jointly deliver the fitness of the Tibetans on the plateau,
where a complex model is needed to elucidate the adaptive evolution mechanism.

Keywords:Tibetan, adaptive genetic variant, high-altitude adaptation, next-generation sequencing
(NGS), archaic ancestry, expression quantitative traits loci (eQTL), tissue-specific expression, hemoglobin
concentration, hypoxia

INTRODUCTION

It is generally believed that long-term human
inhabitation of the Tibetan highlands, where the
oxygen pressure is much lower than at sea level
(∼60%), is linked to a genetic adaptation to
hypoxic environments [1]. Many genetic studies
have been conducted to search for candidate loci
associated with high-altitude adaptation (HAA) in
Tibetans. The convergence of these studies strongly
supports the crucial roles of two genes, EPAS1 and

EGLN1, as members of the hypoxia-inducible
transcription factor (HIF) pathway in the HAA of
Tibetans [2–11]. A major undertaking of subse-
quent studies is to determine the functional genetic
variants of the HAA candidate genes identified
from previous genome-wide scans. One successful
example is a high-frequency missense mutation in
EGLN1 contributing functionally to the Tibetans’
high-altitude phenotype in vitro [9–11]. However,
most other attempts with the similar purpose
of identifying functional variants in other genes,
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including EPAS1, have not been successful. Previ-
ous studies rely largely on the examination of some
tagging single-nucleotide polymorphisms (SNPs)
in individual candidate genes or SNP-array-based
genome-wide scans. These strategies suffer from
SNP ascertainment bias and thus possibly have less
power to locate the functional variants [12,13],
while only the whole-genome sequencing (WGS)
offers near complete coverage of the genome,
including non-coding regions [14]. More impor-
tantly, HAA involves a wide range of phenotypic
variation. Like other complex traits, it is expected to
be driven by enormously large numbers of variants
spreading across the genome [15]. However, the
lack of high-coverageWGSdata in any single studies
previously prevented the identification of functional
variants associated with adaptive traits [9–11].

To obtain a comprehensive knowledge of the
genome variation of Tibetan highlanders, and to
gain further insights into the genetic bases of hu-
man adaptation to high altitudes, we complied a
multi-omics dataset encompassing deep-sequenced
genomes (30–60×) of 38 Tibetan highlanders
(TIB) and 39 Han Chinese lowlanders (HAN)
[16], RNA-Seq transcriptomes of 57 term placen-
tas of Tibetans [17] and 62 quantitative traits in
2,849 Tibetan highlanders [18]. A systematic anal-
ysis of these data enabled us to search for known
and novel candidate adaptive genetic variants (here-
after referred to as AGVs) on a whole-genome scale,
while minimizing bias. These efforts are expected
to facilitate further molecular-functional studies and
provide a better understanding of the evolution-
ary mechanisms of human adaptation to life on the
Himalayan plateau.

RESULTS
Candidate AGVs in Tibetan highlanders
Weanalysed11.57millionbiallelic single-nucleotide
variants (SNVs) discovered in the deep-sequenced
genomes, including 1.75 million (15.1%) novel
SNVs not reported in dbSNP build 151 (Supple-
mentary Table 1). Most of the SNVs (∼95%) act as
modifiers in regulatory regionswithmild impact, e.g.
transcription factor binding variants, and aredifficult
to capture without whole-genome deep sequenc-
ing (Supplementary Table 2). The remaining 5%
include 56,473 high-impact variants (3000 loss-of-
function (LoF) variants and 53,473 missense vari-
ants) and 54,572 low-impact variants. By analysing
the genetic variation within and between popula-
tions (see Methods), we identified 374 genomic
regions with fine-mapped signals of positive selec-
tion. Of these regions, 254 contain at least one

protein-coding gene and 66 regions do not overlap
with any known genes (Supplementary Table 3).

As the aim of this study is to identify candidate
AGVs specific to Tibetan highlanders, we screened
the above genomic regions and retained those show-
ing considerable divergence between Tibetan and
non-Tibetan populations (see Methods). To this
end, we built a list of 1,877 candidate AGVs with
at least one of the three categories of biological ef-
fects (see Methods, Fig. 1A and B, and Supplemen-
tary Table 4): changing protein sequence (CPS), in-
cluding 1 stop-lost variant, 2 stop-gained variants,
4 splice-donor variants and 63 missense variants
(Table 1 and Supplementary Table 5); regulating
gene expression (RGE), including 509 expression
quantitative traits loci (eQTLs); unknown function
but conserved in evolution (UCE), including 1,297
variants with a combined annotation dependent de-
pletion (CADD) [19] score >15 or a genomic
evolutionary rate profiling (GERP) [20] score >2.
These candidate AGVs fell into 521 genes (hereafter
referred to as candidate adaptive genes; Supplemen-
tary Table 6) in 319 fine-mapped candidate regions.
Only 21 candidate adaptive genes have been for-
mally reported in previous HAA studies on either
human or non-human species inhabiting the high-
lands in Tibet, Ethiopia or South America (Supple-
mentary Table 6), suggesting that the vast majority
of the genes and regions we identified are novel can-
didates of HAA.

Potential functional and phenotypic
effects of the candidate AGVs
Based on database and literature analyses, here we
briefly summarize the potential functional and phe-
notypic effects of the candidate AGVs. There were
three missense candidate AGVs (rs192690066,
rs116983452 and rs12612916) identified in
TMEM247, which encodes for transmembrane
proteins and is located close to the well-studied
EPAS1. In particular, rs116983452 had a larger
composite multiple signal (CMS) score (19.85)
over the other two missense loci, and it showed a
greater genetic differentiation between TIB and
HAN (FST = 0.72) than that of any other SNPs
in EPAS1 and TMEM247. The missense candidate
AGV inEGLN1, rs186996510, is the only functional
causal mutation identified in the Tibetan people in
previous studies [6,7,9,10,15]. The candidate AGV
rs5758511 is a stop-gain polymorphism in CENPM.
The derived allele at this locus was reported to be
associated with reduced birth weight in the Euro-
peans [21] and it presents a higher frequency in
TIB (0.76) than in HAN (0.46) in our data. We did
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Figure 1. The landscape of the candidate AGVs in TIB and the candidate adaptive genes involved in the hypoxia-induced
pathways. (A) Manhattan plot of the CMS scores across the autosomes. The candidate AGVs are labeled according to their
biological effect. CPS, changing protein sequence; RGE, regulating gene expression; UCE, unknown function but conserved
in evolution. (B) Proportions of different types of candidate AGVs. A majority of the candidate AGVs are located in the non-
coding regions, making our analyses more comprehensive than those of previous studies. (C) The functional enrichment of
AGV-related genes. The full priori gene list for each pathway or category appears in Supplementary Table 7. ‘Prior literature’
indicates genes reported by previous studies on high-altitude adaptation in human and non-human species. Here, we only
show the 10 categories with odds ratios >1 (the y-axis). The horizontal line in black indicates odds ratio at 1. The adjusted
p values for the enrichment of each category are shown above the bars. The red bars indicate significant enrichments (adjusted
pH 0.05). (D) HIF pathways and related reactions under normoxia and hypoxia. Candidate adaptive genes (in the blue boxes)
are mapped to the pathways they could possibly be involved in. Genes highlighted in red are suggested to carry genomic
segments introgressed from archaic hominids (see Methods).
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not identify any candidate CPS-AGV in EPAS1, but
found a downstream intergenic variant rs1900592
showing the largest CMS score (23.76) among
the candidates. According to the Genotype-Tissue
Expression (GTEx) database [22], rs1900592 is
an eQTL that regulates the expression of EPAS1
in blood. The region Chr11: 18344845–18479845
showed the second strongest CMS signal across
the genome (Fig. 1A) and encompasses four can-
didate RGE-AGVs and two candidate UCE-AGVs.
LDHAL6A, LDHA and LDHC belonging to the
lactate dehydrogenase gene family are in this region
and they are involved in anaerobic glycolysis. Other
interesting candidate adaptive genes include HLA-
DMA involved in immunity [23], FRAS1 associated
with renal agenesis [24], SREBF2 related to female
reproduction [25] and DISC1 associated with
response to the ultraviolet (UV) exposure [5,26].

Enrichment of candidate AGVs in
hypoxia-related pathways
As most of the candidate adaptive genes identi-
fied in our study are novel candidates of HAA and
therefore could have not been well investigated, we
used two intersecting approaches to infer the possi-
ble functional effects of them. First, we referred to
genes involved in several hypoxia-related pathways
because of their known functions. Second, we tested
the associations between the candidate AGVs and
phenotypes, as well as gene-expression levels in the
Tibetans.

We collected genes involved in several hypoxia-
related pathways defined by PathCards [27] and
merged them with those that have been reported
in previous HAA studies. The resulting set of 2,201
functional candidate genes is listed in Supplemen-
tary Table 7. We performed enrichment analysis
(see Methods) and found that the 521 candi-
date adaptive genes were enriched in SUMOylation
(odds ratio = 4.3, adjusted p = 0.01, Fisher’s ex-
act test) and in the HIF pathway (odds ratio = 3.1,
adjusted p = 0.03, Fisher’s exact test) (Fig. 1C).
In addition, some genes appeared in the intersec-
tion of the candidate adaptive gene list and previous
HAA studies (‘priori literatures’ in Supplementary
Table 7), which was not likely to have occurred by
chance (odds ratio = 4.0, adjusted p = 1.5 × 10−6,
Fisher’s exact test).

To provide a more intuitive understanding of
the roles that the candidate adaptive genes might
play in HAA, we constructed a putative adaptive
map of the hypoxia-related pathways for the Ti-
betan population, including theHIF pathway and its
related pathways as listed in Supplementary Table 7

(see Methods, Fig. 1D). EPAS1, encoding HIF2α,
is the central gene in the HIF pathway. We identi-
fied several candidate adaptive genes involved in the
post-translational modifications of the HIFα pro-
teins and they may strongly affect the stability and
activity of HIFα. For instance, EGLN1 encoding
an oxygen-dependent hydroxylase-domain enzyme
called prolyl hydroxylase 2 (PHD2) may induce the
degradation of HIFα under normoxia [28–31].The
SUMOylation of HIFα in the nucleus also relies on
SENP1, SENP2, SUMO3 and CUL3 [32–35]. In-
creasing the oxygen delivery and reducing the oxy-
gen consumption are the two primary responses to
hypoxia. The former relies on the improvement of
blood and vascular conditions (e.g. erythropoiesis
and angiogenesis) and seven candidate adaptive
genes (OR10X1, TRPC6, PRKCE, PIGF, NRXN1,
BCL2 and TCF7L2) are related to this process; the
lattermainly refers to themetabolism of glucose and
lipids, in which ACO2, SLC37A4, LDHA, GDPD1,
ZNF638 and SREBF2 may play crucial roles. We
found that most of the genes presented in the path-
wayhad significant interactionswithEP300 (histone
acetyltransferase p300, p = 2.65 × 10−4; Supple-
mentary Fig. 1). EP300 is a co-activator of HIF1α
[6,36,37] and it stimulates the hypoxia-induced
genes, such as the vascular endothelial growth fac-
tor (VEGF) [37–39]. This gene has been reported
to show signals of selection in the genome-wide
comparisons between Tibetans and Han Chinese
[6] and might contribute to HAA through regulat-
ing nitric oxide (NO) production in Tibetans ac-
cording to a genetic-association test [40]. Taken to-
gether, these results emphasize the importance of
post-translational modifications of EPAS1 and indi-
cate that the regulation ofHIF-induced downstream
pathways underlies the response to hypoxic condi-
tions in Tibetans.

Association of candidate AGVs with
phenotypes in Tibetans
We next performed association studies of the candi-
date AGVs with 62 quantitative traits collected from
2,849 Tibetan samples (Supplementary Table 8)
[18]. We applied a linear additive model and found
that 73 candidateAGVs distributed in 17 geneswere
associated with at least one of these traits after cor-
recting for multiple tests (Supplementary Table 9).
Importantly, 61 of these candidate AGVs were
located in seven continuous protein-coding genes
on chromosome 2: EPAS1,TMEM247,ATP6V1E2,
RHOQ, PIGF, CRIPT and SOCS5. The adaptive
alleles at these loci showed strong associations with
the reduced levels of red blood cell count (RBC,
adjusted p = 3.10 × 10−7 – 0.045), hemoglobin
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(HGB, adjusted p = 2.90 × 10−5 – 0.045) and
hematocrit (HCT, adjusted p = 1.21 × 10−6

– 0.046), which were proved to be adaptive traits
of the Tibetan highlanders [2,5,41,42]. Moreover,
except RHOQ and PIGF, the other five genes
showed significant associations with uric acid (UA)
level (top adjusted p= 1.89× 10−5 – 0.024 for each
gene)—a useful biomarker of vascular dysfunction
(e.g. pulmonaryhypertension) [43].Our results also
suggest thatMFN2was significantly associated with
folate (adjusted p = 0.035). The folate-increasing
effect of the MFN2 variant indicates the possibility
of genetic compensation for the UV-induced folate
degradation to support pregnancy and increase
fertility at highlands [18]. It is also interesting that
thePPP1R1B locuswas associatedwith phosphorus.
Phosphorus plays an important role in multiple
biological processes, including oxidative phospho-
rylation, which is crucial for energy metabolism.
PPP1R1B is associated with RBC and HGB in the
populations with European ancestry [44], but these
associations were not observed in the Tibetans stud-
ied here. It is notable that most of these associations
(except that between rs1495099 in PPP1R1B and
phosphorus) were confirmed when using an alter-
native approach—amixed linear model-based leave
one chromosome out association (MLMA-LOCO)
analysis (see Methods; Supplementary Table 10).
Additionally, several candidate AGVs were identi-
fied to be associated with the reduced height and
the increased creatinine level in Tibetans using this
approach. We found a weak association between
EGLN1 and HGB in the Tibetan males (p = 0.038
at rs186996510, but not significant after correct-
ing for multiple test), consistently with previous
findings [4,9,18].

Association of candidate AGVs with
gene expression in term placentas
Previous data showed thatTibetanwomenwithhigh
oxygen saturation havemore surviving children than
those with low oxygen saturation [45]. Gene expres-
sion in term placenta—a key organ for maternal–
fetal oxygen exchange—may largely reflect the
status and fitness of the fetus, but the data have never
been reported by the GTEx Project [22].Therefore,
we performed a quantitative transcriptomics anal-
ysis to quantify the gene expression in 57 Tibetan
term placentas. We tested the associations between
the expression profiles of 592 candidate AGVs in
the coding regions and 310 candidate adaptive
genes, and identified 54 candidate AGVs that have
cis-regulatory effects on 19 genes in term placenta

(Supplementary Table 11 and Supplementary
Fig. 2).

The eQTLs for each gene tended to be in ex-
tremely strong linkage (r2 > 0.5 for pairwise SNPs
located <100 kb from each other in the 57 Tibetan
genotypes for the eQTL study; r2 > 0.9 in the 2,849
Tibetan genotypes for the trait study and in the 38
Tibetan genomes), but with three exceptions in-
cluding EPAS1, TMEM247 and CSF2RB (Supple-
mentary Fig. 3). The aforementioned missense vari-
ant rs116983452 was significantly associated with
the expression of EPAS1 (adjusted p = 0.003) and
TMEM247 (adjusted p = 0.038). According to our
data, the expression level is high for EPAS1 (in top
1% of the whole genome) but low for TMEM247 in
Tibetans’ placentas, and both of them were down-
regulated by the adaptive allele (T, derived allele)
at rs116983452. Consistently, Peng et al. [17] also
reported the down-regulation of EPAS1 transcrip-
tion in placentas in theTibetans.However, we could
not determine the causality of this variant to the
gene expression, as it is in strong linkage with several
intronic eQTLs located in TMEM247 (rs1868079,
r2 = 0.92; rs116871724, r2 = 0.92; rs79542054,
r2 = 0.88), which is also the case for some other
missense candidates showing substantial correlation
with the gene expression (Supplementary Fig. 3).
The missense variant rs3745640, which is also the
topCMS signal inPRR22, was identified as an eQTL
of DUS3L. It is in strong linkage with the synony-
mous rs10811 in DUS3L (r2 = 0.78). The most sig-
nificant eQTL of SEPT3, rs2228313, is a missense
candidate AGV in SREBF2. It is involved in the
HIF pathway (Fig. 1D) and is in complete linkage
with rs17848337 (r2 = 1) in SEPT3. Interestingly,
the four eQTLs of GNL3 are all missense variants
in an linkage disequilibrium (LD) block (pairwise
r2 = 0.88–1), in which rs11177 and rs2289247 are
the top twoCMS signals inGNL3, while rs6617 and
rs1029871 are candidate AGVs identified in SPCS1
and NEK4, respectively. Different roles that a vari-
ant could play in different genes also increased the
difficulty to unravel the genetic basis ofHAA. For in-
stance, rs3865452 acts as amissense candidate AGV
in ADCK4, but was identified to be the only eQTL
ofRAB4B, which is 60 kb downstream fromADCK4.
RAB4B encodes a protein that is involved in vesicu-
lar trafficking [46] and is an important paralogue of
EGLN2; EGLN2 is a HIF that plays an essential role
in the response to hypoxia.

Colocalization of eQTLs and
phenotype-associated signals
Some eQTLs are colocalized with phenotype-
associated signals in three regions of the Tibetan
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Figure 2. Colocalization of eQTLs and phenotype-associated candidate AGVs. (A) Genome-wide distribution and linkage disequilibrium (LD) of the
candidate AGVs. The candidate AGVs, eQTLs and phenotype-associated loci are indicated by inverted triangles in black, green and orange, respectively.
The LD blocks were inferred using Haploview version 4.2 [104] and are presented using the standard color scheme. The three regions of colocalization
are marked using ellipses and are labeled as ‘Coloc˙Region 1’, ‘Coloc˙Region 2’ and ‘Coloc˙Region 3’, respectively. (B) Zoom-in plots of candidate AGVs
in the three colocalization regions. In each plot, gene locations are shown above the chromosome. The cis-regulated genes are indicated by green bars,
while others are indicated by gray bars. The eQTLs and phenotype-associated loci are indicated by inverted triangles in green and orange, respectively.
In Coloc˙Region 1, the color of each inverted triangle for the eQTL matches that of the bar for the gene regulated by this eQTL. The LD of pairwise SNPs
was measured by r2 using Haploview version 4.2 [104].

genomes (Fig. 2). For instance, most of the eQTLs
in EPAS1 and TMEM247 are exactly matched with
the association signals of UA, RGB, RBC andHCT;
the eQTLs of PGAP3 are only 3 kb downstream
from a phosphorous-associated locus in PPP1R1B;

the DUS3L eQTLs were significantly associated
with the gamma-glutamyl transpeptidase (GGT)
level (Fig. 2 and Supplementary Table 9). In the
latter two regions, the eQTLs and phenotype-
associated loci are almost in complete LD. We
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Figure 3. A human-anatomy plot showing tissue- and organ-specific expression of the
candidate HAA-related genes. The expression profiles for these genes were obtained
from the Genotype-Tissue Expression (GTEx) database. All reported tissues and organs
are shown, except for the cell lines. Genes reported to be HAA-related in Tibetans or
showing significant associations with phenotypes in our analysis of 2,849 Tibetans are
highlighted in red, while the others are in blue. A full list of the expression patterns of all
candidate HAA-related genes is given in Supplementary Table 6. The human-anatomy
image was constructed at pngtree.com.

further asked whether it is a coincidence or a causal
relationship that leads to such colocalization. Using
a stepwise regression approach implemented in the
Rpackage coloc version3.1 [47],we tested the jointly
estimated coefficients of the significantly associated
candidate AGVs for each trait as mentioned above
and those for gene expression (see Methods). The
results presented in Supplementary Table 12 sug-
gest that the expression of EPAS1 and TMEM247 is
likely to be responsible for the variation ofUA, RGB,
RBC andHCT(adjusted p> 0.05 for all tested loci)
and so is the DUS3L expression for GGT (adjusted
p > 0.05 for all tested loci). We are not able to test
the colocalization of signals in the PGAP3 region, as
only one phenotype-associated locus was identified
but coloc considers two loci for each trait.

Tissue-specific expression patterns
of candidate HAA-related genes
Based on our literature searches and data analy-
sis, we selected 157 genes with potential functional

relations with HAA from the candidate adaptive
gene list and they were thus defined as candidate
HAA-related genes (see Methods; Supplementary
Table 6). We examined the expression profiles of
the candidate HAA-related genes in GTEx and ob-
served that 51 of them exhibited tissue-specific ex-
pression patterns in 11 tissue types (see Methods;
Fig. 3). Here, the tissue-specific expression is deter-
mined following the GTEx Project [48] or defined
as an observable higher expression level of a gene in
a tissue or organ than in any others—in detail the
median expression level of this gene in this tissue
should be at least twice that in any other tissues and
the lower quartile in this tissue should also be higher
than the upper quartile of that in all the other tissues.

The brain, which controls neural activity, is the
most oxygen-dependent organ in the body. The
acute hypoxia experienced at extremely high alti-
tudes may give rise to severe neuropsychological
outcomes, like loss of consciousness and transient
ischemia [49]. PPP1R1B was the most strongly up-
regulated gene in the brain. As discussed above,
we identified a candidate AGV related to phospho-
rous in PPP1R1B. ANO3 is expressed in several re-
gions of the human brain, particularly the putamen
[50].The angiogenic pathway in the putamenmight
be activated by hypoxia, based on an experimental
study in rats [51]. Testes are male reproductive or-
gans. Interestingly, sperm quality and quantity and
testosterone levels are equivalent in men inhabit-
ing high and low altitudes [49]; this equivalence
might be the result of HAA. Two genes with out-
standing signatures of natural selection, TMEM247
and ATP6V1E2, were specifically expressed in the
testes, although at low levels. The biological func-
tion of TMEM247 is unclear; the protein encoded
by ATP6V1E2 is a subunit of a sperm-specific
V-ATPase that is expressed in acidic secretory acro-
somes essential for fertilization [52]. Another sig-
nal isCATSPERD. Proteins coded by this gene were
detected in spermatocytes and spermatids at differ-
ent stages of spermatogenesis in mice [53]. In addi-
tion, EPAS1 and EGLN1 are specifically expressed
in the lungs and the muscles, respectively. NOV, a
blood-pressure-associated gene [54], is specifically
expressed in the arteries. The arteries are crucial for
themaintenance of sufficient blood flow and thus in-
fluence blood oxygen. Spleen is the primary erythro-
poietic organ producing RBCs [55] and one can-
didate HAA-related gene STAB1 is specifically ex-
pressed in the spleen. This gene was reported to be
significantly associated with HCT level [44,56] and
was down-regulated in response to hypoxia. There-
fore, our results suggest that HAA is a complex bi-
ological process involving multiple organs and tis-
sues.

http://pngtree.com
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Prioritization of the candidate
adaptive genes
We further prioritized the candidate adaptive
genes according to FIS (the functional importance
score), which is a combined statistic of population
differentiation and molecular functionality (see
Methods; Supplementary Table 6). Strikingly,
we found TMEM247, which has been poorly
studied previously, appeared on the top of the list
attributing to the key missense variant rs116983452
(c.248C > T; p.Ala83Val). The adaptive derived
allele (T allele) at this locus is enriched in TIB
(76.3%), while it is absent in African, European and
American populations, and is in low frequencies in
other East Asian populations (<3%) according to
the 1000 Genomes dataset (see Fig. 4A for the con-
tour density plots of rs116983452-T frequency). It
is, to date, the most-differentiated functional variant
identified between Tibetan and non-Tibetan pop-
ulations. In fact, the genomic region that includes
this variant is extremely divergent between TIB and
HAN (maximum FST = 0.804) (Supplementary
Fig. 4), in sharp contrast to the genome-wide aver-
age (FST = 0.015). The Tibetan-enriched allele was
derived fromarchaic ancestry (Fig. 4B). It is strongly
and positively correlated with altitude (r = 0.838, p
value = 0.018) (Fig. 4C and Supplementary Fig. 5)
and had a pronounced signature of nature selection
(Fig. 4D). The selection coefficient estimated for
rs116983452-T (s= 0.0035–0.0058) is higher than
that estimated for the well-known missense variant
(rs186996510) of EGLN1 (s = 0.0024–0.004),
although both are greater than that ofmost genome-
wide candidate AGVs (median s = 0.001–0.0016)
(Supplementary Table 4 and Supplementary
Table 14), assuming that all these candidate AGVs
share one selection event, which occurred after the
split of the highlanders (TIB) and the lowlanders
(HAN).

The candidate gene-association analysis showed
that rs116983452-T was significantly associated
with UA (adjusted p = 0.031), HGB (adjusted
p= 5.78× 10−5), RBC (adjusted p= 5.72× 10−7)
and HCT (adjusted p = 2.57 × 10−6), and it
had substantial influence on TMEM247 expression
(Fig. 4E and F). Using 1,160 replication samples
collected from four different altitudes, we validated
the strong association between rs116983452-T and
both altitude and the aforementioned hypoxia-
related traits, e.g. HGB (adjusted p= 4.87× 10−3)
and HCT (adjusted p= 4.87× 10−3) (Fig. 4E and
Supplementary Table 15).

Differentiation of selection and
association between TMEM247
and EPAS1
Theadjacent physical locations (∼40kb indistance)
ofTMEM247 and EPAS1 on the same chromosome
raised the concern of a hitch-hiking effect, i.e. the ob-
served signals at these genesmight be correlated due
to the LD. However, when examining the LD pat-
terns of TMEM247 and EPAS1, we found that they
are located in two different LD blocks, separated
by a strong recombination hotspot (Supplementary
Fig. 6A). The correlations among the key candi-
date AGVs (e.g. rs1900592 in EPAS1, rs192690066,
rs116983452 and rs12612916 in TMEM247) and
other reported candidates (e.g. the 5-SNP-motif
withDenisovan ancestry, theTibetan-enricheddele-
tion and several other important SNPs [8,11–13]) in
each gene is smaller than those between TMEM247
and EPAS1 (Supplementary Fig. 6B). These results
might suggest a much more complex mechanism of
HAA in this region: the coexistence of candidate
AGVs regulating gene expression and those alter-
ing protein sequences. We then statistically evalu-
ated the individual and joint contributions of the
multiple variants in the two genes, i.e. EPAS1 and
TMEM247, to the variation of adaptive phenotypes
(RBC, HGB and HCT) in Tibetans using three
models: (i) a simple linear-regressionmodel consid-
ering either an EPAS1 variant or a TMEM247 vari-
ant, (ii) a binary linear-regression model consider-
ing both an EPAS1 variant and a TMEM247 vari-
ant and (iii) a binary linear-regression model con-
sidering an additional interaction term (see Meth-
ods). Taking rs4953354 reported in Beall et al. [2]
as a representative candidate in EPAS1, we found
TMEM247-rs116983452 explained ahigher propor-
tion of heritability of the phenotypes in Tibetans
than the EPAS1 variant (effect size in the Model 1:
−0.12 vs. –0.09 for RBC;−4.01 vs. –3.13 for HGB;
−1.22 vs. –0.93 for HCT) (Fig. 5 and Supplemen-
tary Table 13). The TMEM247-rs116983452 vari-
antmasked the effects ofEPAS1-rs4953354 (pof the
two loci in Model 2: 1.27 × 10−6 vs. 0.71 for RBC;
1.68× 10−4 vs. 0.37 for HGB; 1.77× 10−5 vs. 0.39
for HCT) and improved the fit of the model (ge-
netic contributions of Model 1 (EPAS1-rs4953354)
and Model 2: 0.100 vs. 0.108, p = 1.27 × 10−6

for RBC; 0.143 vs. 0.148, p = 1.68 × 10−4 for
HGB; 0.136 vs. 0.142, p = 1.77 × 10−5 for HCT).
Similar results were observed in the comparison
between TMEM247-rs116983452 and most of the
other adaptive variants in EPAS1 (Supplementary
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Figure 4. Signature of local adaptation at rs116983452 and its functional associations. (A) Global distribution of rs116983452-T. Each triangle represents
a sampling locality for a population. The map is adapted from http://bzdt.ch.mnr.gov.cn (GS(2016)1665, approved by the Ministry of National Resources
of the People’s Republic of China). (B) Median-joining network for TMEM247. The gray area highlights a group of Tibetan-enriched haplotypes with
Denisovan origin, all of which carry rs116983452-T. (C) Correlation between the altitude and the derived allele frequency at rs116983452. Each dot
represents an Asian population, from both public datasets and our unpublished data. Populations analysed in this plot include various Tibetan populations
(labeled), as well as Uyghur, Tajik, Kazak, Hui, Han Chinese, Japanese andMalaysian peoples (unlabeled). (D) Estimation of extended haplotype diversity
(EHH) in TIB and HAN around rs116983452. (E) Significant associations between rs116983452 and various quantitative traits. Associations validated in
a larger Tibetan population are indicated with fonts in red. (F) The expression of TMEM247 in three groups of Tibetan samples with different genotypes.

Table 13). The epistatic interaction of TMEM247
and EPAS1 seems to be weak but statistically sig-
nificant, in line with the loose correlation of the
two genes indicated by the aforementioned LD pat-
tern. Further investigation of these mechanisms will

depend on the designation of many gene-expression
and functional assays that separate the individual or
joint contributions of each candidate AGV, which,
though, is expected to be labor-intensive and time-
consuming.

http://bzdt.ch.mnr.gov.cn
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Figure 5. Effects of EPAS1-rs4953354 and TMEM247-rs116983452 on the adaptive traits in Tibetans. The intronic SNP
rs4953354 reported in Beall et al. in 2010 [2] was selected as a representative adaptive EPAS1 variant in comparison with
the rs116983452 in TMEM247. The locations on chromosome 2 of the two genes are presented by the pink bars against the
coordinates above and the positions of the two SNPs are indicated by arrows. For each SNP, the frequency of the adaptive
allele and that of three genotypes are shown by blue bars. The genetic effects of rs4953354 and rs116983452 on red blood
cell count (RBC), hemoglobin (HGB) and hematocrit (HCT) were tested using three linear-regression models, as illustrated
in Methods. The effect size of each variant and the genetic contribution of each model are shown in the green bars below.
Significant p values (p < 0.05) are denoted with asterisks. In Model 3, the effect size of the interaction of the two variants
is not significant (p> 0.05) and thus is not shown in the figure. Detailed results can be found in Supplementary Table 13.

Distinct ancestral architectures between
EGLN1 and TMEM247

EGLN1 and TMEM247 are the only two genes that
harbor high-frequency missense functional candi-
date AGVs in the Tibetan highlanders. We there-
fore postulate that these two genes are function-
ally important and associated with the altitudi-
nal adaptation of the Tibetan highlanders. It is
noteworthy that archaic ancestry is completely
absent from the entire EGLN1 gene region in
both TIB and HAN (see Methods; Supplementary
Fig. 7A). We estimated that the time to the most
recent common ancestor (TMRCA) of the haplo-
types carrying the key EGLN1 locus (rs186996510)
[9,10] was 29,800 years (see Methods), which pre-
dates the Last Glacial Maximum (LGM)—a period
of intense cold from ∼ 26,500 to 19,000 years be-
fore present (YBP) [57]. In contrast, elevated ar-
chaic ancestries in the Tibetans were observed in

TMEM247 (Supplementary Fig. 7B).The unusually
high frequency of archaic sequences and substan-
tial differences between TIB and HAN—as well as
the other populations—could not be explained by
recent gene flow or random processes. This indi-
cated that TMEM247 has been subjected to strong
natural selection and likely contributes to the alti-
tudinal adaptation of Tibetan highlanders. The sur-
viving archaic sequences in TMEM247 in Tibetan
highlanders could be dated back to ∼ 60,000 YBP,
again pre-dating the LGM [16]. Assuming that the
selection of rs116983452-T in TMEM247 occurred
right after the archaic introgression, we estimated
that the selection coefficient at this locus was 0.013–
0.033 (Supplementary Table 14). The distinct and
complicated ancestral architectures of EGLN1 and
TMEM247 have many implications for Tibetan ori-
gins and their history in adapting to the plateau. Our
results indicate that both archaic and modern hu-
man ancestries contribute to theHAAof theTibetan
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highlanders and that human adaptation to high alti-
tudes in Tibet is muchmore ancient than previously
believed, as the key candidate AGVs facilitating the
altitudinal adaptation of the Tibetan highlanders
were likely derived from pre-LGM populations.

DISCUSSION
As human migrations to the Tibetan plateau are
likely a series of ‘stochastic adventures’ rather than
well-planned expeditions, a wide range of pheno-
typic variations driven by enormously large num-
bers of variants and genes spreading across the
genome are expected to have been instrumental in
human adaptation to the plateau [15]. The con-
vergence of previous studies supports the roles of
two genes that are part of the HIF pathway, EPAS1
and EGLN1, in the HAA of Tibetans [2–8]. How-
ever, our study provides a more comprehensive and
prioritized list of candidate AGVs, of which only
a few have been reported. It would facilitate fur-
ther molecular-functional studies of HAAs and im-
prove our understanding of human adaptation to the
Himalayan plateau.

We analysed the same data—the whole-genome
SNPs of 2,849 Tibetan samples—as Yang et al. [18]
did, but used different strategies and criteria for the
purpose of this study. Of the nine adaptive genes re-
ported by Yang et al. [18], three (EPAS1, EGLN1
and NEK7) were identified as candidates in our
study.We realized that the candidate loci in theother
six genes showed minor genetic differentiations be-
tween Tibetan and Han Chinese (Table 1 in Yang
et al. [18]) and thus were not considered as candi-
dates according to our criteria for selecting candi-
date AGVs. It should also be noted that TMEM247,
rather than EPAS1, presented as the top signal in
our study, inconsistentlywithprevious findings [58–
60]. Despite EPAS1 variants also showing signifi-
cant signals of positive selection (e.g. topFST = 0.8),
when thebiological effects (e.g. variant type andcon-
servation)were taken into account, the top signals in
EPAS1 (including rs372272284 reported by Jeong
et al. [59]) were filtered out due to the mild bio-
logical impact and the signals in TMEM247 (e.g.
rs116983452) survived. We believe it is essential to
consider both statistical signals and biological effects
of variants in the identification of candidate AGVs,
as they are more likely to be the adaptive genetic
variants.

Functional investigations will hopefully resolve
which candidate AGVs are causal for adaptation and
how these candidate AGVs have contributed to the
altitudinal adaptations of the Tibetan highlanders.
However, the challenges are obvious. For example,

determining the causality and consequence of al-
titudinal adaptation is difficult, with many candi-
date AGVs discovered from whole-genome data. In
the present case of TMEM247, which is located in
a region encompassing seven genes and many ge-
netic variants, it is difficult and complex to deter-
mine which are the ‘drivers’ and which are ‘passen-
gers’. For instance, the causality or independency
of EPAS1 and TMEM247 to the phenotypes in
Tibetans could not be exclusively determined by
the cross-conditional association analyses, although
they are in different LD blocks (Supplementary
Table 16).Therefore, we give higher weights to vari-
ants that are highly differentiated between popu-
lations with elevated archaic ancestry and strong
association with the adaptive traits, such as the
Tibetan-enriched missense rs116983452-T located
in TMEM247.

Withstanding the challenging environmental
conditions of the Tibetan highlands must have been
a very long evolutionary process, possibly even
longer than the history of most of modern Eurasian
populations. This has been well illustrated by dating
ages of candidate AGVs in the two outstanding
genes (EGLN1 and TMEM247) with distinct
ancestry make-up. In the Tibetan genome, the
entire EGLN1 gene derived its ancestry exclusively
from modern human groups (Supplementary Fig.
7A), while the TMEM247 variants derived their an-
cestry mostly from archaic groups (Supplementary
Fig. 7B). Therefore, it is evident that both anatom-
ically modern humans (AMH) and non-AMH
ancestries contributed to the HAA of the Tibetan
highlanders. However, the key candidate AGVs as
identified in the two outstanding genes (EGLN1
and TMEM247) with distinct ancestries, either
AMH- or non-AMH-originated, traced their origins
back to ∼30,000 years ago and thus could be
derived dominantly from pre-LGM populations,
indicating ancient adaptation of humans to the
Himalayan plateau.

Our data and analysis also suggest latecomers to
the plateau might have typically inherited candidate
AGVs from predecessors via genetic admixture,
rather than via the creation of one ormore candidate
AGVs de novo. Supporting this hypothesis, most
of the candidate AGVs identified in this study
were standing variants, while hard sweeps are rare.
Although founder effects could mimic positive
selection on standing variants, we do not think
that would be the case in our study, as it would
influence the whole genome, rather than a single
locus. Indeed, selection on standing variants may
be common in human adaptation to local envi-
ronments, as ‘archaic adaptive introgression’ has
been suggested by many recent studies [11,61–66].
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Knowing ancestral origins of the candidate AGVs
is imperative, being aware of genetic continuity of
early highland-foragers and present-day Tibetans
[16] and understanding ‘borrowed fitness’ as a
driving force of adaptive evolution is helpful for
further investigations of the genetic mechanism of
human adaptation to local environments.

Our results suggest that human HAA, associated
with awide range of complex traits, is drivenby enor-
mously large numbers of variants spreading across
the genome, of which only a few have been iden-
tified. Moreover, even considering a single certain
adaptive trait, we argue that more than one vari-
ant may jointly deliver the fitness even in a closely
linked genomic region, suggesting the epistatic ef-
fect or genetic interaction has to be considered care-
fully. However, detecting interactions among vari-
ables is a well-known challenge in statistics and data
mining [67]. For example, a completemodel that in-
cludes all variants and all interaction terms may re-
quire too many degrees of freedom and is thus not
feasible. For this reason, interactions are only tested
for TMEM247-rs116983452 and those EPAS1 vari-
ants that have a statistically significant independent
main effect. Those DNA sequence variations that
have an interaction effect, but no or minimal main
effect, could have been missed. Modeling multi-
variant adaptation is not the currency of human ge-
netics and evolution, but may open a window to
understanding human adaptation to high altitude.

METHODS
Samples and WGS
Peripheral blood samples were collected from 33
Tibetan and 5 Sherpa individuals living in six prefec-
tures (Lhasa, Chamdo, Nagqu, Nyingchi, Shannan
and Shigatse) in the Tibet Autonomous Region,
and blood samples of 39 Han Chinese individuals
were collected from diverse regions in China. Each
individual was third (or more)-generation offspring
of non-consanguineous marriages of members of
the samenationality. All sampleswere collectedwith
informed consent and approved by the Biomedical
Research Ethics Committee of Shanghai Insti-
tutes for Biological Sciences (Shanghai, China).
Prior to sequencing and analysis, all samples were
stripped of personal identifiers (if any existed). All
procedures were in accordance with the ethical
standards of the Responsible Committee onHuman
Experimentation and the Helsinki Declaration
of 1975, as revised in 2000. Briefly, WGS with a
target high coverage (30–60×) was performed on
Illumina HiSeq X Ten following Illumina-provided
protocols with standard library preparation inWuXi
NextCODE at Shanghai. Details regarding sample

collection and genome sequencing have previously
been described [16]. The raw data can be down-
loaded from National Omics Data Encyclopedia
(NODE, http://www.biosino.org/node; accession
number: ND00000013EP) or BIG Data Center
(http://bigd.big.ac.cn/; accession number: PR-
JCA000246). Variant calling was carried out with
the HaplotypeCaller module in the Genome Analy-
sis Toolkit (GATK) [68,69] on a combined sample
set, including 77 samples from this study and 182
additional unpublished deep-sequenced samples
from diverse Asian populations.Then, data filtration
was carried out in each single population using
VCFtools (https://vcftools.github.io/index.html)
[70] by removing SNVs that significantly deviated
from the Hardy-Weinberg equilibrium (p < 10−6)
or with a missing rate of more than 20%. Finally,
11.43 million SNVs were retained for further
analyses.

Genotype imputation and haplotype
phasing
Haplotypes of 22 autosomes of 77 Tibetan and Han
Chinese genomes were inferred using SHAPEIT
version 2.r837 (https://mathgen.stats.ox.ac.uk/
genetics˙software/shapeit/shapeit.html) [71],
together with the other 182 Asian samples men-
tioned above. No reference population was used
in haplotype phasing, as it would substantially
reduce the marker density, especially for the iso-
lated highlander population. Then we applied a
sample-independent mask to remove regions with
low mappability or low complexity where variant
calling can be challenging, following the Simons
Genome Diversity Project [72].

The SNP-array data of 2,849 Tibetans were
obtained from https://www.wmubiobank.org [18]
and were imputed with a pipeline suggested by IM-
PUTE2 (http://mathgen.stats.ox.ac.uk/impute/
impute v2.html) [73]. First, the genotypes of
526,123 SNPs were phased with SHAPEIT version
2.r837 [71]. Then, for each 5 Mb non-overlapping
genome segment, genotypes were imputed by
IMPUTE2 [73], using 1,025 deep-sequenced
whole genomes of diverse Asian populations (un-
published) as a reference panel. Consequently,
29,411,284 SNPs were obtained for this dataset.

Transcriptomic variants of 57 Tibetan placenta
tissue samples were downloaded from the BIGData
Center (http://bigd.big.ac.cn/; accession numbers:
PRJCA000268 and PRJCA000269) [17]. Geno-
types were called using the GATK pipeline [74].
Because calling SNPs from RNA-Seq data tends
to underestimate the proportion of heterozygotes,
we counted the reads for reference and alternative

http://www.biosino.org/node;
http://bigd.big.ac.cn/;
https://vcftools.github.io/index.html
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http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://bigd.big.ac.cn/;
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alleles to adjust the possible underestimation [75].
Using this method, we obtained the genotype infor-
mation of 1,528,173 SNPs in the coding regions.

Genomic annotation of SNVs
The ancestral allele of each SNV was determined
based on the ancestral sequences released by the
1000 Genomes Project. Genetic variant types were
provided by Variant Effect Predictor (VEP, http://
www.ensembl.org/info/docs/tools/vep/index.html)
[76], which assigns each genetic variant to at least
one of the 34 types based on the sequence ontol-
ogy. Variants with high or moderate functional
impact, including missense variants, transcript
ablation, splice-acceptor variants, splice-donor
variants, stop-gained variants, frameshift variants,
stop-lost variants, start-lost variants, transcript
amplification, in-frame insertion and in-frame
deletion, are assorted to the biological effect of
CPS. We further scanned the remaining variants
for those with biological effects of RGE, consisting
of the eQTLs provided by the GTEx database
(http://www.gtexportal.org/home/) [77]. We
searched for eQTLs in a total number of 202,789
eQTLs obtained from 44 tissues in the GTEx. For
each tissue, if a gene contains eQTLs, we selected
the eQTL(s) showing themost significantp value(s)
as a representative. For SNPs belonging to neither
CPS nor RGE, if it shows high conservation score,
e.g. GERP > 2 (http://cadd.gs.washington.edu)
[20] or CADD > 15 (http://mendel.stanford.edu/
SidowLab/downloads/gerp/) [19], it is assorted to
the biological effect of UCE. SNPs were mapped to
genes according to the Ensembl database version 90
(GRCh37, https://asia.ensembl.org/index.html)
[78].

Collection of hypoxia-related pathways
(genes) and functional-enrichment
analysis
We focused on the adaptive patterns of some
genes of particular interest, including genes in-
volved in hypoxia-related pathways defined by
PathCards (https://pathcards.genecards.org/);
genes reported to be related to hypoxia in pre-
vious experimental studies; and genes identified
previously as local adaptation in highlanders. A
full list of priori candidate genes can be found in
Supplementary Table 7. We integrated these genes
into a map of hypoxia-induced pathways (Fig. 1D)
and then reviewed the pathways and related genes.
We calculated the odds ratio to evaluate the en-
richment of the candidate adaptive genes in each

pathway. Each pathway was tested independently as
follows:

Odds Ratio = A1

A2
/
N1

N2

where A1 denotes the number of candidate adap-
tive genes involved in the hypoxia-related pathway;
A2 denotes the number of candidate adaptive genes
not involved in the hypoxia-related pathway;N1 de-
notes the number of non-candidate adaptive genes
involved in the hypoxia-related pathway; andN2 de-
notes the number of non-candidate adaptive genes
not involved in the hypoxia-related pathway. The
sum of A1, A2, N1 and N2 is the total number of
genes across the genome. An odds ratio significantly
above 1 (p< 0.05, the Fisher’s exact test) indicated
that the candidate adaptive genes are enriched in the
hypoxia-related pathway (Fig. 1C and Supplemen-
tary Table 7).

Detection of natural selection and
identification of candidate AGVs
We detected signatures of natural selection
primarily based on four population genetic statis-
tics for analysing genetic variation within and
between populations: FST, calculated for each
SNP following Weir and Cockerham [79] using
an in-house computer script; the difference in
the allele frequency (�AF) between TIB and
HAN; the integrated haplotype score (iHS)
[80] in TIB, estimated with Selscan version 1.2.0
(https://github.com/szpiech/selscan) [81]; and
the cross-population extended haplotype homozy-
gosity (XP-EHH) [82], also estimated in Selscan
[81] using HAN as the reference population for
TIB. We further conducted CMS analysis [83]
using estimates of the above four statistics as inputs.
These analyses were restricted to the 4.63 million
SNPs with minor allele frequencies >0.05 and
known ancestral alleles. The CMS score for each
selected SNP was calculated as follows:

CMS = − log
∏
i

pi

where pi is the empirical p value of the ith test.
We divided the whole genome into overlapping re-
gions, each spanning 30 kb, with a step of 15 kb.
We considered one region as an adaptive candidate
if more than 30% of the variants encompassed had
significant CMS scores (in the top 1% across the
whole genome). Using this approach, 374 candi-
date regions were identified in total (Supplementary
Table 3).

Candidate AGVs were further selected from the
374 candidate regions, using three criteria. First,
selected SNPs had significant CMS scores (in the
top 1% across the whole genome). Second, selected

http://www.ensembl.org/info/docs/tools/vep/index.html
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https://github.com/szpiech/selscan
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SNPs were likely to be highly differentiated be-
tween TIB and HAN (>5 × average FST across the
genome). To avoid signals attributed to HAN, we
ensured that the allele frequency (AF) in TIB was
different from that of HAN, and different from the
average AF in East Asian populations annotated by
VEP. Third, we required the selected SNPs to have
possible biological effects, e.g. CPS, RGE and UCE.
For each candidate AGV, the allele with a higher fre-
quency in TIB over HAN was regarded as the adap-
tive allele.

Calculating the FIS for each gene
Based on the conservation score (CS) provided by
the various annotation methods (i.e. CADD [19],
GERP [20], SIFT [84] and PolyPhen [85]), we
measured the accumulated effects of each candidate
AGV in the TIB population relative to the HAN
population as

FISi = CSi × |�AF|

where FISi is the functional importance score calcu-
lated by the ith method; and�AF is the difference in
AFbetweenTIB andHAN.We thendefined an inte-
grated score for the jth candidate AGV based on the
rank of FIS in each of the nmethods as:

Rank j =
∑n

i=1 Rankij
n

For each gene carrying at least one candidate
AGV, we selected the candidate AGV showing the
highest Rank (which indicated the greatest degree
of functional importance) as the key candidate AGV
for that gene. The Rank of the key candidate AGV
represents the functional importance of the gene.

In this analysis, we used the conservation scores
provided by CADD and GERP. Negative GERP
scores, indicating evolutionary neutrality, were con-
verted to 0. We weighted the conservation score
according to the biological effects of the candidate
AGVs, giving candidate AGVs with CPS or RGE ef-
fects the maximum CS. Gene rankings are shown in
Supplementary Table 6.

Estimating the associations of candidate
AGVs with phenotypes in Tibetans
We conducted the association analysis to detect
phenotype-associated candidate AGVs in the 2,849
Tibetan subjects inhabiting the Tibetan plateau
in Sichuan, China [18]. Two approaches were
applied, based on a linear model and a mixed
linear model, respectively. We first applied a princi-
pal component analysis to the 2,849 Tibetan sam-

ples, using 26,520 independent SNPs that were
over 100 kb distant from each other. Then, we per-
formed the linear-regression analysis under the ad-
ditive model implemented in PLINK version 1.07
(http://zzz.bwh.harvard.edu/plink/) [86] and, al-
ternatively,MLMA-LOCOanalysis implemented in
GCTA version 1.26.0 [87], taking sex and the first
five principal components (PCs) as covariates. Of
the 1,877 candidate AGVs, 1,865 were included in
the association tests, as the genotypes for the other
12 loci were not successfully imputed. Each of the
62 phenotypes (Supplementary Table 8) was tested
independently. To control the genome-wide type
I error rate, we used Benjamini-Hochberg (BH)
FDR correction, which is implemented in R ver-
sion 3.2.1 [88], to account for multiple testing. We
strictly tested 115,630 (= 1,865× 62) independent
hypotheses and used p< 0.05 as a significant level.

Two approaches were applied to test whether
EPAS1 and TMEM247 have independent effects on
the adaptive phenotypes of Tibetans. For each trait
(e.g. RBC, HGB and HCT), we tested three possi-
ble linear-regression models on any pair of variants
(denoted as 1 and 2):

Y = α + βi Xi + ε (i = 1 or 2) (Model 1)

Y = α + β1X1 + β2X2 + ε (Model 2)

Y = α+β1X1 + β2X2+β3X1X2 + ε (Model 3)

where Y is the phenotype vector, X is the geno-
type vector for each variant, α is the baseline phe-
notype level, β1 and β2 are effect sizes for two
respective variants, β3 is the joint effect size of
the two variants and ε represents stochastic uncer-
tainties. Model 1 tests for the independent effect
of each variant in either EPAS1 or TMEM247 on
the phenotypes; Model 2 estimates the influence
of two variants—one in EPAS1 and the other in
TMEM247—on the phenotypes; Model 3 includes
an additional interaction variant of the two vari-
ants based on Model 2. Next, we applied analysis
of variance (ANOVA) to compare the fits of two
models (e.g. Model 1 vs. Model 2 and Model 2 vs.
Model 3) to evaluate the necessity of each variant
to the phenotypic variation and to examine possi-
ble interactions between variants. We analysed pair-
wise combinations of variants—one in EPAS1 and
the other in TMEM247—that are associated with
RBC, HGB or HCT, respectively. Several EPAS1
variants reported to be adaptive candidates, e.g.
rs4953354, rs372272284 and rs149594770, are also
included in our analysis [2,17,59]. Sex and the first
five PCs were used as covariates. The alternative
approach is the cross-conditional association anal-
ysis, in which each phenotype-associated locus in

http://zzz.bwh.harvard.edu/plink/
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EPAS1 and TMEM247 (Supplementary Table 9)
were tested as a covariate for the other loci. We
performed the linear-regression analysis for each
variant–phenotype pair independently, under the
additivemodel implemented in PLINK version 1.07
(http://zzz.bwh.harvard.edu/plink/) [86]. Again,
sex and the first five PCs were used as additional
covariates.

Detecting the expression quantitative
trait loci (eQTLs)
Using the RNA-Seq data from 57 Tibetan pla-
centa tissue samples [17], we explored the impact
of the candidate AGVs on gene expression.
First, we mapped the preprocessed reads to the
reference genome using STAR (http://code.
google.com/p/rna-star/) [89] and the resulting
bam files were used as inputs to the RSEM program
(http://github.com/deweylab/RSEM) to estimate
the gene-expression levels [7]. Linear regressions
between gene-expression levels and the imputed
allele dosage of 592 coding candidate AGVs were
performed using ‘MatrixEQTL’ in R package.
Batch was included in the model as a covariate.
Using p < 0.05 (BH-FDR correction for 183,520
(= 592 × 310) tests) as a cutoff, we considered a
candidate AGV as an eQTL variant if it was associ-
atedwith the expression level of a gene nomore than
100 kb distant from the candidate AGV. Such genes,
in this case, were determined to be cis-associated
with the candidate AGV (Supplementary Table 11).

Colocalization test for the eQTLs and the
phenotype-associated loci
We scanned each 100 kbwindow across the genome
for the colocalization of eQTLs and phenotype-
associated loci in Tibetans and found three genomic
regions encompassing both signals. The zoom-in
plots of the three regions are shown in Fig. 2B.
Each region was tested independently using the
imputed full genotype data of 57 Tibetans and those
of 2,849 Tibetans. For each gene–phenotype pair,
we selected a set of four SNPs (two eQTLs and two
phenotype-associated loci) and went through all
the combinations. For the region on chromosome
2, we treated EPAS1 and TMEM247 separately
considering that they are in different LD blocks
(Supplementary Fig. 6A). The EPAS1 analysis was
restricted to the signals located in EPAS1 (the
intergenic variant rs1900592 was also included),
while the TMEM247 analysis included all the
signals in TMEM247 and five other downstream
genes in the same LD block. We performed the
statistical test using an R package coloc version

3.1 [47] and conducted BH-FDR correction for
multiple tests (1,000 tests (= 360 SNP sets
for UA+ 280 SNP sets for RBC+ 150 SNP sets for
RGB + 210 SNP sets for HCT) for EPAS1; 30,840
tests (= 780 SNP sets for UA + 12,750 SNP sets
for RBC + 7,410 SNP sets for RGB + 9,900 SNP
sets for HCT) for TMEM247; 15 tests forDUS3L).
We did not test the colocalization of signals in the
PGAP3 region on chromosome 17, as only one
phenotype-associated locus was identified in this
region but coloc analyses consider two loci for each
trait. Adjusted p < 0.05 was used to reject the null
hypothesis of a shared causal variant for the gene
expression and phenotype variation.

Selecting for HAA-related candidate
genes
HAA-related candidate genes were further selected
from the 521 candidate adaptive genes using these
criteria: (i) selected genes should be associated with
HAA-related traits (70 in total, listed in Supple-
mentary Table 17) or involved in hypoxia-related
pathways in previous studies or in public databases
(Supplementary Table 7) or (ii) selected genes
should be significantly associated with any of the
62 quantitative traits measured in the 2,849 Tibetan
samples (listed in Supplementary Table 8). The
157 candidate HAA-related genes are highlighted in
Supplementary Table 6.

Estimating the correlation between
adaptive AF of the candidate AGVs and
altitude
To investigate possible relationship between the
candidate AGVs and the altitude, we grouped
the 33 sequenced Tibetan individuals according to
the geographical regions and calculated the corre-
lation between the frequency of the adaptive allele
and altitude. The Tibetan samples were grouped
into seven regional populations based on altitude:
Lhasa (n = 3, at 3,650 m), Nyingchi (n = 2, at
3,000 m), Chamdo (n = 6, at 3,240 m), Shannan
(n = 7, at 3,573 m), Shigatse (n = 8, at 3,853 m),
Nagqu (n = 3, at 4,522 m) and Dingri (n = 4, at
4,300 m). The results are shown in Supplementary
Table 4. When assessing the altitudinal correlation
of the key locus inTMEM247 (rs116983452-T), we
additionally included 5 Sherpa samples, 39 HAN
samples and other Asian samples covering a wider
geographical area (unpublished data). The altitude
was determined by where the recruited sample cur-
rently resided.The correlation coefficient (r) was es-
timated using R version 3.2.1 [88].

http://zzz.bwh.harvard.edu/plink/
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Identification of archaic sequences
in modern human genomes and local
ancestry inference for TMEM247 and
EGLN1
We identified genomic segments of non-modern-
human origin using ArchaicSeeker version 2.1, an
improved version of ArchaicSeeker [16], in this
study. Comparedwith the old version,ArchaicSeeker
version 2.1 adopted a hidden Markov model to
determine theprecise boundaries of the introgressed
segments and used a likelihood-based segmental
matching algorithm to assign the accurate ancestry
to each segment. Using this method, we detected
archaic segments in the TIB genomes, especially in
TMEM247.

The archaic ancestry in TMEM247 was further
confirmed by the S*-statistic analysis [90], which
helps to identify genomic segments that could not
have been derived from modern human genomes
[90,91]. We calculated S* for each 50-kb region
of the genome, stepping by 20 kb. The signifi-
cance of S* for each segment can be calculated by
simulating a null distribution of S* in the case of
no archaic human introgression. This simulation
was performed with ms (http://home.uchicago.
edu/˜rhudson1/source/mksamples.html) [92],
using the demographic parameters well estab-
lished in previous publications (Supplementary
Fig. 8 and Supplementary Table 18) [93,94].
The full sequence data of Africans (YRI), Eu-
ropeans (CEU) and East Asians (CHB) from
the 1000 Genomes Project Phase III panel
(http://www.1000genomes.org/data) were used
in simulation. The recent explosions of the three
continental populations were also taken into
consideration following Vernot et al. [90].

To investigate the fine-scale genetic make-up of
some interesting regions, specificallyTMEM247 and
EGLN1, we developed a method based on the re-
sults of ChromoPainter (https://people.maths.bris.
ac.uk/∼madjl/finestructure-old/chromopainter
info.html) [95] to obtain the ancestry make-up
of a particular genomic region in TIB. The major
advantage of this method is that it does not require
more than one individual in each of the refer-
ence panels, which is different from most existing
methods for local ancestral inference [95–98]. We
first applied ChromoPainter, using Han Chinese
genomes and available archaic genomes, including
an Altai Neanderthal genome (https://www.ebi.ac.
uk/ena/data/view/PRJEB1265) [99], a Denisovan
genome (https://www.ebi.ac.uk/ena/data/view/
PRJEB2263) [100] and a 45,000-year-old Siberian
genome (Ust’-Ishim, https://www.ebi.ac.uk/ena/
data/view/PRJEB6622) [101] as reference data.

The Ust’-Ishim genome was included based on
the observation that Tibetans share a considerable
proportion of their ancestry with Siberian pop-
ulations. The African genomes (YRI) were also
integrated into our reference population panel to
avoid the false-positive inference of archaic ancestral
segments.

SNPswithmore than50%missing genotypes and
their 100-bp flanking regions (both upstream and
downstream) were filtered out prior to the analy-
sis. A recombination map with a mean recombina-
tion rate of 1 cM per Mbp was used to avoid any
bias introduced by a prior recombinationmap based
on some particular populations. For each run of the
analysis,−ip and -b commanders were used tomaxi-
mize over-copying proportions using an E-M algo-
rithm and obtain the matrix of probability of each
recipient copy of each donor at every site. To pro-
vide a comparable sample size for the five reference
populations, we selected one individual from each of
themand ran4212 replications ofChromoPainter to
make full use of the reference samples (1 Denisovan
× 1 Neanderthal × 1 Ust’-Ishim × 39 Han × 108
YRI = 4,212). Then, we obtained 4,212 matrices of
the copy probability of each haplotype of TIB indi-
viduals at each site and used them to determine the
ancestry of each allele. We denoted the copy proba-
bility as Pijkl, where i is the number of ancestry com-
binations (i= 1, 2, . . . , 4,212), j is the inferred ances-
try (j= jMod formodern human ancestry; j= jArch for
archaic hominin ancestry), k denotes the haplotypes
of the admixed populations and l denotes the physi-
cal position.

Anckl =
{

j ′ Case I ∼ III

Uncertain Case IV ∼ VI

where Case I: count(Pi jY R I kl > 0.8) ≤ 42, j ′ =
jAr c h

Case II: count(Pi jMod kl > 0.8) ≤ 421, j ′ =
jAr c h

Case III: j ′ = jMod
Case IV: count(Pi jY R I kl > 0.8) > 42
Case V: count(Pi jMod kl > 0.8) > 421
Case VI: None of Case I∼ V
At a given site, we counted the runs of Pijkl larger

than 0.8 for each reference population. For the sites
with possible modern human ancestry, if the maxi-
mum count of runswas larger than 421 (10%of total
runs) for a particular reference population, then the
ancestry of the allele at that site was inferred as the
reference population, while, for a potential archaic
site, we required the counts of runs of Pi jY R I kl to be
smaller than42 (1%of total runs) and that of Pi jMod kl
to be smaller than 421. In other cases, the site was
treated as an uncertain ancestry.
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Based on inferred local ancestry, we classified
the genomic segments of TIB into six cate-
gories: Denisovian-like sequences, Neanderthal-
like sequences, Ust’-Ishim-like sequences,
Han-Chinese-like sequences, African-like se-
quences and sequences with uncertain ancestry
(the ancestry could not be determined based on
the reference sequence possibly due to an unknown
archaic origin or the high similarity among different
reference sequences).

Validation studies of rs116983452
To further validate rs116983452 in larger samples,
we collected samples from 1,160 native Tibetans
living at Lhasa (n = 285, at 3,680 m), Kangma
(n = 148, at 4,700 m), Bange (n = 478, at 4,801
m) and Langkazi (n = 249, at 5,018 m). Molec-
ular inversion probes [102] were used to geno-
type rs116983452 in the 1,160 Tibetans. We mea-
sured 24 physiological traits for these individuals:
serum NO level, systolic pulmonary arterial pres-
sure, degree of blood oxygen saturation,HGB, RBC,
HCT, mean red cell volume, red cell distribution
width, platelets, lymphocyte count, systolic pres-
sure, diastolic bloodpressure, heart rate, peak expira-
tory flow rate (PEF), maximum ventilatory volume
(MVV), forcedexpiratoryflow(FEF), forcedexpira-
tory volume in 1 second (FEV1), forced vital capac-
ity (FVC), FEV1/FVC (FFR), height, weight, body
mass index (BMI), chest circumference and hip
circumference.

We evaluated the genetic association between
rs116983452 and 24 physiological traits using
PLINK 1.07 [86], under the additive model. We
split four populations with the association analysis
and then performed a meta-analysis by testing the
homogeneity of different population datasets. Sex,
age and altitude were treated as covariates where
applicable. Especially, BMI was added into the list
of covariates when analysing the lung functions,
including PEF, MVV, FEF, FEV1, FVC and FFR.
For multiple test correction, we used BH-FDR
control to adjust the p value across the 24 traits.

Estimating the TMRCA
The TMRCAs of haplotypes carrying the adap-
tive allele at rs116983452 in TMEM247 and at
rs186996510 in EGLN1 were independently calcu-
lated in the 38 Tibetan samples, based on the aver-
age pairwise nucleotide differences of the haplotypes
(π) as follows:

π = 2 × ∑n−1
i=1

∑n
j=i+1 πi j

(n − 1) × n

where n is the number of sequences in a given region
and π ij is the nucleotide difference between the two
sequences i and j (i �= j).

The TMRCAwas then estimated as

TMRCA = π

2 × μab × lab

whereμab is the local mutation rate of a genomic
region with length lab started from position a to po-
sition b. The value ofμab was estimated as

μab = dHum−AncHumChimp

lab × THum−HumChimp

where dHum–AncHumChimp denotes the nucleotide
difference between human reference genome
and the Human-Chimp-Ancestor of region ab.
THum–HumChimp is the divergence time between
humans and chimps and was here set to 13 million
years.

TMEM247 and ATP6V1E2 were in an LD block
(Supplementary Fig. 6). Therefore, we considered
the entire block in this calculation, the boundary
of which (Chr2:46657114–46772997) was identi-
cal to that of the TIB-specific haplotype reported in
Lu et al. [16]. To eliminate the inter-ancestral re-
combination,weused26TIB-specificmarkers (Sup-
plementaryTable 19) as integral TIB-specific haplo-
types. Interestingly, most of the haplotypes carrying
rs116983452-T, 53 in total, also carry the derived al-
leles at these 26 loci. The TMRCA of these 53 hap-
lotypes was estimated to be 56,200 ± 24,800 years.
In EGLN1, there were 40 haplotypes carrying
rs186996510-G and the TMRCA was estimated to
be 29,800± 24,200 years.

We used startmrca [103] inR package to validate
the TMRCAs of haplotypes carrying rs116983452-
T. startmrca uses a hiddenMarkovmodel taking into
account the length distribution of the shared an-
cestral haplotype, the accumulation of derived mu-
tations and the surrounding background haplotype
diversity. We ran this analysis five times, each in-
cluding 15,000 iterations. We took the acceptable
TMRCA estimations in the last 6,000 iterations of
each run as the final results. A mutation rate of
1.25 × 10−8 per site per generation was used for
this estimation. Consistently with our previous TM-
RCA analysis, startmrca estimated a TMRCA of
58,100± 2,800 years.

Estimation of selection coefficient
Here, we applied a simple deterministic model of se-
lective sweep with additive genetic effects, using the
following formula, which is the same as that used in
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a previous study [60]:

s = 1
t
log

pt (1 − p0)
p0 (1 − pt)

We assumed that selection began right after the
split of the Tibetan and the Han Chinese. We there-
fore used an estimated divergence time of 9,000–
15,000 years (360–600 generations, assuming a gen-
eration time of 25 years) between TIB and HAN
[16] as an approximationof theonset of selection (t)
in TIB. We took the AF in HAN and TIB as approx-
imates of the initial AF (p0) and the current AF (pt),
respectively. For rs116983452, we also applied an al-
ternative hypothesis, which assumed that selection
occurred right after the introgression of the benefi-
cial allele in TIB from the Denisovan. For this analy-
sis, we used the TMRCA of haplotypes carrying the
derived allele at rs116983452, which was estimated
to be around 60,000 YBP (2,400 generations), as
an approximate of t and estimated p0 to be 1/2Ne
(Ne = ∼ 1,000–3,000 around 60,000 years ago; see
Supplementary Table 14 for more details).

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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