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Speeding up quantum perceptron 
via shortcuts to adiabaticity
Yue Ban1,2*, Xi Chen1,3, E. Torrontegui4,5, E. Solano1,3,6,7 & J. Casanova1,6

The quantum perceptron is a fundamental building block for quantum machine learning. This is a 
multidisciplinary field that incorporates abilities of quantum computing, such as state superposition 
and entanglement, to classical machine learning schemes. Motivated by the techniques of shortcuts 
to adiabaticity, we propose a speed-up quantum perceptron where a control field on the perceptron 
is inversely engineered leading to a rapid nonlinear response with a sigmoid activation function. This 
results in faster overall perceptron performance compared to quasi-adiabatic protocols, as well as in 
enhanced robustness against imperfections in the controls.

In the era of information expansion, the merge of quantum information and artificial intelligence will have a 
transformative impact in science, technology, and our societies1–3. In particular, classical networks of artificial 
neurons (or nodes) represent a successful framework for machine learning strategies, with the perceptron being 
the simplest example of a node4. The perceptron is based on the McCulloch-Pitts neuron5, and it was originally 
proposed by Rosenblatt in 1957 to create the first trained networks6. Nowadays, extensions of these original ideas 
such as multilayer perceptrons in networks with interlayer connectivity are exploited to deal with demanding 
computational tasks.

The emergence of quantum computing and machine learning has boosted the development of both fields7–13, 
giving rise to the field of quantum machine learning. In this context, quantum neural networks (QNNs) have 
attracted growing interest14,15 since the seminal idea proposed by Kak16. In particular, the entering of classical 
machine learning techniques into the quantum domain has the potential to accelerate the performance of differ-
ent applications such as classification and pattern recognition2,17–23. In addition, nowadays the excellent degree 
of quantum control over the registers in modern quantum platforms24–27 allows the performance of quantum 
operations with high fidelity, which further feeds the idea of having reliable QNNs. However, the linear and 
unitary framework of quantum mechanics raises a serious dilemma, since neural networks present nonlinear 
and dissipative behaviours which are hard to reproduce at the quantum level. To address this challenge, many 
efforts have been attempted by exploiting quantum measurements16,28, the quadratic kinetic term to generate 
nonlinear behaviours29, dissipative16 or repeat-until-success30 quantum gates, and reversible circuits31. Among 
them, gate-based QNNs32 with training optimization procedures33 are feasible to implement by a set of unitary 
operations. Furthermore, gate-based QNNs can behave as variational quantum circuits that encode highly non-
linear transformations while remaining unitary20. Also, a quantum algorithm implementing the quantum version 
of a binary-valued perceptron was introduced in Ref.18, showing an exponential advantage in resources storage. 
Remarkably, a universal quantum perceptron has been proposed as an efficient approximator in Ref.34, where the 
quantum perceptron is encoded in an Ising model with a sigmoid activation function. In particular, the sigmoid 
nonlinear response is parametrized by the potential exerted by other neurons, and driven by adiabatic techniques.

In this article, motivated by the nonadiabatic control provided by shortcuts to adiabaticity (STA) 
techniques35,36, we design fast sigmoidal responses with the aid of the invariant-based inverse engineering 
(IE)37–39. The IE method is based on dynamical modes of Lewis-Riesenfeld invariant instead of one instantane-
ous eigenstates of the original reference Hamiltonian40,41. As IE directly imposes boundary conditions in the wave 
function evolution, the nonlinear activation function of the quantum perceptron encoded in the probability of 
the excited state can be achieved in a fast and robust way. In particular, an external control field on the perceptron 
is designed such that it leads to a fast nonlinear activation function with a wide tolerance window to the varia-
tion of the input potential induced by neurons in the previous layer. We demonstrate that our method produces 
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solutions that outperform those based on adiabatic techniques, which significantly facilitates the implementation 
of quantum perceptrons in modern platforms such as nitrogen vacancy (NV) centers in diamond. Note that, the 
latter are settings where external control fields can be introduced with extraordinary precision42.

Results
Quantum perceptron.  The capacity of feed-forward neural networks to classify complex data relies in 
the “universal approximation theorem” proved by Cybenko43, claiming that any continuous function can be 
written as a linear combination of sigmoid functions. A QNN is also demonstrated as a universal approximator 
of continuous functions34. In a classical network, a perceptron (or neuron) generates the signal sj = f (xj) as a 
sigmoidal response to the weighted sum of the signals (or outputs) from the neurons in the previous layer. More 
specifically, xj =

∑k
i=1 wjisi − bj with the neuron interconnectivities wji , the bias bj , and si being the output of 

the ith neuron in the previous layer. In analogy with classical neurons, a quantum perceptron can be constructed 
as a qubit that encodes the nonlinear response to an input potential in the excitation probability, see Fig. 1. One 
possibility for the latter is the following gate34:

where, in close similarity with the classical case, we have x̂j =
∑k

i=1 wjiσ̂
z
i − bj , where σ̂ z

i  is the z Pauli matrix of 
the ith neuron (qubit), wji is interaction between the perceptron j and the ith neuron in the previous layer, bj is 
the bias of the perceptron. The transformation in Eq. (1) can be engineered by evolving adiabatically the qubit 
with the Ising Hamiltonian ( � = 1)

where the jth qubit (encoding the quantum perceptron) is controlled by an external field �(t) , leading to a tun-
able energy gap in the dressed-state qubit basis |±� , with σ̂ x

j |±� = ±|±� . When this perceptron is integrated in a 
feed-forward neural network, the potential depends on the neurons in earlier layers, as the perceptron interacts 
with other neurons in the previous layer (labeled by i = 1, . . . , k ) via the xj potential, see Fig. 1. Therefore, the 
network is encoded in a Hilbert space via the external potential exerted by other neurons. The Ising Hamiltonian 
in Eq. (2) has the reduced eigenstate,

where xj now represents the lowest eigenvalue of the operator x̂j , while f(x) corresponds to a sigmoid excitation 
probability

(1)Ûj(x̂j; f )|0j� =
√

1− f (x̂j)|0j� +
√

f (x̂j)|1j�,
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Figure 1.   Schematic configuration of a quantum perceptron. When it is integrated in a feed-forward neural 
network, the potential depends on neurons in earlier layers, e.g., x̂j =

∑k
i=1

wjiσ̂
z
i − bj , where the activation 

function of the quantum perceptron is the probability of the excited state Pj(xj/�f ) at the final time t = tf  in the 
form of sigmoid-shape, shown in the inset.
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In order to generate the state on the right side of Eq. (1), we propose the following strategy: First, a Had-
amard gate is applied to drive the state from |0� to |+� = (|0� + |1�)/

√
2 . Secondly, by appropriately tuning 

�(t) according to inverse engineering (IE) techniques (to be explained later), the state |�(0)� = |+� evolves 
to |�(tf )� = |�(xj/�f )� (up to some phase factor that can be eventually canceled by a phase gate), along with 
one eigenstate of the Lewis-Riesenfeld invariant of Ĥ , with |�(xj/�f )� being the instantaneous eigenstate 
of Ĥ(t = tf ;�f ) , and �f ≡ �(tf ) . It is noteworthy to mention that, unlike the fast quasi-adiabatic passage 
(FAQUAD) approach34, our method based on IE does not need to achieve the initial condition �(0) ≫ |xj| , as 
it is not required that the initial state meets one eigenstate of Ĥ(0) . The latter results in a smooth control field 
�(t) which is easy to be used in experiments.

Another possibility to achieve |�(tf )� from |�(0)� is by an adiabatic driving in a Landau-Zener scheme. 
However, as it is discussed in Ref.34, this spends long time and may be unfeasible depending on the coherence 
time of the physical setup that implements the Hamiltonian in Eq. (2).

Accelerating quantum perceptron by IE.  We adopt the IE method to achieve the |�(0)� → |�(xj/�f )� 
state transfer with shorter time than FAQUAD44. The control field �(t) is then engineered to guarantee that at 
the final evolution time t = tf  the qubit excitation probability Pj(xj/�f ) corresponds to a sigmoid-like response, 
i.e. to a mono-valuate f function satisfying lim

x→−∞
f (x) → 0 and lim

x→∞
f (x) → 1 . Since the universality of neural 

networks does not rely on the specific shape of the sigmoid function43,45, e.g. Eq. (4), we quantify the perfor-
mance of the control field �(t) in the interval [−xmax, xmax] with the distance C = 2− F0 − F1 . Here 
F0 = |�0|�(tf ; xj/�f = −xmax)�|2 and F1 = |�1|�(tf ; xj/�f = xmax)|2 characterize how the engineered states 
overlap with |0� and |1� , at xj/�f = −xmax and xj/�f = xmax respectively. Note that, for a sigmoid-like function, 
C → 0 , for xmax → ∞ . Meanwhile, in all the numerical results, the activation function is found to be well-
behaved, i.e., the function is monotonic and with a sigmoid-like behaviour, lim

x→−∞
f (x) → 0 and lim

x→∞
f (x) → 1 . 

As we will see later, our IE technique also provides with robustness with respect to timing errors.
Now we show the procedure to find the control �(t) . To this end, we start with the parameterisation of the 

dynamical state

with the two unknown polar and azimuthal angles, θ ≡ θ(t) and β ≡ β(t) , on the Bloch sphere. Having the 
state in Eq. (5) at hand, the corresponding orthogonal state |�⊥(t)� gets completely determined and the Lewis-
Riesenfeld invariant can be thus constructed with constant eigenvalues37,38. Substituting one of the states ( |�(t)� 
or |�⊥(t)� ) into the time-dependent Schrödinger equation driven by the Hamiltonian in Eq. (2), we obtain the 
following coupled differential equations (for more details see Methods.)

Setting the wavefunction |�(0)� = |+� and |�(tf )� = |�(xj/�f )� at the initial and final times leads to the bound-
ary conditions

with the introduced κ parameter being infinitely large which results in |�(xj/κ)� = |+� . Also, it is important to 
remark that κ does not need to equal the value of our control �(t) at t = 0 , as |�(xj/κ)� is not necessarily the 
eigenstate of Ĥ[t = 0;�(0)] . In addition, from Eq. (6) one can find the following conditions for the first deriva-
tives of θ at the boundaries

We can interpolate θ by choosing a simple polynomial function θ =
∑N

i=0 ait
i and a trigonometric fuction 

θ = a0 + a1t +
∑N

i=2 ai sin[(i − 1)π t/tf ] with less coefficients required for matching the same boundary 
conditions46. The appropriate adoptions on the coefficients can make the solution approach the one gained from 
optimal control theory47. We present the comparison of the performance of activation function by using IE with 
these two ansatzes and exponential functions inspired by regularized optimal solutions in Supplementary Infor-
mation. We stress that, unlike the method in Ref.38,48, in our case θ and β are correlated. We impose β(tf ) = π/2 
and β(0) = π − ǫ (note that we will allow a certain deviation by introducing the ǫ parameter, see later). Once we 
construct θ , the function β can be obtained by solving Eq. (7) with the boundary condition β(tf ) = π/2 . After 
the functions θ and β are obtained, the control field �(t) is deduced using Eq. (6).

The solution to β from Eq. (7) depends on xj leading to a set of � ≡ �(t, xj) . However, in order to make the 
control independent of the input potential, we set �(t) = �(t, xj = y) where the value of y is chosen such that 
it minimizes the C distance for different xj in a certain interval (see next section).

IE performance.  As the state evolves from |�(0)� = |+� , the κ parameter should be a large number 
compared to the input potential xj . We numerically study situations where κ = 2000 and explored the range 

(5)|�(t)� = cos(θ/2)eiβ/2|0� + sin(θ/2)e−iβ/2|1�,

(6)�(t) =θ̇/ sin β ,

(7)xj =θ̇ cot θ cot β − β̇ .

(8)
θ(0) =2 sin−1

[√

f (xj/κ)
]

,

θ(tf ) =2 sin−1
[√

f (xj/�f )

]

,

(9)θ̇ (0) = �(0) sin β(0), θ̇ (tf ) = �f sin β(tf ).
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|xj|/�f ∈ [−xmax, xmax] , with xmax = 12 . Note that, we consider the situation where xmax = 12 , although our 
results are not limited to the specific number. We use dimensionless units, by setting the unit of time t0 such 
that the control field �(t) is given in terms of 1/t0 . In addition, we consider an unbiased perceptron with bj = 0.

Not limited to a fixed large number of κ , our method shows the flexibility and the feasibility of the control 
field. For a case in which we impose �f = 1 and solve Eq. (7) with a fixed value for xj/�f = y/�f = 12 , we find 
θ(0) = 1.576 ≃ π/2 . Figure 2a indicates the obtained solutions for θ and β for this case in which we have also 
selected the operation time tf = 1 . We find that the boundary condition for β(0) is also satisfied with a tiny error 
of ǫ = 2× 10−5 . In this specific case, we find that the designed control �(t) at t = 0 is �(0) = 1999.6 ≈ κ when 
κ = 2000 , the initial state corresponds to the eigenstate state of the Hamiltonian. Also, we observed that β(0) 
tends to π when tf  gets larger. In Fig. 2b, the control field �(t) obtained with our method is illustrated. This �(t) 
leads to an excitation probability such that it arrives at Pj(xmax) = 0.998 . Using the same control field �(t) , we 
find that the probability of the state |1� for other input neural potentials xj/�f ∈ [−xmax, xmax] is in the form of 
a sigmoid-like response ranging from 0 to 1 during the interval, as shown in the inset of Fig. 2b. This proves the 
successful construction of a sigmoid-shape transfer function, which is a crucial factor for a quantum perceptron. 
The fields calculated from κ = 1000 , κ = 500 lead to the same sigmoid activation function which, as shown in 
the inset of Fig. 2b, cannot be distinguished to the one derived from κ = 2000.

Our IE method provides a wider range of y/�f  than FAQUAD to construct sigmoid transfer functions. In 
Fig. 3a the value of the distance C obtained with the IE method, as a function of y/�f  for various operation times 
tf  , is shown. It can be observed that a low value for C appears with large values for |y| and tf  . We have checked 
(also for tf = 1 ) the appearance of nonlinear perceptron responses that connect 0 and 1 with a sigmoid shape. 
In particular, these lead to C < 10−2 in the range y/�f ∈ [5, 12] with control fields �(t) for tf = 1 similar to the 
one in Fig. 2b. In contrast, C goes to almost 2 at y/�f = −xmax by FAQUAD techniques44, in which only for 
long tf  and in the regime y/�f → xmax the transfer function can be produced, see Fig. 3b.

The target state |�(tf )� = |�(xj/�f )� depends on the value of the driving field at the final time, see Eq. (3). 
In general we observe that, with our IE method, a larger value of the control field at t = tf  (i.e. �f  ) offers higher 
fidelity. As an example of the latter, in Fig. 4 we show the value of C as a function of �f  for tf = 0.2 with the 

Figure 2.   (a) The functions of θ (solid-blue) and π − β (dashed-red), where θ is interpolated by a polynomial 
ansatz θ =

∑

3

i=0
ait

i , and β is solved from Eq. (7) for tf = 1 and κ = 2000 , with ǫ = 2× 10
−5 . (b) The 

control fields �(t) designed from IE (solid-blue) with the help of θ , β and from FAQUAD (dashed-red), where 
κ = 2000 . We also show the control fields derived from κ = 1000 (dotted-black) and κ = 500 (dot-dashed-
green). The inset in (b) displays the corresponding activation functions for different κ , which coincide with each 
other. In both plots, y/�f = 12.

Figure 3.   The dependence of C value on y with the application of IE θ =
∑

3

i=0
ait

i (a) and FAQUAD (b) for 
different operation times tf = 0.1 (solid-blue), tf = 0.2 (dashed-red), tf = 0.5 (dotted-black), and tf = 1 (dot-
dashed-green).
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application of IE (solid-blue) and FAQUAD (dashed-red). In this figure one can observe the improved perfor-
mance of our IE method. Actually, every point of the lower value C by IE implies the successful discovery of 
sigmoid-shape transfer function and driving field �(t).

Quasi‑optimal‑time solution.  As the activation function P(xj/�f ) connects 0 and 1 at −xmax and xmax , 
we set C < 0.01 as the criteria of successful construction of a quantum perceptron. In Fig. 5a, we illustrate the 
dependence of C value on tf  by using the polynomial ansatz θ =

∑N
i=0 ait

i with N = 3 and N = 5 of IE as well 
as FAQUAD34. When N = 3 , the smallest tf  , such that C < 0.01 is satisfied, is 0.2, while employing techniques 
based on FAQUAD, this is at tf = 0.3 . The further reduction of the smallest tf  , such that C < 0.01 is satisfied, can 
be improved since IE method allows to approach the quasi-optimal-time solution by introducing more degrees 
of freedom in the ansatz of θ47, leading to faster quantum perceptrons. With N = 5 (i.e. a solution with two 
additional parameters, namely a4 and a5 ), see Fig. 5a (dotted-black curve) we get a speed up of 2 with respect 
to FAQUAD method, leading to the minimal operation time tmin

f = 0.15 . The values of the transfer function at 
−xmax and xmax and C value with the application of IE strategies in polynomial, trigonometric and exponential 
functions as well as FAQUAD can be seen in Supplementary Information, showing that high-order polynomial 
ansatz can give a quasi-optimal-time solution.

Moreover, we find that the IE method is robust with respect to timing errors, i.e. variations on the operation 
time tf  . More specifically, once the minimal value of C is reached for solid-blue in Fig. 5a, C does not show any 
appreciable oscillation for t > tmin

f  . Conversely, the FAQUAD driving leads to the dashed-red curve in Fig. 5a 
that shows an oscillatory behavior of C, indicating that only at some specific tf  the sigmoid transfer function 
can be constructed.

Remarkably, for short times, e.g. tf = 0.15 , the transfer functions and driving fields are completely different for 
IE and FAQUAD protocols. In the inset of Fig. 5a,b, we give the detailed demonstration of transfer functions and 
driving fields designed from IE. On the one hand, FAQUAD protocol cannot produce the sigmoid function, by 
connecting from 0 to 1 at the edges, see the inset of Fig. 5a dashed-red curve. On the other hand, we find that the 
case of IE with the polynomial ansatz of N = 3 fails to connect the state |0� presenting P(−xmax) = 0.2 (solid-blue 
curve). However, We can overcome this limitation by increasing the order of the polynomial ansatz to N = 5 . 
Here, we compare the activation functions achieved by different strategies at the same value of y/�f = 12 . It is 
worth mentioning that by increasing the value of xmax which means more energy is supplied to the system, we 
can recover a more stretched sigmoid with the FAQUAD protocol or IE with the polynomial ansatz of N = 3 . 

Figure 4.   Dependence of C value on �f  is shown for IE θ =
∑

3

i=0
ait

i (solid-blue) and FAQUAD (red-dashed) 
protocols, when tf = 0.2 , y/�f = 12.

Figure 5.   (a) Dependence of C as a function of the final time tf  , using IE in the cases of θ =
∑

3

i=0
ait

i (solid-
blue), θ =

∑

5

i=0
ait

i (dotted-black) and FAQUAD (dashed-red). The inset of (a) shows the corresponding 
transfer functions for tf = 0.15 , where the dotted-black curve represents the quasi-optimal-time solution 
with a2 = −50 , a3 = −3980 . (b) For tf = 0.15 , the driving field �(t) designed from IE in the cases of using 
θ =

∑

3

i=0
ait

i (solid-blue), using θ =
∑

5

i=0
ait

i with the optimal parameters a2 = −50 , a3 = −3980 (dotted-
black), and y/�f = 12.
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However, in this work, we find the external driving �(t) by which the perceptron can have a sigmoidal response 
in a fixed Hamiltonian configuration with the range [−xmax, xmax].

In addition, the derived controls �(t) from IE methods are smooth and present values close to zero at t = 0 , 
see Fig. 5b. Compared to the case of tf = 1 , shorter operation time leads to larger ǫ so that �(0) is farther away 
from κ . This is in contrast with the control �(t) derived from FAQUAD techniques that demands an abrupt 
change from �(0) = 2000 to �(tf ) = 1 , see Fig. 2b. This demonstrates the appropriateness of our IE derived 
controls to be implemented experimentally. In this regard, in the next section we give estimations based on state 
of the art experimental parameters in NV centers in diamond that demonstrates the suitability of an implementa-
tion of our method in such quantum platform.

Discussions
We have demonstrated that the enhanced performance of our method using IE techniques leads to sigmoid acti-
vation functions within a minimal operation time of tmin

f = 0.15 t0 . If, for instance, one selects t0 = 500 ns, the 
maximum value for the control �(t) amounts to |�max| ≈ 50 MHz for the kind of solutions presented in Fig. 5b 
(see horizontal axis limits in that figure). This permits the application of our controls in modern quantum plat-
forms such as NV centers in diamond that present coherence times much longer than 0.15 t0 = 0.15× 500 = 75 
ns even at room temperature49,50. In addition, current arbitrary waveform generators allow to change the ampli-
tude of the delivered microwave field (and consequently of the Rabi frequency � ) in time-scales significantly 
smaller than 1ns42,51. Then, one can easily introduce the controls in Fig. 5b to produce nonlinear sigmoid 
responses in NV centers. IE is also helpful to achieve the robust control in a specific physical setup52–54 when 
one considers the Ising model with unwanted transitions between the target two-level system and other levels. 
In this manner one could envision a diamond chip with several NVs, each of them with available nearby nuclear 
spin qubits, as a quantum hardware to construct QNN using IE methods.

Methods
Inverse engineering and derivation of auxiliary differential equations.  The quantum perceptron 
gate evolves a qubit with the general Hamiltonian (Eq. (2)) which has the instantaneous ground state (Eq. (3)) 
with the basis |0� = (0, 1)T and |1� = (1, 0)T and a sigmoid excitation probability (Eq. (4)). Therefore, we need to 
control the final state exactly as |�(tf )� = |�(xj/�(tf ))� in the form of Eq. (3). Inverse engineering by param-
eterizing the Bloch sphere angles θ and β can manipulate the dynamical state evolution in a fast way. After sub-
stituting the wave function |�(t)� (Eq. (5)) or the orthogonal state |�⊥(t)� into Schrödinger equation, we can 
obtain two equations

Eq. (10) × sin(θ/2) + Eq. (11) × cos(θ/2) and Eq. (10) × sin(θ/2) − Eq. (11) × cos(θ/2) , respectively, result in 
the analytical expressions of �(t) (Eq. (6)) and β (Eq. (7)). Once setting the operation time tf  and the dynamics 
of the polar angle θ , we can obtain the function β by solving Eq. (7) with the boundary condition β(tf ) = π/2 . 
Hence, from Eq. (6), we derive the applied field �(t).

Fast quasi‑adiabatic method.  Another protocol to construct a quantum perceptron by controlling the 
qubit gate is to use FAQUAD strategy34,44, which can achieve the fast and adiabatic-like procedure. The adiabatic 
parameter

is kept as a constant µ(t) = c during the whole control process, where the instantaneous eigenstates for the 
Hamiltonian (Eq. 2) are

with the eigenenergies are El = −(−1)l�
√

�2 + x2j /2, α = arccos

[

−xj/
√

�2 + x2j

]

 and l ∈ {0, 1} . In order to 
construct a universal quantum gate, a single control should not depend on the neuron potential xj . The largest 
value |µ| occurs at |xj/�f | ≈ 1.272 . We take this µ value as an optimal condition that works for all input neuron 
configurations. As the relation between the field and time is invertible, we can apply the chain rule to Eq. (12) 
and obtain

where the negative sign represents �(t) monotonously decreases from �(0) to �(tf ) . The total duration time is 
rescaled as s = t/tf  so that �̃(s) := �(s tf ) and d�/dt = t−1

f d�̃/ds . As a result, we have
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2
e−iβ ,

(11)iθ̇ cos
θ

2
+ β̇ sin

θ

2
=− xj sin

θ

2
+�(t) cos

θ

2
eiβ .

(12)µ(t) = �

∣

∣

∣

∣

�φ0(t)|∂tφ1(t)�
E1(t)− E0(t)

∣

∣

∣

∣

(13)|φl� = cos(α/2)|1� + (−1)l sin(α/2)|0�

(14)
d�

dt
= − c

�

∣

∣

∣

∣

E1(�)− E0(�)

�φ0(�)|∂�φ1(�)�

∣

∣

∣

∣
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A selection of tf  corresponds to different scaling of c̃ and �(t = stf ) = �̃(s) . Consequently, we can derive �(t) 
from �̃(s) by solving the differential equation (Eq. (15)).
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