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Abstract
Genomic selection (GS) has great potential to increase genetic gain in aquaculture 
breeding; however, its implementation is hindered owing to high genotyping cost and 
the large number of individuals to genotype. This study investigated the efficiency of 
genomic prediction in four aquaculture species. In total, 749 to 1481 individuals with 
records for disease resistance and growth traits were genotyped using SNP arrays 
ranging from 12K to 40K. We compared the prediction accuracies and bias of breed-
ing values obtained from BLUP, genomic BLUP (GBLUP), Bayesian mixture (BayesR), 
weighted GBLUP (WGBLUP), and genomic feature BLUP (GFBLUP). For GFBLUP, the 
genomic feature matrix was constructed based on prior information from genome- 
wide association studies. Fivefold cross- validation was performed with 20 replicates. 
Moreover, to reduce the cost of GS, we reduced the SNP density based on linkage 
disequilibrium as well as the reference population size. The results showed that the 
methods with marker information produced more accurate predictions than the 
pedigree- based BLUP method. For the genomic model, BayesR performed prediction 
with a similar or higher accuracy compared to GBLUP. For the four traits, WGBLUP 
yielded an average of 1.5% higher accuracy than GBLUP. However, the accuracy 
of genomic prediction decreased by an average of 6.2% for GFBLUP compared to 
GBLUP. When the density of SNP panels was reduced to 3K, which was sufficient to 
obtain accuracies similar to those using the whole dataset in the four species, the cost 
of GS was estimated to be 50% lower than that of genotyping all animals with high- 
density panels. In addition, when the reference population size was reduced by 10%, 
evenly from full- sib family, the accuracy of genomic prediction was almost unchanged, 
and the cost reduction was 8% in the four populations. Our results have important 
implications for translating the benefits of GS to most aquaculture species.
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1  |  INTRODUC TION

Genomic selection (GS) has developed rapidly since its proposal in 
2001 (Meuwissen et al., 2001). It has dominated research and devel-
opment and has brought revolutionary changes to animal and plant 
breeding. In GS, quantitative trait loci (QTL) are presumed to be in 
linkage disequilibrium (LD) with at least one of the genotyped mark-
ers that are used to estimate the level of genetic similarity between 
individuals and explain the genetic variance for the trait. Compared 
with pedigree- based prediction of breeding values, GS can be per-
formed as soon as DNA is available, which allows for accurate se-
lection early in life. Theory and breeding practices indicate that the 
accuracy of GS is higher than that of traditional breeding methods, 
which can speed up breeding progress and improve breeding effi-
ciency (García- Ruiz et al., 2016; Goddard & Hayes, 2007).

Genomic selection in aquaculture species was first studied in 
Atlantic salmon, and its application was made possible by the de-
velopment of the first high- density (HD) SNP arrays and demon-
stration of their utility to accurately predict breeding values in a 
typical salmon breeding program (Houston et al., 2014; Odegard 
et al., 2014). With the increase in fish whole- genome sequencing 
and the reduction in the cost of resequencing, research on GS in 
aquaculture species has gradually developed. GS has been applied 
to complex traits of several important aquaculture species (Houston 
et al., 2020; Zenger et al., 2019), including Atlantic salmon (Salmo 
salar) (Tsai et al., 2015, 2016; Tsairidou et al., 2020), rainbow trout 
(Oncorhynchus mykiss) (D'Ambrosio et al., 2020; Vallejo et al., 2016, 
2018), large yellow croaker (Larimichthys crocea) (Zhao et al., 2021), 
Nile tilapia (Oreochromis niloticus) (Joshi et al., 2020; Penaloza et al., 
2020), Penaeus vannamei (Litopenaeus vannamei) (Wang et al., 2017), 
Japanese flounder (Paralichthys olivaceus) (Lu et al., 2020), and rock 
bream (Oplegnathus fasciatus) (Gong et al., 2021).

Most GS studies in aquaculture species use the best linear unbi-
ased prediction (genomic BLUP, GBLUP) method based on a genomic 
relationship matrix that estimates the genomic estimated breeding 
value (GEBV; Zenger et al., 2019). Bayesian models have also been 
tested in several species, but compared with the simpler GBLUP 
method, for Bayesian models, the prediction accuracy is only slightly 
higher or not significantly different (Zenger et al., 2019) and needs 
more computing demands, and the performance depends on the un-
derlying genetic architecture of the traits. Moreover, incorporating 
preselected potential causal markers into the GS model is an effec-
tive way to improve the accuracy of prediction. For example, Lu et al. 
(2020) used a genome- wide association study (GWAS) to preselect 
sequencing data, as well as single- step GBLUP (ssGBLUP), weighted 
BayesB, and BayesB to predict the breeding value of Japanese floun-
der against Edwardsiella infection, and found that preselecting SNPs 
improved the accuracy of genomic prediction. Dong et al. (2016) 
reported that the accuracy of genomic prediction for two growth 
traits could be improved when SNPs were preselected based on the 
largest absolute effects of SNPs in large yellow croaker; additionally, 
Yoshida and Yáñez (2021) reported that the accuracy of genomic 
prediction can be improved using preselected variants from GWASs 

for growth under chronic thermal stress in rainbow trout. Thus, the 
use of preselected SNPs could be an attractive approach for increas-
ing accuracy.

Owing to the high fecundity of aquatic animals, the applica-
tion of GS in aquaculture species is very expensive because of the 
large number of selected candidates and test- sibs for genotyping. 
Genotyping a large number of animals with an HD SNP panel is 
not realistic for all but the largest aquaculture breeding compa-
nies. Thus, it is important to develop cost- effective GS strategies 
for aquaculture species. Several strategies have been proposed to 
reduce the cost of genotyping for GS in aquaculture via low- density 
SNP panels (Kriaridou et al., 2020), low- coverage sequencing (Zhang 
et al., 2021), and the use of genotyping strategies, including impu-
tation from low- to- high- density SNPs (Tsai et al., 2017). Genotype- 
by- sequencing technologies are also likely to help reduce costs in 
aquaculture; Vallejo et al. (2016) compared the prediction accuracy 
of RAD sequencing (RAD- seq) and SNP chips on bacterial cold- 
water disease resistance of rainbow trout and found that although 
the marker density of SNP chip was higher (approximately 40K SNP– 
10K RAD- seq), the selection accuracy of the two technologies was 
similar. Reducing the cost of GS is critical for implementing GS in 
most aquaculture breeding programs.

The objectives of this study were to (1) evaluate the accuracy 
of GS for different traits in four aquaculture species using GBLUP 
and Bayesian mixture (BayesR) methods; (2) explore strategies to 
improve the accuracy of genomic prediction using weighted GBLUP 
(WGBLUP) and genomic feature BLUP (GFBLUP) with preselected 
SNPs; and (3) explore strategies to reduce the cost of GS.

2  |  MATERIAL S AND METHODS

2.1  |  Population and phenotypes

The phenotypes were obtained from four previously published stud-
ies of four different species. Briefly, (1) Atlantic salmon (S. salar) chal-
lenged with amoebic gill disease were phenotyped for mean gill score 
(mean of the left gill and right fill scores, a continuous trait), and a 
subjective gill lesion score of the order of severity ranging from 0 to 
5 was recorded for both gills. The challenged fish belonged to 84 dif-
ferent full- sib families, with 1– 39 fish in each family (Robledo et al., 
2018); (2) common carp (Cyprinus carpio), from four factorial crosses 
of five females × ten males (20 females and 40 males in total), were 
measured for body weight. These fish belonged to 195 full- sib fami-
lies, with 1– 21 fish in each family (Palaiokostas et al., 2018); (3) sea 
bream (Sparus aurata), originating from a factorial cross between 67 
broodfish (32 males and 35 females), were challenged by 30- min im-
mersion with 1 × 105 CFU Photobacterium damselae (causative agent 
of pasteurellosis) and the number of days to death was recorded. 
These fish belonged to 73 full- sib families, with 2– 144 fish in each 
family (Palaiokostas et al., 2016); and (4) rainbow trout (O. mykiss) 
belonged to 58 full- sib families generated from 58 females and 
20 males of rainbow trout from the 2014 year class, with 10– 18 fish 
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in each family. These fish were challenged with infectious pancreatic 
necrosis, and the number of days to death was recorded (Rodriguez 
et al., 2019). A summary of the dataset is provided in Table 1.

2.2  |  Genotype data and imputation

(1) Atlantic salmon, a total of 1481 Atlantic salmon were genotyped 
using an Illumina combined species of Atlantic salmon and rain-
bow trout 17K SNP array (17156 SNPs), designed from a subset of 
SNPs from a higher density array (Houston et al., 2014); (2) common 
carp, 1214 fish were genotyped using RAD- seq for ~12K SNPs; (3) 
sea bream, 777 fish were genotyped using 2b- RAD- seq for ~12K 
SNPs; and (4) rainbow trout, 749 fish were genotyped using a 57K 
Affymetrix Axiom SNP array developed by Palti et al. (2015).

Imputation for missing genotypes of SNPs with known chro-
mosomal positions was performed using Beagle4.1 (Browning & 
Browning, 2009). The SNPs were filtered using the following qual-
ity control criteria from the imputed dataset: minor allele frequency 
(MAF) <0.01, SNP call rates <0.90, and genotype frequency deviat-
ing from Hardy– Weinberg equilibrium (HWE) with a p- value <10−7. 
Individuals with call rates <0.90 were also excluded. Quality control 
was performed using the Plink software package (v1.90; Chang et al., 
2015). After quality control, all genotyped individuals remained, and 
the SNPs ultimately used were 11,068, 12,311, 12,050, and 40,143 
for Atlantic salmon, common carp, sea bream, and rainbow trout, 
respectively.

2.3  |  Statistical models

Four methods, GBLUP, BayesR, WGBLUP, and GFBLUP, were imple-
mented to predict GEBV for each genotyped individual.

2.3.1  |  GBLUP

The GBLUP (VanRaden, 2008) model based on the genomic rela-
tionship matrix was used to predict the GEBV for all genotyped 
individuals.

where y is the vector of observed phenotypic values; b is the vec-
tor of fixed effects; g is the vector of additive genetic effects, 
following a normal distribution of N(0, G�2

a
), where �2

a
 is the ad-

ditive genetic variance, and G is the genomic relationship matrix 
(VanRaden, 2008). The G matrix was constructed using all markers as 
G = ZZ�∕

∑

2pj(1 − pj), where pj is the reference allele frequency of 
A2 for genotypes A1A1, A1A2, and A2A2 at locus j; and Z is a centered 
genotyped matrix where genotypes are subtracted 2 * reference al-
lele frequency. In this study, the allele frequencies pj were estimated 
from current marker data. X and L are the incidence matrices that 
relate b and g to y, respectively; e is the vector of random errors with 
distribution of N(0, I�2

e
), where �2

e
 is the residual variance, and I is the 

identity matrix. The different fixed effects included in the model for 
different species were overall mean, collection date (three levels), 
and tank (two levels) in Atlantic salmon; overall mean and factorial- 
cross group (4 levels) for common carp; overall mean in sea bream; 
and overall mean and tagging weight as a covariate in rainbow trout.

2.3.2  |  BayesR

The BayesR model (Erbe et al., 2012) was used to predict the GEBV 
for each individual. For BayesR, all SNP effects were estimated 
based on the reference population, and the GEBV of a genotyped 
individual was calculated as the sum of all SNP effects according to 
the SNP genotypes. The following model was used to estimate the 
effects of all the SNPs simultaneously:

where y, X, L, b, and e are the same as in the GBLUP model, W is the 
(n × m) design matrix allocating records to the marker effects; and u 
is an (m × 1) vector of SNP effects assumed to be normally distrib-
uted ui ∼ N(0, �2

i
). The variance of the ith SNP effect had four possible 

values: �2
1
= 0, �2

2
= 0.0001�2

g
, �2

3
= 0.001�2

g
, �2

4
= 0.01�2

g
, where �2

g
 is 

the total genetic variance; v is a vector of random residual polygenic 
effects with a normal distribution g ~ N(0, A�2

a
), where �2

a
 is the poly-

genic variance, and A is the pedigree relationship matrix. The Markov 
chain Monte Carlo (MCMC) was run for 50,000, and the first 10,000 
cycles were discarded as burn- in, and every 10th sample of the re-
maining 40,000 iterations was saved for estimating SNP effects and 
the variance components.y = Xb + Lg + e,

y = Xb +Wu + Lv + e,

Species Trait N- obs
Full- sib 
families Mean (SD)

Atlantic salmon Mean gill score 1481 84 2.79 (0.85)

Common carp Body weight 1214 195 16.32 
(4.58)

Sea bream Number of days to death 777 73 10.34 
(4.09)

Rainbow trout Number of days to death 749 58 51.47 
(13.98)

Abbreviations: N- obs, number of observations; SD, standard deviation.

TA B L E  1  Descriptive statistics for 
four traits of four species, including the 
number of observations and full- sib 
families
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2.3.3  |  WGBLUP

The WGBLUP (Wang et al., 2012) has the same model as GBLUP, 
except that G is the weighted genomic relationship matrix. The itera-
tive steps in WGBLUP are as follows.

1. Set t = 0, D(t) = I, and G(t) = ZD(t)Z
� 1
∑

2pj(1− pj)
, where t is 

the iteration number and Z, I, and pj are the same as those 
described in the GBLUP method.

2. Construct matrix G ∗
(t)

= 0.95 ∗ G(t) + 0.05 ∗ I (VanRaden, 2008);
3. Calculate GEBV (ĝ) using GBLUP;
4. Calculate SNP effects as û =

1
∑

2pj(1− pj)
D(t)Z

�(G ∗
(t)
)− 1ĝ;

5. Calculate SNP weight matrix D ∗
(t+ 1)

 as d ∗
jj(t+ 1)

= û
2

j
2pj(1 − pj);

6. Normalize matrix D(t+1) as D(t+1) =
tr(D(0))

tr(D ∗
(t + 1)

)
D ∗

(t+ 1)
;

7. Construct the matrix G ∗
(t+ 1)

= 0.95 ∗ ZD(t+1)Z
� 1
∑

2pj(1− pj)
+ 0.05 ∗ I, 

t = t+1;
8. Go back to step (3) when t is less than or equal to 4. The result 

from the third iteration was used for GS analysis, as there was no 
difference between the results of the third and fourth iterations 
in this study.

2.3.4  |  GFBLUP

The GFBLUP (Edwards et al., 2016) model, which uses prior informa-
tion about genomic features, is based on a linear mixed model with 
two random genomic effects:

where y, X, b, L, and e are the same as in the GBLUP model; f is the 
vector of genomic values captured by genetic markers associated 
with a genomic feature of interest, following a normal distribution of 
N(0,Gf�

2
f
); r is the vector of genomic effects captured by the remaining 

set of genetic markers, following a normal distribution N(0,Gr�
2
r
); and 

L is an incidence matrix that links f and r to y. Matrices Gf and Gr were 
constructed in the same way as G, but using only the genetic marker 
set defined by a genomic feature, as described below, and the remain-
ing markers, respectively.

A GWAS was used to define genetic markers that formed differ-
ent classes of genomic features used in the GFBLUP model analyses. 
The statistical model used was as follows:

where y, X, b, L, and e are the same as in the GBLUP model, c is the 
additive effect of the variant to be tested for association, and x is the 
vector of the variant's genotype indicator variable coded as 0, 1, or 2. 
The analysis was based only on the reference data. A p- value of 0.05 
was used to assess the statistical significance of the effect of individual 

SNPs. When an SNP was significantly associated with phenotypes 
based on the prespecified significance cutoff level, the corresponding 
SNP was considered to define a genomic feature.

WGBLUP was implemented using the blupf90 software package 
(Misztal et al., 2014), and the DMUAI procedure, implemented in 
the DMU software (Madsen et al., 2018), was used for GBLUP and 
GFBLUP analyses.

2.4  |  Reduction in SNP density and reference 
population size

When two SNPs are in high LD, their genotypic information is re-
dundant, and only one is necessary to represent the variation in 
neighboring regions. Moreover, animals related to the full- sib fam-
ily may partly explain the same part of the variation. Thus, reduc-
ing SNP density based on LD and the size of the full- sib family may 
have little effect on genomic prediction accuracy. In this study, 
SNP panel genotypes were pruned based on LD to reduce the SNP 
density, and different SNP densities of 10K, 5K, 3K, 1K, and 0.5K 
were used to assess prediction accuracy. Furthermore, reduced 
reference population sizes were tested by evenly sampling a ratio 
of 10%, 20%, 30%, 40%, and 50% of the reference population 
from each full- sib family to assess the accuracy of genomic predic-
tion. To ensure that the reference population covers the whole 
family, the reduced number of individuals were only selected from 
families whose family size is larger than the reduced number. Thus, 
the number of families was kept the same but family sizes were 
reduced. Furthermore, we evaluated the impact of reduced SNP 
density and reduced population size on prediction accuracy by 
using subsets of data for the GBLUP.

2.5  |  Evaluation of the accuracy of 
genomic prediction

In this study, the accuracy and bias of prediction were obtained 
through a fivefold cross- validation (CV). The genotyped individuals 
were randomly split into five folds, phenotypes from onefold (vali-
dation population) were removed from the dataset, and the remain-
ing folds (reference population) were used to predict the GEBV in 
the validation population. This fivefold CV was replicated 20 times, 
resulting in 20 average accuracies of genomic prediction. The valida-
tion population was the same in each replicate of fivefold CV for all 
the four methods, GBLUP, BayesR, WGBLUP, and GFBLUP, and for 
assessing the impact of reducing SNP density and reference popu-
lation size. The accuracy of genomic prediction was evaluated as 
r (y, GEBV)/

√

h2, the correlation between GEBVs of the validation 
population and phenotypic values y divided by the square root of 
heritability h2, as listed in Table 2. In addition, b (y, GEBV), the re-
gression of y on GEBVs, was calculated to assess the possible bias 
of predictions, which is equal to the absolute value of the regression 
coefficient minus 1.

y = Xb + Lf + Lr + e,

y = Xb + Lg + xc + e,



582  |    SONG aNd HU

2.6  |  Cost evaluation

We evaluated direct savings when genotyping a proportion of ani-
mals using different density SNP panels. Costs were calculated for 
four different species in this study. The genotyping cost was calcu-
lated assuming prices of $60, $50, $30, $25, $20, and $10 per sam-
ple for HD (from 12K to 40K for four species), 10K, 5K, 3K, 1K, and 
0.5K, respectively. Here, we did not assume a price reduction when 
more animals were genotyped, as the population was not large in the 
four species in this study.

3  |  RESULTS

3.1  |  Descriptive statistics and genetic parameters

The descriptive statistics and genetic parameters for the analyzed 
traits of the four species are presented in Tables 1 and 2. In the 
Atlantic salmon population, the average mean gill score was 2.79, 
with a standard deviation of 0.85, and the heritability estimate for 
the mean gill score was 0.25, with a standard error of 0.06. In the 

common carp population, body weight with mean and standard de-
viation of 16.32 and 4.58, and the heritability was 0.26, with a stand-
ard error of 0.06. In sea bream and rainbow trout populations, the 
numbers of days to death with mean (standard deviation) were 10.34 
(4.09) and 51.47 (13.98), respectively, and the heritability (standard 
error) estimates for the number of days to death were 0.12 (0.06) 
and 0.50 (0.06), respectively. It should be noted that the pedigree 
was not available for the rainbow trout population, and heritability 
was estimated using genomic relationship information.

3.2  |  Accuracy and bias of the GBLUP and 
BayesR methods

Table 2 presents the accuracy and bias of genomic prediction from 
20 replicates of fivefold CV in four fish populations by applying the 
BLUP, GBLUP, BayesR, WGBLUP, and GFBLUP methods. As shown 
in Table 2, the four methods with marker information generally pro-
vided higher accuracies of genomic prediction than the traditional 
BLUP method, except that a slightly lower prediction accuracy was 
obtained for the GFBLUP method in the common carp population, and 
the BLUP method was not available for the rainbow trout population. 

Species (heritability (SE)a ) Method Accuracy
Regression 
coefficient

Atlantic salmon (0.25 (0.06)) BLUP 0.510 (0.106) 1.012 (0.281)

GBLUP 0.615 (0.101) 1.019 (0.224)

BayesR 0.611 (0.102) 1.054 (0.259)

WGBLUP 0.627 (0.101) 0.900 (0.243)

GFBLUP 0.560 (0.102) 0.513 (0.107)

Common carp (0.26 (0.06)) BLUP 0.591 (0.113) 0.980 (0.239)

GBLUP 0.635 (0.125) 1.046 (0.241)

BayesR 0.747 (0.124) 0.994 (0.200)

WGBLUP 0.657 (0.114) 0.892 (0.259)

GFBLUP 0.540 (0.129) 0.478 (0.119)

Sea bream (0.12 (0.06)) BLUP 0.462 (0.197) 1.243 (0.816)

GBLUP 0.625 (0.204) 1.153 (0.586)

BayesR 0.643 (0.206) 1.906 (1.017)

WGBLUP 0.636 (0.206) 0.960 (0.524)

GFBLUP 0.574 (0.193) 0.382 (0.143)

Rainbow trout (0.50 (0.06)*) BLUP NA NA

GBLUP 0.816 (0.079) 0.992 (0.126)

BayesR 0.829 (0.072) 0.978 (0.118)

WGBLUP 0.831 (0.076) 0.929 (0.123)

GFBLUP 0.771 (0.082) 0.730 (0.087)

Note: Standard deviations in brackets for accuracy and regression coefficient. NA: The BLUP 
method was not available because of the lack of pedigree in the rainbow trout population.
Abbreviations: BayesR, Bayesian mixture model; BLUP, BLUP method based on pedigree; GBLUP, 
genomic BLUP; GFBLUP, genomic feature BLUP with GWAS p- value of 0.05 as genomic feature; 
WGBLUP, weighted GBLUP.
aHeritability (standard error, SE) estimated using pedigree relationship information, except for 
rainbow trout (* heritability estimated using genomic relationship information).

TA B L E  2  Accuracy and bias of 
prediction using different models through 
20 replicates of fivefold cross- validation in 
four populations
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In the Atlantic salmon population, similar prediction accuracies were 
obtained for the GBLUP and BayesR methods; the prediction accu-
racies obtained with GBLUP and BayesR were 0.615 and 0.611 and 
on average yielded 10.5% and 10.1% higher accuracies than BLUP, 
respectively. In the common carp population, the prediction accuracy 
obtained using GBLUP was 0.635. However, BayesR yielded 11.2% 
higher accuracy than GBLUP. Similarly, in sea bream and common carp 
populations, BayesR yielded 1.8% and 1.3% higher accuracies than 
GBLUP, respectively, which indicates that the prediction accuracy of 
the BayesR method depends on the genetic architecture of the traits. 
For bias of genomic prediction, as shown in Table 2, the regression 
coefficients of GBLUP and BayesR were close to 1, except for a large 
regression coefficient of 1.906 for BayesR in sea bream.

3.3  |  Methods to improve the accuracy of 
genomic prediction

Two methods, WGBLUP and GFBLUP, were performed using 20 
replicates of fivefold CV to improve the accuracy of genomic pre-
diction. As shown in Table 2, WGBLUP produced a higher predic-
tion accuracy than GBLUP in four populations, and improvements 
were on average 1.5% for the four traits. The highest increase was 
2.2% for body weight in the common carp population with WGBLUP 
compared to the GBLUP method. To evaluate the effect of including 
prior information, GFBLUP methods with GWAS information were 
compared with other methods. However, the GFBLUP model with 
p = 0.05, when using GWAS prior information, did not yield higher 
prediction accuracies than GBLUP and even produced the lowest 
prediction accuracies compared with other methods with marker 
information. The accuracy of genomic prediction decreased by an 
average of 6.2% for GFBLUP compared to GBLUP. This result indi-
cated that inappropriate prior information was used in the GFBLUP 
method. One possible explanation is that the reference population 
size was not large enough to obtain accurate GWAS results.

The bias of genomic prediction of four traits in four populations, 
assessed with 20 replicates of fivefold CV, is presented in Table 2. 
The regression coefficients of WGBLUP were, on average, 0.929, 
0.960, 0.892, and 0.900 for rainbow trout, sea bream, common carp, 
and Atlantic salmon, respectively, which produced slightly higher 
bias than GBLUP (0.992, 1.153, 1.046, and 1.019, respectively). 
However, a large bias was produced by the GFBLUP method for 
the four populations, as shown in Table 2. When the p values of the 
GWAS in GFBLUP were 0.05, the bias was on average 0.47 for the 
four traits in the four populations, indicating the poor performance 
of GFBLUP in this study.

3.4  |  Impact of low- density SNP panels on 
genomic prediction

Since genotyping with medium-  or high- density SNP arrays is rela-
tively expensive in aquaculture species, we evaluated the impact of 

low- density SNP panel reduction based on LD on prediction accu-
racy for the four populations in this study. For GBLUP, five SNP pan-
els with different densities (10K, 5K, 3K, 1K, and 0.5K) were used to 
assess prediction accuracy. In the four populations, the accuracy of 
genomic prediction tended to be stable with decreasing density of 
SNP panels from HD to 3K and then rapidly decreased, except that 
the prediction accuracy slightly increased when the SNP panel was 
1K in the Atlantic salmon population, as shown in Figure 1. However, 
when the SNP panel was 0.5K, the accuracy of genomic prediction 
both decreased by 5.6%, compared with that using 3K and HD SNP 
panels. This means that when the density of the SNP panel is lower 
than 3K, high accuracy of genomic prediction cannot be maintained. 
Figure 2 presents the bias of genomic prediction. In general, the re-
gression coefficients were close to 1 in the four populations under 
different SNP densities; although in some scenarios, bias slightly in-
creased, for example, with the decrease of SNP density from HD to 
0.5K, the regression coefficient increased from 1.153 to 1.232 in sea 
bream population. As a trade- off between accuracy and bias, a rela-
tive SNP density of 3K was appropriate for obtaining high accuracy 
of GS for the four populations.

3.5  |  Impact of reference population size on 
genomic prediction

To investigate additional cost- effective ways of genotyping, reduced 
reference population sizes were tested by evenly sampling differ-
ent ratios (10%– 50%) of the reference population from each full- sib 
family to assess the accuracy of genomic prediction. As shown in 
Figure 3, as the ratio of the reference population size increased, the 
accuracy of genomic prediction decreased for the four traits in the 
four populations. However, the accuracy of genomic prediction de-
creased at different rates in different populations. The accuracy of 
genomic prediction decreased by 3.6% and 5.6% when the reference 
population size decreased from 10% to 50% in rainbow trout and 
common carp populations, while the accuracy of genomic predic-
tion decreased by 13% and 9.8% in sea bream and Atlantic salmon 
populations. In addition, in these four populations, when the refer-
ence population size was reduced by 10%, the accuracy of genomic 
prediction was almost unchanged, which means that genotyping for 
fewer individuals can achieve high prediction accuracy. Figure 4 pre-
sents the bias of genomic prediction from 20 replicates of fivefold 
CV in four fish populations by applying GBLUP with different ratios 
of the reduced reference population size; in general, the regression 
coefficients were close to 1 in the four populations with the refer-
ence population size decreased, indicating that the bias of genomic 
prediction was small in all situations.

3.6  |  Cost evaluation

In scenario (1), where all animals were genotyped with an HD panel, 
the total cost of genotyping was estimated to be $88860, $72840, 
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$46620, and $44940 for Atlantic salmon, common carp, sea bream, 
and rainbow trout populations, respectively (see Table 3). However, 
in scenario (2), where all animals were genotyped with a 3K panel, 
the cost was estimated to reduce by 50% in four populations, with 
virtually no loss of genomic prediction accuracy for the traits meas-
ured. Additionally, in scenario (3), where all animals were genotyped 
with an HD panel and the reference population size was reduced by 
10%, cost reduction was only 8% in the four populations. However, 
in scenario (4), where all animals were genotyped with a 3K panel 
and the reference population size was reduced by 10%, cost reduc-
tion was up to 54% in the four populations. This procedure greatly 
reduced the cost of GS, although it slightly reduced the accuracy of 
predicting GEBV in scenarios (3) and (4) (Figure S1).

4  |  DISCUSSION

In this study, we investigated the accuracy of genomic prediction of 
four traits in four aquaculture species. Our results revealed that the 
methods with marker information generally provided higher accura-
cies of genomic prediction than the traditional BLUP method; for 

example, GBLUP yielded 16.3% and 10.5% higher accuracies than 
BLUP in sea bream and Atlantic salmon populations, respectively. 
This suggests the advantage of GS in the breeding of aquaculture 
species. Similar results were reported by Houston et al. (2020), who 
reviewed several cases in which the accuracy of genomic prediction 
was higher than the traditional prediction method based on pedigree 
information in aquaculture species; on average, the prediction ac-
curacy of disease resistance traits increased by 22%, and the predic-
tion accuracy of growth- related traits increased by 24%. The reason 
for this might be that the realized relationships among individuals 
are more accurately determined by marker information. In addition, 
BayesR assumes that the SNP effect follows four different normal 
distributions and produces a similar or higher prediction accuracy 
compared to GBLUP in this study (Table 2). Similar results have been 
reported for growth and reproduction traits in Yorkshire pigs (Song 
et al., 2017) and fatty acid composition traits in Korean Hanwoo cat-
tle (Bhuiyan et al., 2018). Moreover, as reported from studies on real 
data (Hayes et al., 2009; Song et al., 2020; Zenger et al., 2019), the 
average prediction accuracies were not significantly different be-
tween the GBLUP and Bayesian methods, and the Bayesian method 
was computationally very demanding. The performance of Bayesian 

F I G U R E  1  Accuracy of genomic prediction using GBLUP with different densities of SNP panels in four populations
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methods depends on their assumptions and the underlying genetic 
architecture of the traits.

In this study, two different methods, WGBLUP and GFBLUP, 
were used to improve genomic prediction accuracy in four aquacul-
ture species. To date, the use of these two methods in aquaculture 
has rarely been investigated. The WGBLUP model uses a weighted 
genomic relationship matrix, which gives more weight to import-
ant markers. GBLUP assumes equal variance for all SNPs; this as-
sumption is biologically incorrect but makes the statistics robust 
by limiting the number of unknown parameters (Meuwissen et al., 
2001). To overcome the limitation of GBLUP, unequal weights for 
all SNPs were applied in WGBLUP, and the weights were calculated 
by an iterative procedure as described by Wang et al. (2012). In this 
study, GEBV was calculated based on three iterations for WGBLUP, 
as there was no difference between the results after the third and 
fourth iterations. WGBLUP produced higher prediction accuracies 
than GBLUP for all populations, as shown in Table 2. Many studies 
have also reported the advantages of WGBLUP over unweighted 
GBLUP (Gao et al., 2012; Tiezzi & Maltecca, 2015).

In addition, the strategy of weighted genomic relationship ma-
trix is usually used in ssGBLUP (WssGBLUP); for example, Teissier 

et al. (2018) reported that the WssGBLUP methods were efficient 
for detecting SNPs associated with protein content and for a better 
prediction of genomic breeding values than ssGBLUP in French dairy 
goats, while similar accuracies were observed between WssGBLUP 
and ssGBLUP in Japanese flounder (Lu et al., 2020). However, it was 
not possible to apply WssGBLUP in this study, as no additional phe-
notypic individuals were available. Thus, if there are a large number 
of individuals without genotype but with phenotype information in 
the population, the application of WssGBLUP may further improve 
the accuracy of genomic prediction.

Moreover, the GFBUP with GWAS prior information was used to 
improve the accuracy of genomic prediction. Theoretically, GFBLUP 
has advantages over GBLUP, mainly because it allows the assignment 
of different weights to the genomic variants in the different genomic 
relationships based on their estimated genomic parameters, which 
can better fit the genetic architecture of the trait (Edwards et al., 
2016; Fang et al., 2017). Fang et al. (2017) reported that the accu-
racy of genomic prediction was improved with GFBLUP compared to 
standard GBLUP in Holstein and Jersey cattle. Our previous study 
also reported that GFBLUP based on GWAS prior information could 
yield higher accuracy than GBLUP in a Yorkshire pig population 

F I G U R E  2  Regression coefficient of phenotypic values on GEBV using GBLUP with different densities of SNP panels in four populations
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(Song et al., 2019). However, the GFBLUP model with p = 0.05, when 
using GWAS prior information, yielded lower prediction accuracies 
and larger bias than GBLUP in this study. One possible reason is that 
the reference population size (1481, 1214, 749, and 777 in the four 
populations, respectively) was not large enough to obtain accurate 
GWAS results. A similar study was performed by Lu et al. (2020), 
in which the preselected 50K SNP- based p- value of GWAS did not 
increase the accuracy of genomic prediction. Another reason may be 
that only a few markers were selected with p values of 0.05, (582, 
584, 618, and 1819 in four populations) to construct the genomic 
feature matrix in GFBLUP, which may be insufficient to construct an 
accurate genomic relationship matrix. In addition, different p values 
(0.1, 0.01) were set to select markers in the GWAS. However, similar 
results showed that GFBLUP had a lower prediction accuracy than 
GBLUP (results not shown).

Owing to the high fecundity of aquatic animals, it is necessary 
to genotype thousands of animals in each generation, which can 
be expensive. Therefore, to translate the benefits of GS into most 
aquaculture species, cost- effective strategies need to be developed. 
Different strategies to choose SNPs for low- density panels have 
been reported to reduce the costs of GS. For example, Robledo et al. 

(2018) evaluated the impact of reduced SNP density based on their 
minor allele frequency and their even position in the genome on pre-
diction accuracy, and a reduction in marker density to ~2000 SNPs 
was sufficient to obtain high accuracy in Atlantic salmon. Kriaridou 
et al. (2020) investigated the accuracy of genomic prediction by ran-
domly selecting SNP markers from SNP chips and found that SNP 
densities between 1000 and 2000 frequently result in selection 
accuracies that are very similar to those obtained with HD geno-
typing in four aquaculture species. The initial premise of GS is that 
each QTL is in LD with at least one SNP; SNPs that are distributed 
across the whole genome can explain most of the genetic variance 
(Meuwissen et al., 2001). However, when two SNPs are in high LD, 
their genotypic information is redundant, and only one is necessary 
to represent the variation in neighboring regions. Thus, in this study, 
to reduce the costs of GS, SNP panel genotypes were pruned based 
on LD to reduce SNP density. Our results showed that when the 
density of SNP panels was reduced to 3K, which was sufficient to 
obtain accuracies similar to those obtained using the whole dataset 
for four species (Figure 1), the cost of GS was estimated to be 50% 
lower than that of all animals genotyped with the HD panel (Table 3). 
High accuracy with low marker density may reflect the low effective 

F I G U R E  3  Accuracy of genomic prediction using GBLUP with different ratios of the reference population size decreased evenly from the 
full- sib family
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population size and genome long- range LD in the four aquaculture 
species, which may increase the predictive ability of a sparse SNP 
marker set. In addition, due to the large full- sib family of aquacul-
ture species, the use of low- density SNP markers can obtain high 
genomic prediction accuracy (Lillehammer et al., 2013). This means 
that the markers not only capture LD between markers and QTLs 

but also the genetic relationship between individuals in aquaculture 
species, as related fish also share marker alleles.

In GS, the relationship between the reference and validation pop-
ulations should be maximized to improve the accuracy of genomic 
prediction (Goddard & Hayes, 2009). However, the relationship within 
the reference population also affects the accuracy, and the average 
relationship within the animals included in the reference population 
should be low (Pszczola et al., 2012). Thus, the reference dataset (or 
training dataset) should cover the entire population. In this study, 
when the reference population size was reduced by 10% evenly from 
the full- sib family, the accuracy of genomic prediction was almost 
unchanged, and the cost reduction was 8% in the four populations 
(Table 3). Furthermore, accuracy and bias of genomic prediction using 
GBLUP with 3K SNP panel and different ratios of the reduced refer-
ence population size were obtained (Figures S1 and S2), and a similar 
trend was found, as shown in Figures 3 and 4, where the cost of GS 
was the lowest (Table 3). The reason could be that since related ani-
mals of the full- sib family may partly explain the same part of variation, 
reducing the size of the full- sib family does not affect the accuracy of 
genomic prediction. This will greatly reduce the cost of GS, although it 
results in a slight reduction in the accuracy of predicting GEBV.

F I G U R E  4  Regression coefficient of phenotypic values on GEBV using GBLUP with different ratios of the reference population size 
decreased evenly from the full- sib family

TA B L E  3  Genotyping cost (US$) using different genotyping 
strategies for four aquaculture populations

Scenariosa 
Atlantic 
salmon

Common 
carp

Sea 
bream

Rainbow 
trout

(1) HD 88,860 72,840 46,620 44,940

(2) 3K 44,430 36,420 23,310 22,470

(3) HD, −10% 81,,750 67,008 42,888 41,340

(4) 3K, −10% 40,875 33,504 21,444 20,670

a(1) HD = scenario (1): all animals were genotyped with a high- density 
(HD) panel. (2) 3K = scenario (2): all animals were genotyped with a 3K 
panel. (3) HD, −10% = scenario (3): all animals were genotyped with 
an HD panel, and the reference population size was reduced by 10%. 
(4) 3K, −10% = scenario (4): All animals were genotyped with a 3K panel, 
and the reference population size was reduced by 10%.
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In addition, several other strategies for reducing GS costs could 
be explored: (1) genotype imputation, imputing from low- to- high- 
density SNP markers, whole- genome sequence SNP markers, and 
HD SNP markers, could increase the accuracy of GS without in-
creasing the cost (Tsairidou et al., 2020; Vallejo et al., 2017; Yoshida 
et al., 2018). In this study, missing genotypes were imputed using 
the current data, and if HD reference genotype data were obtained, 
imputing 1K or 0.5K with higher density markers might improve the 
accuracy of genomic prediction; (2) genotype- by- sequencing (GBS) 
technologies are also likely to help reduce costs in aquaculture. GBS 
technology is widely used in animal, plant, and aquatic animal genetic 
analyses because of its simple, time- saving, and low- cost operation 
(Chung et al., 2017; Elshire et al., 2011; Li & Wang, 2017). Vallejo et al. 
(2016) compared the prediction effect of RAD- seq and SNP chips on 
bacterial cold- water disease resistance in rainbow trout and found 
that although the marker density of the SNP chip was higher (about 
40K SNP– 10K RAD- seq), the selection accuracy of the two tech-
nologies was similar. (3) Compared with GBS data, low- coverage se-
quencing data can be distributed more evenly. These markers could 
be associated with more QTLs with small effects. Theoretically, low- 
coverage sequencing may be beneficial for GS. Zhang et al. (2021) 
found that whole- genome sequencing at an average depth of 0.5× 
has almost the same accuracy as that of 8× in large yellow croaker 
(Larimichthys crocea). However, the efficiency of these strategies in 
actual genomic prediction requires further investigation.

5  |  CONCLUSION

It is very important to explore how to improve the accuracy of genomic 
prediction and develop cost- effective strategies to accelerate the appli-
cation of GS in aquaculture species. Our results showed that the meth-
ods with marker information were more accurate than the method based 
only on pedigree. The WGBLUP method yielded higher genomic predic-
tion accuracy than GBLUP, while the GFBLUP model with p = 0.05 when 
using GWAS prior information yielded lower prediction accuracies and 
larger bias than GBLUP in this study. In addition, reducing SNP density 
based on LD pruning of SNP arrays and reducing the size of the full- sib 
family are effective strategies to reduce the cost of GS.
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