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Abstract

1-methyl-D-tryptophan (1-D-MT) is currently being used in clinical trials in patients with relapsed or refractory solid tumors
with the aim of inhibiting indoleamine-2,3-dioxygenase (IDO)-mediated tumor immune escape. IDO is expressed in tumors
and tumor-draining lymph nodes and degrades tryptophan (trp) to create an immunsuppressive micromilieu both by
depleting trp and by accumulating immunosuppressive metabolites of the kynurenine (kyn) pathway. Here we show that
proliferation of alloreactive T-cells cocultured with IDO1-positive human cancer cells paradoxically was inhibited by 1-D-MT.
Surprisingly incubation with 1-D-MT increased kyn production of human cancer cells. Cell-free assays revealed that 1-D-MT
did not alter IDO1 enzymatic activity. Instead, 1-D-MT induced IDO1 mRNA and protein expression through pathways
involving p38 MAPK and JNK signalling. Treatment of cancer patients with 1-D-MT has transcriptional effects that may
promote rather than suppress anti-tumor immune escape by increasing IDO1 in the cancer cells. These off-target effects
should be carefully analyzed in the ongoing clinical trials with 1-D-MT.
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Introduction

In recent years tryptophan (trp) degradation has received

increasing attention as a potent immunosuppressive mechanism

involved in the maintenance of immunological tolerance. The trp-

degrading enzyme indoleamine-2,3-dioxygenase (IDO) has been

implicated in maternal tolerance towards allogeneic concepti [1],

controlling autoimmune diseases [2,3] and chronic infection [4], as

well as promoting tumor immune escape [5,6,7]. IDO-mediated

trp degradation is not restricted to tumor cells [7] but is also

detected in tumor-draining lymph nodes [8]. In both tumor-

draining lymph nodes and tumors, IDO1 creates local tolerance

by directly suppressing T-cell responses and enhancing immuno-

suppression mediated by regulatory T cells (Treg) [6]. IDO is

chronically activated in many cancer patients [9] and its

expression or enzyme activity correlates with a poor prognosis in

patients with various cancers such as ovarian carcinoma [10,11],

endometrial carcinoma [12,13], hepatocellular carcinoma [14]

and colorectal carcinoma [15].

Despite the bulk of evidence supporting a role for IDO in

promoting tumor formation and tumor immune escape, there

have been studies showing an anti-tumor activity of IDO1. The

induction of IDO1 has been described as a mechanism by which

Interferon (IFN)-c inhibits proliferation of malignant cells [16,17].

Some animal experiments demonstrated that IDO1 expression

was positively associated with the elimination of malignant cells

[18,19]. These findings were corroborated in clinical studies

showing that despite being a strong inducer of IDO1, IFN-c
was effective in the therapy of ovarian carcinoma and bladder

cancer [20,21,22]. In addition, IDO1 expression in hepatocellular

carcinoma specimens and in endothelial cells of renal cell

carcinoma positively correlated with progression-free survival

and long-term survival, respectively [23,24]. There thus remains

uncertainty about the clinical relevance of IDO1 expression in

tumors.

In preclinical studies the IDO-inhibitor 1-methyl-tryptophan

(1-MT) reduced the tumor volume of mice preimmunized with a

tumor antigen [7] and - in combination with chemotherapeutic

agents - caused regression of established murine breast cancers [5].

Inhibition of IDO in combination with chemotherapy or as a

vaccine adjuvant therefore represents an attractive approach for

cancer immunotherapy [5,6,7,25,26]. Recently a novel IDO
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isoform, termed IDO2 was discovered, which - like IDO1 - is

expressed in tumors and tumor-draining lymph nodes [27]. The

third trp-degrading enzyme in humans, tryptophan-2,3-dioxygen-

ase (TDO) is mainly expressed in the liver and regulates trp

concentrations after nutritional trp uptake. The IDO inhibitor 1-

MT exists as two stereoisomers, 1-D-MT and 1-L-MT. Most

preclinical studies have employed the racemic mixture 1-D/L-MT

to inhibit IDO. Recent studies have shown that IDO1 is the

preferential target of 1-L-MT, while 1-D-MT preferentially

inhibits IDO2 [26,27,28,29]. 1-D-MT is currently used in phase

I clinical trials as an adjunct to conventional chemotherapy based

on preclinical studies in mouse models of cancer. We were

interested in the immunomodulatory effects of 1-D-MT in IDO1-

positive human cancer cells.

Results

1-D-MT induces immunosuppression of human cancer
cells

SKOV-3 cells constitutively degrade trp to kyn and express high

levels of IDO1 mRNA while IDO2 and TDO mRNA are

expressed at low levels (Fig. 1A). Knockdown of IDO1 by siRNA

in SKOV-3 cells decreased IDO1 mRNA expression by 87.5%

(Fig. 1B) leading to a strong reduction in IDO1 protein expression

as evidenced by Western Blot (Fig. 1C) and immunocytochemistry

(Fig. 1D). Finally, kyn production was inhibited by 91.4% in the

IDO1 knockdown cells in comparison to the mean kyn production

of SKOV-3 cells transfected without siRNA or with a non-

targeting siRNA control (Fig. 1E), suggesting that IDO1 is mainly

responsible for the constitutive kyn production in SKOV-3 cells.

To determine the effect of 1-MT treatment on the immunomod-

ulatory phenotype of cancer cells, SKOV-3/MLR coculture

experiments were performed. Addition of kyn (Fig. 2A) or the

presence of SKOV-3 cells (Fig. 2B) inhibited alloreactive T cell

proliferation in MLR. Knockdown of IDO1 by siRNA not

only reversed the SKOV-3 cell mediated suppression of T cell

proliferation, but even increased T cell proliferation (Fig. 2C),

probably due to additional allogeneic stimulation of the T cells by

the IDO-deficient SKOV-3 cells. Next we tested the effects of the

two stereoisomers of 1-MT. Addition of 1-methyl-L-tryptophan (1-

L-MT) also reversed the suppression of T cell proliferation in the

SKOV-3/MLR coculture experiments (Fig. 2D). Surprisingly, T

cell proliferation was not enhanced but inhibited in cocultures

treated with 1-methyl-D-tryptophan (1-D-MT, Fig. 2E). Addition

of trp did not alter this inhibition, indicating that trp depletion is

not involved in this paradoxical effect of 1-D-MT (Fig. 2F). Next

we analyzed the effect of 1-D-MT on the cell cycle progression and

proliferation of SKOV-3 cells, as an inhibitory effect of 1-D-MT

on SKOV-3 cells could explain the reduced 3H thymidine uptake

in the coculture experiments (Fig. 3). However, 1-D-MT altered

neither 3H thymidine uptake (Fig. 3A) nor cell cycle progression of

SKOV-3 cells (Fig. 3B). To rule out, that 1-D-MT might have

inhibited 3H thymidine uptake of SKOV-3 cells only when these

were cultured in the MLR, T cell proliferation in cocultures of

SKOV-3 cells with MLR in the presence of different concentra-

tions of 1-D-MT was measured by CFSE staining and flow cy-

tometry (Fig. 3C). 1-D-MT concentration-dependently inhibited T

cell proliferation also in these assays (Fig. 3C), thus confirming that

1-D-MT inhibits T cell proliferation and not the proliferation of

SKOV-3 cells in the cocultures.

1- D-MT increases kyn production in human cancer cells
We then tested the effect of 1-MT on the kyn production of

SKOV-3 cells. Surprisingly, 1-D-MT concentration-dependently

increased kyn formation (Fig. 4A), while its stereoisomer 1-L-MT

inhibited kyn formation as expected (Fig. 4A). The racemic mixture

of 1-MT, which has been used in many studies, including those that

have established IDO1 as an immunosuppressive enzyme, inhibited

kyn formation, albeit less than 1-L-MT alone (Fig. 4A). As trp

concentrations in the media may have limited the increase in kyn

production, we also measured the kyn concentrations produced by

SKOV-3 cells in response to 1-D-MT in the presence of increasing

trp concentrations. Under these conditions much higher kyn

concentrations were reached (Fig. 4B), suggesting that the plateau

observed above concentrations of about 250 mM 1-D-MT (Fig. 4A)

was due to limited trp availability. Trp concentrations in cell culture

media usually vary between 12 and 20 mM while concentrations in

human serum range between 50 and 70 mM. Kyn formation in cells

treated with 1-D-MT was more pronounced when trp concentra-

tions present in human serum (62.5 mM) rather than trp con-

centrations present in the cell culture media (15 mM) were used

(Fig. 4C). However, the fold increase in kyn by addition of trp was

equal in cells treated with or without 1-D-MT (Fig. 4C). To further

test whether 1-D-MT directly influences IDO1 enzymatic activity

we measured IDO1-mediated kyn production in SKOV-3 cell

extracts. 1-D-MT did not alter kyn formation regardless whether trp

was present at a fixed concentration of 100 mM (Fig. 4D) or at

concentrations equimolar to 1-D-MT (Fig. 4E), suggesting that the

increase in kyn formation by 1-D-MT in SKOV-3 is not mediated

by a direct effect of 1-D-MT on IDO1 enzymatic activity.

IDO1 expression is enhanced by 1-D-MT in human cancer
cells

Next, we investigated whether 1-D-MT influenced the expres-

sion of trp-metabolizing enzymes. To our surprise, we found that

1-D-MT increased IDO1 mRNA and protein in SKOV-3 cells,

while IDO2 and TDO remained unaltered (Fig. 5A). Upregulation

of IDO1 mRNA was concentration-dependent (Fig. 5B) and was

first detected after 16 h of incubation with 1-D-MT (Fig. 5C).

Importantly, the IDO1-promoting effects were not restricted to

SKOV-3 cells. While 1-D-MT did not induce de novo IDO1

mRNA expression and kyn production in IDO1-negative HeLa

cervical carcinoma cells, it increased IDO1 mRNA and kyn

production after induction of IDO1 expression and kyn produc-

tion by IFN-c(Fig. 6A,B). Interestingly, the 1-D-MT-mediated

upregulation of IDO1 mRNA in many IDO1-negative cancer cells

was differentially dependent of the concentration of IFN-c that

was used to induce de novo expression of IDO1 (Fig. 6C). After

stimulation with appropriate IFN-c concentrations, 1-D-MT

increased IDO1 mRNA and kyn production in a panel of

different cancer cells (Fig. 6C–F), indicating a universal mecha-

nism of 1-D-MT-mediated activation of IDO1.

1-D-MT-mediated IDO1 expression involves JNK and p38
MAPK

We then explored signalling pathways involved in the up-

regulation of IDO1 in response to 1-D-MT treatment. IFN-

mediated STAT1 phosphorylation is involved in the induction of

IDO1 in many different cells and tissues [30], but knockdown of

STAT1 by siRNA did not decrease the kyn production of 1-D-

MT-treated cells (Fig. 7A). In line with this result, 1-D-MT did not

induce the mRNA expression of IFN-b or IFN-c (Fig. 7B).

Mitogen activated protein kinase (MAPK) pathways have been

reported to be modulated by the racemic mixture of 1-MT and

thereby influence the polarization of dendritic cells (DC) [31]. We

therefore tested whether inhibition of of MAPK signalling affected

the 1-D-MT-mediated increase in IDO1 expression. Inhibition

IDO1-Induction by Its Inhibitor 1-D-MT
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of ERK phosphorylation by PD98059 affected IDO1 mRNA

expression and kyn release neither in untreated nor in 1-D-MT

treated cells (Fig. 8A). While inhibition of p38-MAPK phosphor-

ylation by SB203580 [32] slightly reduced IDO1 mRNA in

untreated cells, it almost completely mitigated the increase in

IDO1 mRNA expression in response to 1-D-MT (Fig. 8B). The

slight inhibition of IDO1 transcipt in untreated cells did not

translate into significantly reduced kyn release, while the reduction

in kyn release became significant in 1-D-MT treated cells (Fig. 8B).

Similar results were obtained when inhibiting JNK by SP600125

(Fig. 8C) [33]. Collectively, these data suggest, that p38 MAPK

and JNK signalling are involved in mediating the induction of

IDO1 in response to 1-D-MT.

Discussion

In the past IDO inhibition was mostly achieved using the racemic

mixture of 1-MT [34]. As it became apparent that IDO inhibition

may be a promising target for cancer therapy, the individual

stereoisomers of 1-MT were investigated in more detail [5,35].

Although 1-L-MT was shown to more effectively inhibit IDO1 in

enzyme assays and in cancer cell lines, 1-D-MT showed superior

anti-tumor activity in mouse models and was therefore chosen for

clinical trials [35]. A subsequent study suggested that the superior

anti-tumor activity of 1-D-MT may result from inhibition of the

IDO2 isoform [27]. Recent studies indicated that 1-D-MT inhibits

IDO activity neither in dendritic cells nor in tumor cells [26,28] and

does not effectively restore IDO-induced arrest of T-cell prolifer-

ation [36]. In our study, 1-D-MT suppressed T cell proliferation

when constitutively IDO1-expressing SKOV-3 cells were cocul-

tured with mixed lymphocyte reactions (Fig. 2E,F). Investigation of

the underlying mechanisms surprisingly revealed that 1-D-MT

increased the kyn production of cancer cells with IDO1 activity

(Fig. 4, 6) due to upregulation of IDO1 mRNA and protein

expression (Fig. 5, 6). The upregulation of IDO1 expression and

activity was observed only in cancer cells with either constitutive or

IFN-c-induced IDO1 expression (Fig. 5, 6). Upregulation of IDO1

by 1-D-MT in many cancer cells was most prominent at moderate

concentrations of IFN-c that are likely to resemble physiological

concentrations (Fig. 6C). Low concentrations of IFN-c may not

have induced sufficient IDO1 expression (Fig. 6C), possibly

explaining why 1-D-MT did not increase IDO1 at these

concentrations, while stimulation with very high concentrations of

IFN-c may have resulted in maximal IDO1 induction (Fig. 6C), thus

Figure 1. SKOV-3 ovarian carcinoma cells constitutively degrade trp via indoleamine-2,3-dioxygenase-1 (IDO1). (A) Relative mRNA
expression of the three trp-degrading enzymes IDO1, IDO2 and tryptophan-2,3-dioxygenase (TDO) (white bars) and kyn production (black bar) of
SKOV-3 cells, measured by quantitative RT-PCR and high performance liquid chromatography (HPLC). (B) Knockdown of IDO1 mRNA by siRNA
measured by qRT-PCR. (C) Western blot analysis showing IDO1 protein expression in SKOV-3 cells with siRNA mediated knockdown of IDO1 in
comparison to controls. (D) Immunocytochemistry (red, IDO1 staining; blue, DAPI nuclear staining) of control SKOV-3 cells and SKOV-3 cells with IDO1
knockdown. (E) Kyn release of SKOV-3 cells after knockdown of IDO1 in comparison to controls. Experiments were performed at least in triplicate.
Data are mean 6 SEM. * (p,0.05).
doi:10.1371/journal.pone.0019823.g001
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explaining why further increase by 1-D-MT was not observed. In all

of the examined IDO1-expressing cells an increase in IDO1

expression and kyn release was observed in response to treatment

with 1-D-MT, indicating a general mechanism involved in 1-D-

MT-mediated IDO1 induction (Fig. 4, 5, 6).

In a previous study, the racemic mixture of 1-MT has been

reported to modify the polarization of dendritic cells (DC) by

modulating MAPK [31]. Inhibition of p38 MAPK phosphoryla-

tion prevented the increase in IDO1 mRNA and kyn production

by 1-D-MT (Fig. 8B), suggesting that p38-MAPK participates in 1-

D-MT mediated signalling. In line with this result, p38 MAPK has

previously been shown to contribute to the induction of IDO1 in a

leukaemia cell line and in DC [37,38]. Also inhibition of JNK

signalling mitigated the induction of IDO1 mRNA and kyn re-

lease in the presence of 1-D-MT (Fig. 8C). Inhibition of JNK

phosphorylation has recently been described to decrease IDO1

expression induced by LPS in mouse microglia [39]. 1-D-MT

mediated modulation of p38-MAPK and JNK suggests that 1-D-

MT may have more effects than just the upregulation of IDO1.

To our knowledge this is the first report of 1-D-MT-mediated

effects on gene expression in human cells. The stereoisomer

of 1-D-MT, 1-L-MT was recently reported to suppress the

IFN-c-induced expression of IDO1 in mouse rectal carcinoma

cells [40]. In addition, it has previously been described that 1-MT

influences the maturation of DC independently of IDO [31].

However the racemic mixture of 1-MT was used in this study and

it is therefore not known which stereoisomer was responsible for

the observed effects [31]. It remains to be elucidated whether 1-D-

MT exerts more effects on gene expression than the regulation of

IDO1. In contrast to IDO1, the trp-catabolising enzyme IDO2

was not induced by 1-D-MT. This finding underlines the notion

that IDO1 and IDO2 are differentially regulated on a transcrip-

tional level [27]. Possible other effects of 1-D-MT on gene

expression may contribute to the high anti-tumor efficacy of 1-D-

MT observed in mouse tumor models [35]. Significant differences

in IDO expression and regulation exist between humans and mice

[29,41], which could account for the observed discrepancies

regarding 1-D-MT action in mouse models and human cells. In a

study using 1-D-MT in SIV-infected rhesus macaques, a model

more closely resembling humans than mouse models, Boasso and

colleagues observed that kyn plasma levels were not reduced but

rather induced during treatment with 1-D-MT [42]. Increased

IDO1 mRNA expression in lymph nodes of macaques after 1-D-

MT treatment was interpreted as a compensatory counter-

regulatory mechanism activated by 1-D-MT, which may have

accounted for the lack of effect on plasma kyn [42]. Our data show

Figure 2. 1-D-MT reduces T cell proliferation in cocultures of SKOV-3 cells with mixed leukocyte reactions. (A) Alloreactive T cell
proliferation after addition of 25 mM kyn to mixed leukocyte reactions (MLR). (B) Alloreactive T cell proliferation in the presence of 6000 SKOV-3 cells.
(C) T cell proliferation in MLR cocultured with 2000 control SKOV-3 cells (white bar) or 2000 SKOV-3 cells with a knockdown of IDO1 (black bar). (D) T
cell proliferation in cocultures of MLR with 2000 SKOV-3 cells after addition of increasing concentrations of 1-L-MT. (E) T cell proliferation in cocultures
of MLR with 2000 SKOV-3 cells after addition of increasing concentrations of 1-D-MT. (F) Representative result of MLR/SKOV-3 coculture experiments
with PBMC from five different donors and 2000 or 6000 SKOV-3 cells. Cells were treated with or without 1 mM 1-D-MT in combination with or without
250 mM trp. Proliferation was measured by 3[H] methylthymidine uptake. Experiments were performed at least in triplicate. Data are mean 6 SEM.
* (p,0.05).
doi:10.1371/journal.pone.0019823.g002
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that upregulation of IDO1 and kyn take place also in isolated

human cells, in which a counterregulatory mechanism that me-

diates immunosuppression is unlikely.

As there is evidence that IDO1 may restrict tumor growth as a

mediator of tumoricidal IFN-c in experimental models and

patients [16,17,18,19,20,21,22] and as IDO1 expression in tumors

positively correlated with progression-free survival and long-term

survival in some studies [23,24] it is tempting to speculate that the

induction of IDO1 by 1-D-MT may actually account for some of

the anti-tumor effects of 1-D-MT.

In conclusion, we have identified the upregulation of IDO1

expression in human cancer cells as a profound effect of 1-D-MT,

a compound currently used in clinical studies in patients with

relapsed or refractory solid tumors with the aim of inhibiting

(IDO)-mediated tumor immune escape. IDO1 expression is

known to be immunosuppressive and may enhance tumor immune

escape, but it has also been implicated in direct anti-tumor effects.

More studies are needed to better understand the role of IDO in

cancer biology and the potential use of 1-D-MT as an anti-cancer

agent.

Materials and Methods

Cell culture and reagents
SKOV-3 and NIH:OVCAR-3 ovarian carcinoma cells were

cultured in McCOY’s 5A Medium (BioConcept, Allschwil,

Switzerland) supplemented with L-trp as indicated (Sigma-Aldrich,

Taufkirchen, Germany), 300 mg/L Glutamine (Carl Roth, Karls-

ruhe, Germany), 10% FBS (Thermo Fisher Scientific Inc.,

Waltham, MA, USA) and 100 U/mL penicillin and 100 mg/mL

streptomycin (PAA Laboratories, Pasching, Austria). HeLa cervical

carcinoma cells, A375 malignant melanoma cells, LN18, LNT229,

T98G and U251 malignant glioma cells were maintained in

Dulbecco’s modified Eagle’s medium (DMEM, PAA) containing

10% FBS (Thermo Fisher Scientific Inc) and 100 U/mL penicillin

and 100 mg/mL streptomycin (PAA Laboratories). Peripheral blood

mononuclear cells (PBMC) were isolated from five healthy, non-

related blood-donors by density-gradient centrifugation using

lymphocyte separation medium LSA 1077 (PAA Laboratories)

and cultured in RPMI 1640 (PAA Laboratories) containing 10%

FBS (Thermo Fisher Scientific Inc) and 100 U/mL penicillin and

Figure 3. 1-D-MT does not inhibit the proliferation or cell cycle progression of SKOV-3 cells. (A) 3[H] methylthymidine incorporation of
SKOV-3 cells treated with 1 mM 1-D-MT (black bar) or vehicle (white bar) for 6 days. (B) Cell cycle analysis of SKOV-3 cells treated with 1 mM 1-D-MT
or vehicle for 48 h. (C) Proliferation analysis of CFSE-stained lymphocytes from 6 day cocultures of MLR with 2000 SKOV-3 cells, treated with indicated
concentrations of 1-D-MT (upper panel). Plot of the cell numbers in each generation of the above experiment (lower panel).
doi:10.1371/journal.pone.0019823.g003
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100 mg/mL streptomycin (PAA Laboratories). All cells were

routinely tested for contamination by the Multiplex cell Contam-

ination Test [43]. Cultures were incubated at 37uC in a 5% CO2

atmosphere.

20 mM stock solutions of 1-methyl-D-tryptophan (1-D-MT,

lot numbers: 09315BH, 08007EJ) and 1-methyl-L-tryptophan

(1-L-MT, lot numbers: 08023HE, 15399MJ) (Sigma-Aldrich)

were prepared by dissolving the inhibitors in 0.1 N NaOH. The

pH was adjusted to 7.5 using hydrochloric acid. To avoid

contamination of the cell cultures, the stock solutions were

filfotered through 0.2 mm filters. IFN-c was purchased from

Immunotools (Friesoythe, Germany). ERK phosphorylation was

inhibited using the MEK1 inhibitor PD98059 (Cell Signaling

Technology, Beverly MA, USA). The c-Jun N-terminal kinase

(JNK) inhibitor SP600125 and the inhibitor of p38 kinase

phosphorylation SB203580 were purchased from Enzo Life Sc-

iences (Lörrach, Germany).

High performance liquid chromatography (HPLC)
High performance liquid chromatography (HPLC) analysis was

performed according to [44] using a Beckman HPLC with

photodiode array (PDA) detection and Lichrosorb RP-18 column

(250 mm64 mm ID, 5 mm, Merck, Darmstadt, Germany). Kyn

release and trp degradation were measured in the medium of 3 *

105 cells in 2 mL McCOY’s 5A Medium (BioConcept) con-

taining 10% FBS (Perbio), 100 U/mL penicillin and 100 mg/mL

streptomycin (PAA Laboratories) supplemented with 0–125 mM

L-trp (Sigma-Aldrich). The medium was harvested from 6 well

plates at the indicated time points, centrifuged and frozen until

further analysis. After thawing, the samples were supplemented

with trichloroacetic acid for protein precipitation, centrifuged and

100 ml of the supernatant was analyzed by HPLC. Standard

curves were generated with L-kyn and L-trp (Sigma-Aldrich) in the

same medium. Since FBS contains kyn, low kyn concentrations

(,1 mM) were detected in all samples and medium without cells

was always measured for comparison.

Quantitative (q)RT-PCR
Total RNA was isolated with the Qiagen RNAeasy RNA

isolation kit (Hilden, Germany) and DNA was synthesized with the

Applied Biosystems reverse-transcription-Kit (Foster City, CA,

USA) according to manufacturer’s instructions. QRT-PCR was

preformed in an ABI 7000 thermal cycler with SYBR Green PCR

Mastermix (Applied Biosystems) according to standard protocols.

Figure 4. Increased kyn release of SKOV-3 cells upon 1-D-MT treatment. (A) Kyn concentrations released by SKOV-3 cells after treatment
with 1-D-MT (white circles), 1-L-MT (black circles) and the racemic mixture of 1-MT (black triangles) measured after 48 h by HPLC. (B) Kyn release of
SKOV-3 cells in response to 500 mM 1-D-MT in the presence of increasing trp concentrations. (C) Kyn release of SKOV-3 cells treated with different
concentrations of trp alone (open circles) or in combination with 1 mM 1-D-MT (filled circles) measured after 48 h by HPLC. (D) Kyn production in
IDO1 enzymatic assays performed in the presence of 100 mM trp in combination with increasing 1-D-MT concentrations. (E) Kyn production of IDO1
enzyme in the presence of increasing concentrations of trp alone (open circles) or in combination with 1-D-MT (filled circles). Experiments were
performed in triplicate. Data are mean 6 SEM. * (p,0.05).
doi:10.1371/journal.pone.0019823.g004
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PCR reactions were checked by including no-RT-controls, by

omission of templates and by both melting curve and gel analysis.

Standard curves were generated for each gene. Relative

quantification of gene expression was determined by comparison

of threshold values. All results were normalized to GAPDH, which

varied neither with IFN-c nor 1-D-MT treatment.

Primer sequences were (59-39 forward, reverse):

CTCTCTGCTCCTCCTGTTCGAC, TGAGC-

GATGTGGCTCGGCT (GAPDH),

TTCAGTGCTTTGACGTCCTG, TGGAGGAACT-

GAGCAGCAT (IDO1),

TGCTTCATGCCTTTGATGAG, GAAGGCCT-

TATGGGAAGGAG (IDO2),

ACTGCCTCAAGGACAGGATG; AGCCAG-

GAGGTTCTCAACAA (IFN-b),

T C G G T A A C T G A C T T G A A T G T C C A ;

TCCTTTTTCGCTTCCCTGTTTT (IFN-c),

AGGAAAAGCAAGCGTAATCTTCA; TATTCCC-

CGACTGAGCCTGAT (STAT1),

GGTTCCTCAGGCTATCACTACC; CAGTGTCG-

GGGAATCAGGT (TDO)

siRNA experiments
To knockdown IDO1 (INDO) and STAT1 ON-TARGETplus

SMART-pool siRNA by Dharmacon RNA Technologies (Lafay-

ette, CO, USA) was used.

The sequences were as follows:

Human INDO, NM_002164, sense, 59-UCACCAAAUC-

CACGAUCAUUU-39, antisense, 59-PUAUGCGAA-

GAACACUGAAAUU-39; sense, 59-UUUCAGUGUU-

CUUCGCAUAUU-39, antisense, 59-PUAUGCGA-

AGAACACUGAAAUU-39; sense, 59-GUAUGAAGG-

GUUCU GGGAAUU -39, antisense, 59-PUUCCCA-

GAACCCUUCAUACUU-39; sense, 59-GAA CGGGA-

Figure 5. Upregulation of IDO1 mRNA by 1-D-MT in SKOV-3 cells. (A) Left panel: mRNA expression of IDO1, IDO2 and TDO in SKOV-3 cells
after treatment with 1 mM 1-D-MT, analyzed after 24 h by qRT-PCR. Right panel: Western Blot analysis of IDO1 expression in SKOV-3 cells performed
after 48 h 1 mM 1-D-MT. GAPDH served as loading control. (B) IDO1 mRNA expression in response to increasing concentrations of 1-D-MT measured
after 24 h by qRT-PCR. (C) Time course analysis of IDO1 mRNA induction by 1 mM 1-D-MT, analyzed by qRT-PCR. Experiments were performed in
triplicate. Data are mean 6 SEM. * (p,0.05).
doi:10.1371/journal.pone.0019823.g005
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CACUUUGCUAAUU-39, antisense, 59-PUUAG-

CAAAGUGUCCCGUUCUU-39

Human STAT1, NM_139266, sense, 59-GCAC-

GAUGGGCUCAGCUUUUU-39, antisense, 59-

PAAAGCUGAGCCCAUCGUGCUU-39; sense, 59-

CUACGAACAUGACCCUAUCUU-39, antisense, 59-

PGAUAGGGUCAUGUUCGUAGUU-39; sense, 59-

GAACCUGACUUCCAUG CGGUU-39, antisense,

59-PCCGCAUGGAAGUCAGGUUCUU-39; sense,

59-AGAAAGAG CUUGACAGUAAUU-39, antisense,

59-PUUACUGUCAAGCUCUUUCUUU-39.

ON-TARGETplus siCONTROL Non-targeting Pool (D-

001810-10-05, Dharmacon) and a transfection without siRNA

were used as negative controls.

For transfection of siRNA, the Amaxa Nucleofector Kit V

(Amaxa biosystems, Koeln, Germany) was used. Briefly, 3 * 105

cells were resuspended in 100 ml of the nucleofector solution V and

mixed with 1.5 mg of siRNA, then electroporated using program

V005. Medium was changed after 24 h, analysis of the kyn content

of the medium by HPLC, harvesting of the cells for RNA

extraction or the generation of lysates and immunocytochemical

analysis were performed after 48 h.

Western blot analysis
Whole cell lysates were prepared in ice cold tris(hydroxy-

methyl)aminomethane hydrochloride (TRIS-HCl, 50 mM,

pH 8,0; Carl Roth) containing 150 mM NaCl (J.T. Baker,

Deventer, Netherlands), 1% Triton X-100 (AppliChem, Darm-

stadt, Germany), 10 mM EDTA (Gerbu Biotechnik, Gaiberg,

Germany), 200 mM dithiothreitol (Carl Roth), 3% 2-mercapto-

ethanol (Sigma-Aldrich), 100 mM phenylmethylsulphonyl fluoride

(PMSF), 10 mg/mL aprotinin and 5 mg/mL leupeptin (Carl Roth)

and centrifuged at 4uC (10 min, 13 000 rpm). The protein

concentration of the supernatants was determined using the Bio-

Rad protein assay (Bio-Rad, Hercules, CA, USA) at 595 nm. The

desired amount of protein (20 mg per lane) was separated by 10%

SDS-PAGE and transferred to a 0.2 mm-pore nitrocellulose

Figure 6. 1-D-MT upregulates IDO1 expression and kyn release induced by different concentrations of IFN-c in diverse cancer cells.
(A) Representative HPLC graphs of kyn production of HeLa cells, which were either untreated, treated with 1 mM 1-D-MT and/or 1000 U IFN-c for
72 h. Absorption of kyn was measured at 365 nm. (B) In untreated HeLa cells 1 mM 1-D-MT did not induce de novo IDO1 mRNA, but increased IDO1
mRNA after its induction by 1000 U IFN-c mRNA expression was analyzed by qRT-PCR 24 h after treatment. (C) Representative example of the effect
of different IFN-c concentrations on IDO1 mRNA induction by 1-D-MT, shown in U251 glioma cells. (D) IDO1 mRNA expression of indicated cell lines
that were stimulated for 24 h with appropriate concentrations of IFN-c alone (white bars) or in combination with 1 mM 1-D-MT (black bars). (E)
Representative example of IDO1 mRNA induction by 200 mM 1-D-MT in IFN-c-stimulated T98G glioma cells. (F) Kyn release of indicated cell lines that
were stimulated for 72 h with appropriate concentrations of IFN-c alone (white bars) or in combination with 1 mM 1-D-MT (black bars), measured by
HPLC. Experiments were performed in triplicate. Data are mean 6 SEM. * (p,0.05).
doi:10.1371/journal.pone.0019823.g006

IDO1-Induction by Its Inhibitor 1-D-MT

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e19823



membrane (Whatman, Dassel, Germany). After 1 h of blocking in

PBS supplemented with 0.2% Tween 20 (Sigma-Aldrich) and 5%

bovine albumin fraction V powder (Carl Roth), the membrane

was incubated with rabbit anti-IDO1 antibody (1:2000, Alexis,

Lausen, Switzerland) , rabbit anti-STAT3, mouse anti-phospho-

STAT3 (Tyr705) (all 1:1000, Cell Signaling, Danvers, MA, USA)

or goat anti-GAPDH (1:2000, Abcam, Cambridge, UK) as

loading control, over night at 4uC. After a 2 h incubation at room

temperature with secondary antibodies donkey anti-rabbit HRP

conjugated (1:5000, GE-Healthcare, Buckinghamshire, UK) or

donkey anti-goat HRP conjugated (Santa Cruz Biotechnology),

protein detection was performed using ECL Plus reagent (GE

Healthcare).

Immunocytochemistry
SKOV-3 cells were grown on poly-L-lysine (Sigma-Aldrich)

covered glass slides in McCoy’s 5A media (BioConcept) for 24 h.

Cells were fixed with methanol (VWR, Darmstadt, Germany).

Antigen-retrieval was performed with 0.25% Triton-X (Appli-

Chem) in PBS (PAA Laboratories, Pasching, Austria). Unspecific

binding was blocked with 5% BSA (Carl Roth) in PBS for 1 h.

Cells were incubated overnight with rabbit anti-IDO1 antibody

(1:100, Alexis, Lausen, Switzerland) at 4uC. Secondary antibody

donkey anti-rabbbit Cy3 (1:50 JacksonImmuno, West Grove,

USA) was applied for 45 min at room temperature. Stained slides

were covered with DAPI-containing Vectashield Hardening

Mounting Medium (Vector Laboratories, Burlingame, USA).

Pictures were acquired using a BX51 microscope with cell‘ F

software (Olympus, Hamburg, Germany)

Mixed leukocyte reaction (MLR)
SKOV-3 cells were seeded in flat-bottom 96-well plates in

McCoy’s 5A medium (BioConcept) containing 10% FBS,

100 U/mL penicillin and 100 mg/mL streptomycin. 24 h after

seeding SKOV-3 cells were pretreated with 1 mM 1-D-MT

(Sigma-Aldrich). After another 32 h 2 * 105 irradiated (30 Gy)

PBMC as stimulators and 2 * 105 PBMC from unrelated donors

as responders were added. 1-D-MT and L-trp were added to the

cultures at 1 mM (1-D-MT) or 250 mM (L-trp) immediately

after addition of the PBMC. 6-day MLR were performed and

cultures were pulsed with [3H]-methylthymidine (Perkin Elmer,

Wellesley, MA, USA) for the last 18 h. The cells were then

harvested, and radionuclide uptake was measured by scintilla-

tion counting. SKOV-3 wells with a knockdown of IDO1 and

SKOV-3 control cells that were transfected with non-targeting

siRNA were seeded in flat-bottom 96 wells plates 24 h after

transfection. After 8 h 2 * 105 irradiated (30 Gy) PBMC as

stimulators and 2 * 105 PBMC from unrelated donors as

responders were added. After 72 h cultures were pulsed with

[3H]-methylthymidine for the last 18 h. The cells were then

harvested, and radionuclide uptake was measured by scintilla-

tion counting.

Cell cycle analysis
Cells were incubated with 10 mM BrdU for 1 h, harvested and

then fixed with 70% (v/v) methanol (VWR). To uncover the

DNA, cells were treated with a PBS – based buffer (PAA)

containing 0.1 M hydrochloric acid (VWR) and 0.3% Triton X-

100 (AppliChem) and boiled in water. Finally, cells were incubated

with Alexa-Fluor 647 mouse anti BrdU antibody (clone 3D4, BD

Biosciences, Heidelberg, Germany). 20 mg/mL DAPI (Sigma-

Aldrich) was added 1 minute before analysis by flow cytometry

(FACSCantoII, BD Biosciences).

Measurement of T cell proliferation in MLR/SKOV-3
cocultures by CFSE staining and flow cytometry

2000 SKOV-3 cells were seeded in flat-bottom 96-well plates in

McCoy’s 5A medium (BioConcept) containing 10% FBS, 100 U/

mL penicillin and 100 mg/mL streptomycin 24 h before PBMC

isolation. Irradiated (30 Gy) PBMC as stimulators and PBMC

from unrelated donors as responders at 26106/ml in RPMI 1640

containing 10% FCS, 100 U/mL penicillin and 100 mg/mL

streptomycin were stained with 5 mM CFSE (5-(and 6)-Carboxy-

fluorescein diacetate, succinimidyl ester, Molecular Probes,

Eugene, OR, USA) at 37uC for 5 min. The cells were then

washed twice with culture medium and the stained cells (46105/

well, 200 ml) were seeded on top of the SKOV-3 cells and

stimulated with indicated concentrations of 1-D-MT. After 6 days

of coincubation, the proliferation of the CFSE-stained lympho-

cytes was analyzed by flow cytometry (FACSCantoII, BD

Biosciences). Unstained cells were included in all experiments

Figure 7. STAT1 signaling is not involved in the IDO1 upregulation in response to 1-D-MT. (A) Knockdown of STAT1 mRNA by si-RNA
(white bars) did not affect kyn release (black bars) of 1-D-MT (1 mM) treated SKOV-3 cells. (B) Analysis of IFN-c and IFN-b mRNA expression in SKOV-3
cells after stimulation with 1 mM 1-D-MT for 24 h.
doi:10.1371/journal.pone.0019823.g007
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and were used for normalization. Proliferation was analysed using

FlowJo Flow Cytometry Analysis Software (Treestar Inc. Ashland,

OR, USA).

Statistical analysis
Data are expressed as mean 6 SEM. Experiments were

repeated at least three times with similar results. Analysis of

significance was performed using the Student’s t-test (SigmaPlot,

Systat Software Inc., San Jose, CA, USA). P values,0.05 were

considered significant *.
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