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Abstract 
The pathogen exposure history of an individual is recorded in their T-
cell repertoire and can be accessed through the study of T-cell 
receptors (TCRs) if the tools to identify them were available. For each 
T-cell, the TCR loci undergoes genetic rearrangement that creates a 
unique DNA sequence. In theory these unique sequences can be used 
as biomarkers for tracking T-cell responses and cataloging 
immunological history. We developed the immune Cell Analysis Tool 
(iCAT), an R software package that analyzes TCR sequencing data from 
exposed (positive) and unexposed (negative) samples to identify TCR 
sequences statistically associated with positive samples. The presence 
and absence of associated sequences in samples trains a classifier to 
diagnose pathogen-specific exposure. We demonstrate the high 
accuracy of iCAT by testing on three TCR sequencing datasets. First, 
iCAT successfully diagnosed smallpox vaccinated versus naïve samples 
in an independent cohort of mice with 95% accuracy. Second, iCAT 
displayed 100% accuracy classifying naïve and monkeypox vaccinated 
mice. Finally, we demonstrate the use of iCAT on human samples 
before and after exposure to SARS-CoV-2, the virus behind the COVID-
19 global pandemic. We were able to correctly classify the exposed 
samples with perfect accuracy. These experimental results show that 
iCAT capitalizes on the power of TCR sequencing to simplify infection 
diagnostics. iCAT provides the option of a graphical, user-friendly 
interface on top of usual R interface allowing it to reach a wider 
audience.
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Introduction
T- and B-cell responses are responsible for long-lasting immunememory responses to infectious agents, such as bacteria and
viruses. Expansion of pathogen specificT-cells provide uswith a robust resource for understandingwhether an individual has
been infected with a pathogen. The T-cell receptor (TCR), located on the surface of T-cells, is responsible for recognizing
pathogen-specific peptides, leading to immune response and development of protective immune memory.1 During T-cell
development, the loci that encode TCRs α and β-chains are rearranged by recombination of the variable (TCRV), diversity
(TCRD), and joining (TCRJ) gene segments, encoding the complementary determining region 3 (CDR3).2 These genetic
rearrangement events result in a high degree of diversity in the CDR3 regions of individual TCR loci.3

During an infection or vaccination, T-cells that carry receptors recognizing pathogen associated peptides become
activated and undergo rapid clonal expansion. The clonally expanded T-cells carry the same unique TCR rearrangement
and a portion remain in circulation long after the pathogen has been cleared to provide long-lived immunological
memory. The persistence of memory T-cells in circulation make the genetically rearranged TCR loci a stable biomarker
documenting an individual’s immunological history. To utilize the diverse TCR repertoire as a potential biomarker for
specific pathogen exposure, pathogen-specific TCR sequences common to different individuals exposed to the same
pathogen need to be identified. This poses significant challenges given the diversity andmagnitude of the TCR repertoire.
On average,� 107 unique TCRβ chains can be identified from the� 1012 circulating T-cells present in a healthy human
adult.4 A healthy human adult can have 1018 mathematically possible TCR recombinations resulting from the genetic
rearrangement.4,5 The potential diversity of the repertoire coupled with the limited number of T-cells present in
individuals makes identifying identical TCR sequences among multiple individuals exceptionally challenging. In
addition, a specific TCR response to particular antigen can be extremely rare, which can pose an even greater challenge
to identifying signals of T cell memory.6 However, by analyzing the large and diverse TCR repertoire using high-
throughput TCRβ sequencing, it is possible to identify pathogen specific TCRs shared among different individuals
exposed to the same infectious agent.7

Recently, high-throughput next-generation sequencing (NGS) techniques were employed to analyze the diverse immune
cell repertoire.8‐10 Additionally, recent publications described an analytical approach for computationally identifying
common/public TCR sequences.5,10,11 However, analyses of the TCR repertoire for diagnostic purposes have remained
largely resource- and time-intensive efforts.

Utilizing the diagnostic methodologies described in Wolf, et al. (2018),5 we have developed an R package with a user-
friendly interface, the immune Cell Analysis Tool (iCAT), to identify TCR sequences statistically associated with
pathogen exposure and to distinguish infected from non-infected samples. By providing an interactive interface through
iCAT, sample exposure can be assessed and predicted conveniently without requiring command-line skills. iCAT has an
ability to classify target-associated receptor sequences (TARSs) and diagnose exposure with a high accuracy.

REVISED Amendments from Version 1

In the new version, revisions in various sections have been made following the reviewers’ recommendations.

• In the Introduction section, we updated that the rarity of specific T cells to a specific antigen is also a challenge in
addition to the diversity and magnitude of the TCR repertoire as the reviewer commented.

• In the Methods section, we considered an uncertainty metric in the Prediction tab based on the difference between
the probability density in the pre-exposure distribution and the probability density in the post-exposure distribution.
This new feature has been implemented and now available on GitHub iCAT.

• In the Use Cases, we included computing time for use cases.

• We updated the iCAT program to allow inputting either a space or a colon to delimit range values as the reviewer
commented.

• The manuscript has been updated to clarify some ambiguous words and sentences per the reviewers’ comments.

• Figure 1 and Figure 4 were updated.

• Several minor typos were corrected.

• We upgraded the iCAT program to avoid any possible installing errors for all possible operating systems including
Linux, Mac, and Windows.

Any further responses from the reviewers can be found at the end of the article
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Methods
Implementation
We developed iCAT, an R package utilizing high-throughput TCR sequencing data to analyze TCR sequences and to
diagnose infection in a user-friendly format (Figure 1).iCAT provides both a graphical user interface (GUI) in the form of
a web-application utilizing R-Shiny12 and a command-line R interface for batch processing of large-scale data. The
simplest method to install iCAT on a system is directly from GitHub using devtools and install_github:

install.packages("devtools")
devtools::install_github("BioHPC/iCAT")

In addition to shiny, iCAT also uses shinyjs, data.table, ggplot2, DT, hash, and magrittr.
Required packages will be installed through the install_github step. Alternatively, users can clone or download
the repository from GitHub and run devtools::install("iCAT/").

A user can upload multiple TCR sequence repertoires from negative (control) and positive (experimental) cohorts. iCAT
accepts tab-delimited files with the size limit of 10 gigabytes per file with multiple options to define TCR clonotypes
within samples. The iCAT shiny app has three tabs, separating major functionalities: Training, Library, and Prediction.
Under the “Training” tab, clicking ‘TrainModel’will start the pipeline to statistically identify a subset of TARSs that will
act as feature selections for training the diagnostic classifier, diagnosing samples as either negative or positive. Upon
training, iCAT’s main tab provides a table summary of the data, a figure shows the distribution of TARSs between the
positive and negative samples, and a classification matrix predicting the exposure status of samples used in the training
data (Figure 2). All figures and tables can be downloaded to the user’s machine. A progress bar will show on the bottom-
right corner to update on the status of training.

A separate tab, “Library”, is unlocked upon training and shows a table where each row describes a TARS and its presence in
the positive and negative samples.All tables and figures are supplementedwith a custombutton for easydownload (Figure 3).

Figure 1.Workflow for TCR repertoire sequencing and diagnostic assessment of prior antigen exposure using
iCAT.A) Flow chart depicting the purification of DNA fromblood samples and the production of TCR repertoires after
TCR-specific amplification and sequencing. B) Visual representation of the iCAT methodology.
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The third tab of iCAT, “Prediction”, also unlocks after training and allows the user to upload one or more independent
TCR-sequencing samples for classification (Figure 4).

Figure 3. iCAT Library tab. The library tab shows a table of target-associated receptor sequences (TARS).

Figure 4. iCAT Prediction tab. The prediction tab allows the user to upload one or more independent TCR-
sequencing samples for classification.

Figure 2. iCAT Training tab. After samples are uploaded, clicking “Training” will start training to select features for
the diagnostic classifier from the negative and positive samples.
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Operation
Samples, such as from blood or lymph tissue, are collected and genetic material is purified. TCR sequences present in the
sample are selectively amplified and then sequenced (Figure 1A). The first step of iCAT is the “Training” step. A user
should provide multiple negative training samples (naïve, unexposed, uninfected, etc.) using the Browse button. Then,
repeat the step for positive training samples (exposed, infected, vaccinated, etc.). The user should select the type of
training feature. iCAT provides three options: (1) CDR3 Amino Acid Sequence (TCRs will need the same CDR3
region to be called ”Identical”), (2) TCRV-CDR3-TCRJ (TCRs will need the same TCRBV segment, CDR3 region, and
TCRJ segment to be called ”Identical”), (3) Nucleic Acid (DNA) (TCRs will need the exact same DNA rearrange-
ments/sequence across TCRBV, CDR3, and TCRJ). Selecting TCRV-CDR3-TCRJ is recommended as a balance
between sensitivity and specificity and this option has been used for all the use cases in this paper. In addition, users
can customize the range acceptable of copies per clonotype, and the minimum threshold of public sequences, which
determines the minimum samples a TCR sequence must be observed in to be considered for analysis.

One important option of this “Training” tab is Max p-value (default: 0.1), which determines the minimal
degree of statistical significance that iCAT will accept as being potentially ”associated” with the positive group. The
statistical methodology of iCAT is based on identifying a subset of TARSs that informs classification.5 TCR sequences
significantly associated with positive samples as opposed to negative samples are identified by performing a one-tailed
Fisher’s exact test. iCAT determines the optimal p-value cutoff to generate the TARS library based on the idea of
coverage ratio. To determine an optimal p-value threshold for identifying vaccine-associated TCRβ sequences, we
applied a heuristic test that selected the optimal p-value threshold based on the ”coverage” provided by the library for both
vaccinated (Cv) and naïve samples (Cn).

5
“Coverage” is defined as the summation of the number of samples containing

each TARS divided by the number of samples. In the equations below, xi denotes the number of vaccinated samples a
single TCRβ is identified and nv represents the number of positive samples in the training data. yi also denotes for naïve
samples and nn represents the number of naïve samples.

Cv ¼
P

i¼1xi
nv

,Cn ¼
P

i¼1yi
nn

: (1)

The ratio of Cv to Cn is determined for each p-value. The p-value with the largest Cv:Cn ratio and offers significant
coverage to distinguish vaccinated (v) from naïve (n) samples was chosen.

For the classification of vaccinated and naïve samples, iCAT calculates the percentage of TARS (% TARS) present in a
sample. The % TARS for each sample in the training data is compared against the % TARS normal distribution for each
group to predict if each sample is ”positive” or ”negative”, determined by which group a sample is more closely
associated with.5 Such a normal distribution has been adopted to calculate the distance of a sample to the mean. In detail,
the normal distributions for the naïve and vaccinated populations in our training data were calculated based on a function
of the difference between a single sample value (x) and the mean of a set of data (μ) over the standard deviation of that set
of data (σ) from the below equation.

f ðxjμ,σ2Þ¼ ð 1
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p Þexp�ðx�μÞ2
2σ2 : (2)

If the value is bigger, we can conclude that the sample is more associated with the training group. By comparing a sample
against the normal distribution of vaccinated and naïve training groups, we can determine which group a sample is more
statistically associated with. A progress bar will show on the bottom-right corner to update on the status of training. After
finishing, the “Training” tab will show some exploratory tables and a figure regarding the training data and the model
built, which can all be downloaded to the user’s machine easily. In addition, the “Library” and “Prediction” tabs
will unlock.

The “Library” tab displays a table consisting of the TARS, determined to be statistically associated with exposure to
the target/agent/pathogen (Figure 3). The table displays each sequence, number of positive and negative training samples
the sequence is present in/absent from, and how statistically associated the sequence is to the positive training data (p-
value). The table can be downloaded to the user’s computer for further analysis (Figure 3).

To allow the diagnostic classifier to test independent cohorts of samples, a third tab in iCAT, “Prediction” tab, also
unlocks after training and allows the user to upload one or more independent TCR-sequencing samples for classification
using the parameters generated by the training data (Figure 4). The “Prediction” tab allows the user to diagnose
unknown samples (e.g. not included in the previous training data) for classification as “Positive” or “Negative” and
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determining the accuracy of the diagnostic assay. Use the Browse button to upload such independent samples for
prediction. Multiple samples can be uploaded simultaneously. Click Predict Independent Sample will analyze
the dataset. A table will appear after analysis is complete. The table displays sample names along with the prediction
“Positive” (red) or “Negative” (blue), and displays the %TARS that is the percent of individual sequences from the
sample that are included in the TARS library. The prediction results can be downloaded as a table.

iCAT requires R 3.4.0 or upper and can be run on any operating system with common specifications (1 GB disk space,
4 GB memory, and multicore CPU is recommended).

Use cases
To evaluate the efficacy of iCAT, we used three TCR sequencing data sets that are publicly available. The first viral data
set consists of 148 training and 20 independent mouse samples. The training set has 32 mouse pre-treatment naïve group
and 116 vaccinated samples, each cohort inoculated intranasally with the ACAM2000 smallpox vaccine. The second
viral data set consists of 133 (27 negative and 96 positive) training and 15 (5 negative and 20 positive) monkeypox virus.
The two mouse datasets are publicly available from https://doi.org/10.17632/cf92gt44zf.1. The third data set is human
TCR samples exposed to the novel SARS-CoV- 2 virus which is the cause of the ongoing COVID-19 global pandemic.12

The sample size is small (two cohorts), but those two cohorts’ TCR repertoires were obtained for other projects one and
two years prior to infection. Therefore, this negative and positive SARS-CoV-2 human TCR sequencing data set from
same cohorts can be a great example to show the great potential of iCAT as a diagnostic assay. This data is available at
https://doi.org/10.5281/zenodo.3835956.

Use case 1: smallpox mouse data
32 pre-exposure (naïve) samples were analyzed, which included 2,049,383 unique TCR sequences (clonotypes). We
setup iCAT options to analyze by either the CDR3 amino acid sequence or the V-gene and J-gene names. 714,522 amino
acid sequence-gene name combinations were found in the naïve samples. 58 samples taken 2- and 8-weeks post-
vaccination for smallpoxwere analyzed, which included 1,581,619 clonotypes and 573,612 unique amino acid sequence-
gene name combinations. After training, iCAT accurately generated the same virus-associated TCR library (314 TCR
sequences) identified in Wolf, et al., 2018.5 When applied to the training data as a baseline check, iCAT correctly
classified 32 of 32 naïve samples as ”unexposed” and 58 of 58 vaccinated samples as ”exposed” (100% accuracy). We
utilized TCR-sequencing files from 10 mice pre- and post-smallpox vaccination that were not involved in the training of
the diagnostic classifier to act as independent cohorts to test the diagnostic accuracy of the iCAT generated classifier. The
classification results are displayed in the “Prediction” tab and can be downloaded as a .txt file. From a total of 20 samples,
90% of pre-vaccination samples (9 of 10) were correctly classified as “negative” and 100% of samples post-smallpox
vaccination (10 of 10) were classified as ”positive”. Training time was 2.36 minutes and classification time was
30.6 seconds. Overall, this data displays that the iCAT platform computationally identifies target-associated public
TCRs, utilized to train a diagnostic classifier capable of distinguishing between exposed and unexposed samples with a
high degree of accuracy.

Use case 2: monkeypox mouse data
We tested iCAT using another TCR-sequencing mouse dataset which included 27 naïve samples and 48 samples 2- and
8-weeks post infectionwithmonkeypox.We chose to analyze based onCDR3 amino acid sequence in addition toV-gene
and J-gene names. The p-value cutoff was set to 0.1 and the minimum number of public sequences was set to 1. Those
parameters produced the best separation experimentally. Naïve samples included 1,772,085 clonotypes and 630,381
unique amino acid sequence-gene name combinations. Exposed samples included 1,070,615 clonotypes and 382,906
unique amino acid sequence-gene name combinations. iCAT correctly classified this training data with 100% accuracy.
When tested on an independentmonkey pox data set – set up by excluding 5 samples from the naïve group and 10 samples
from the exposed group pre-training – iCAT correctly classified the 5 naïve samples as negative and the 10 exposed
samples as positive. Thus, we demonstrated a 100% classification accuracy using iCAT on this monkeypox dataset.
Training time was 47.81 seconds and classification time was 6.83 seconds.

Use case 3: human SARS-CoV-2 data
We further tested iCAT on TCR-sequencing data from two human individuals exposed to the novel SARS-CoV-2
virus.13 Data included 4 naïve samples from 2018 and 2019, and 4 samples collected 15- and 30-days post-infection. We
chose the iCAT option to analyze by CDR3 amino acid sequences only. The p-value cutoff was set to 0.1 and the
minimum number of public sequences was set to 1. The naïve data included 2,935,893 clonotypes and 1,120,606 unique
CDR3 amino acid sequences. The exposed data included 1,987,608 clonotypes and 541,111 unique amino acid
sequences. iCAT achieved a perfect classification accuracy on the training data, correctly assigning the 4 naïve and
4 exposed samples. Further, iCAT correctly classified 4 independent exposed samples as positive. Training time was
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1.50minutes and classification time was 33.12 seconds. This demonstrates the wide utility of iCAT and the methodology
it implements.

Conclusions
In this article, we have presented iCAT, a powerful software tool for determining pathogen exposure through TCR
sequencing data. It has significant clinical applications in disease diagnosis, surveillance, as well as for determining
potential vaccine efficacy. Once data interpretation is fully automated, the TCR sequencing analysis and other types of
NGS will likely become a standard tool for diagnosis and management of disease. Our current datasets are from pre- and
post- exposure to viruses, and serve as a proof of principle that TCR sequencing analysis can be utilized to identify
individuals exposed to infectious agents or vaccineswith great accuracy, speed, and accessibility.We demonstrated the use
of iCAT for accurately detecting exposure to the SARS-CoV-2, the virus behind COVID-19. Although this use case was
based on a few number of samples, it shows the immense potential of our software the utilization of TCRs as a biomarker.
This type of analysis may be used to distinguish between two different but highly related infections, such as Zika virus and
Dengue, which is one of the global concerns considering Zika virus’s association with fetal complications in infected
pregnant women, and current laboratory testing cannot distinguish between the two. Parallel endeavors in our group show
promising results in identifying virus-associated TCRsequences uniquely associatedwith a prior Zika versusDengue virus
infection inmice using iCAT. Further, the iCATplatformmayprove useful for diagnosing individuals in the early stages of
autoimmunity, by identifying auto-reactiveTCRs before symptoms and significant tissue damage occurs. Earlier diagnosis
may allow for preventativemeasures, better treatment, and better outcomes. Broadly, our approach can be used to diagnose
autoimmune disease and possibly immune responses to cancer before or after immunotherapy.

Data availability
Mendeley Data: Identifying and Tracking Low Frequency Virus-Specific TCR Clonotypes Using High-Throughput
Sequencing, https://doi.org/10.17632/cf92gt44zf.1.14

This project contains the raw sequencing data from HLA-A2 transgenic mice before and after infection with either the
ACAM2000 smallpox virus or highly releated monkeypox virus.

Zenodo: Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory formation after
mild COVID-19 infection, https://doi.org/10.5281/zenodo.3835956.15

This project contains the third human TCR samples exposed to the novel SARS-CoV-2 virus is available from zenodo in
mixcr format.

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Software availability
Source code available from: https://github.com/BioHPC/iCAT.

Archived sourced code as at time of publication: http://doi.org/10.5281/zenodo.4436485.16

License: MIT
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Please add a sentence(s) on how you calculated uncertainty. 
 

○

Please check the following sentence: "The p-value with the largest Cv:Cn ratio and offers 
significant coverage to distinguish vaccinated (v) from naïve (n) samples was chosen." 
 

○

Is the following sentence correct: "If the value is bigger, we can conclude that the sample is 
more associated with the training group."?
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No further comments.
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We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard.

Version 1
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© 2021 Jun S. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Se-Ran Jun   
Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 
USA 

This article is a valuable resource for T-cell receptor (TCR) sequencing data-based infection 
diagnostics. The authors provided a R software package named iCAT which provides a step-by-
step analysis of TCR sequencing data to predict if individual subjects are infected or not. First, iCAT 
takes positive and negative pathogen-specific TCR datasets to estimate parameters involved in in 
model. Second, iCAT provides the Library tab which summarizes the target associated receptors 
sequences with p-values. Third, iCAT provides prediction tab which takes test TCR datasets and 
make diagnostic decision. I enjoyed reading this article and github tutorial. 
 
Major comments: 
It seems like that the performance of this tool does depend on the number of samples.  Please 
provide discussion or guideline on the number of negative and positive samples relating to the 
performance. 
 
It seems like that this is the first tool available for TCR data-based diagnostic tool. Please clarify if 
this is the first tool which uses TCR sequencing data for the purpose of diagnostic. If this is not the 
first tool, then comparison results with other tools should be included. 
 
Minor comments: 
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First, I have a question for clarification purpose. Before TCR sequencing data is uploaded, does 
TCR sequencing data need any preprocessing step to make input compatible with iCAT? 
 
Install.packages(“devtools”) does not work with R4.0.3 on Mac OS X. The error I got is as follows: 
 
Downloading GitHub repo BioHPC/iCAT@HEAD 
Error in utils::download.file(url, path, method = method, quiet = quiet,  : 
download from 'https://api.github.com/repos/BioHPC/iCAT/tarball/HEAD' failed 
 
Each input file is limited to 10Gigabyte in size. Where does this limitation come from? 
 
I downloaded one of test cases which contains many files. It was not easy to figure out which files 
to be uploaded. It would be nice that this R package provides example datasets along with the 
package so that they can be played in R directly. 
 
There is an option named ‘Other’ for ‘analyze clonotypes by (column names in parantheses)’. What 
is other? 
 
Please include information of computational time for training and prediction steps for each case. 
 
Although feature from an option of ‘TCRV-CDR3-TCRJ’ is recommended, please include the 
performance for other features for each test case which could help readers understand and 
compare features. 
 
What does TCRBV stand for? 
 
What does VATS stand for? 
 
A correction constant is not shown in equation (2). 
 
Whole genome sequences can distinguish DENGU from ZIKE with 100% accuracy. For the sentence 
‘current laboratory testing cannot distinguish between the two’, are you excluding whole genome 
sequencing data? 
 
Is it possible to make change range of acceptable into something like 1:99 or 1~99 instead of 1 99 
to indicate range? 
 
Does the max p-value change automatically according to the training data provided? Or should it 
be changed manually based on the selected one by Fisher’s t-test? 
 
Please revise typo in Figure 1(B) 
 
Please revise typo with ‘the minimum samples’ 
 
Please revise the following sentences: 
- The ratio of Cv to Cn is determined for each p-value. The p-value with the largest Cv:Cn ratio and 
offers significant coverage to distinguish (v)accinated from (n)aïve samples was chosen. 
- iCAT was configured to analyze by CDR3 amino acid sequence only 
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If the value is bigger, we can conclude that the sample is more associated to the the training 
group. Is this a correct sentence? 
 
From the training data, iCAT correctly classified 32 of 32 naïve samples as ”unexposed” and 58 of 
58 vaccinated samples as ”exposed” (100% accuracy). Is this a correct sentence?
 
Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genomic epidemiology, Multiomics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 10 Jun 2021
Tae-Hyuk Ahn, Saint Louis University, St. Louis, USA 

Major comments: 
 
1. It seems like that the performance of this tool does depend on the number of samples.  
Please provide discussion or guideline on the number of negative and positive samples 
relating to the performance. 
 
Response: We really appreciate all the great and thoughtful comments from the reviewer. 
The sample size is of course very important in determining the power and accuracy of the 
diagnostic.  We have generated positive and negative datasets of various sample sizes to 
determine the impact of sample numbers on accuracy.  The conclusion was that the number 
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of samples required to generate an accurate diagnosis is determined by the nature of the 
samples. For example, a dataset from Zika infected mice produced a small but conserved 
virus-specific TCR repertoire due to the small number of immunogenic epitopes (Hassert 
and Wolf et. al. 2020) ; this allowed for the generation of a powerful diagnostic assay using 
relatively small numbers of samples.  Comparatively, using a dataset from mice before and 
after smallpox vaccination resulted in a large pool of virus-specific TCRs due to a large 
number of potential epitopes; the less focused response required a greater number of 
samples in each group to generate sufficient coverage and diagnostic accuracy (Wolf et. al. 
2018). 
 
2. It seems like that this is the first tool available for TCR data-based diagnostic tool. Please 
clarify if this is the first tool which uses TCR sequencing data for the purpose of diagnostic. 
If this is not the first tool, then comparison results with other tools should be included. 
 
Response: To our limited knowledge, this is the first publicly available tool for diagnostic 
classification using TCR sequencing data. 
 
Minor comments: 
 
1. First, I have a question for clarification purpose. Before TCR sequencing data is uploaded, 
does TCR sequencing data need any preprocessing step to make input compatible with 
iCAT? 
 
Response: iCAT takes in TCR data in tab-delimited clonotype abundance tables. These tables 
are the result of mapping of reads from Variable, Diversity, and Joining segments then the 
assembly of clonotypes. iCAT does not perform these steps so they may be considered pre-
processing. Clonotype tables are provided through the immunoSEQ assay from Adaptive 
Technologies, which is the most commonly used immunosequencing pipeline in recently 
published studies. While iCAT input-parsing was built around immunoSEQ’s format, it also 
has a flexible interface that allows handling of different formats with different user-selected 
column names. 
 
2. Install.packages(“devtools”) does not work with R4.0.3 on Mac OS X. The error I got is as 
follows: 
 
This issue is resolved and updated on iCAT. 
 
3. Each input file is limited to 10Gigabyte in size. Where does this limitation come from? 
 
Response: This is an arbitrary limitation that we coded into the tool’s interface. It is not a 
required limitation for any of the underlying functions in iCAT. The reason we put this size 
limit in place is because one of our future goals with iCAT is to host it on a website where 
users can upload their data for analysis, and thus data size can become a limiting factor. 
 
4. I downloaded one of test cases which contains many files. It was not easy to figure out 
which files to be uploaded. It would be nice that this R package provides example datasets 
along with the package so that they can be played in R directly. 
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Response: Example negative, positive, and independent datasets are included in the R 
package under the path “inst/extdata/”. 
 
5. There is an option named ‘Other’ for ‘analyze clonotypes by (column names in 
parantheses)’. What is other? 
 
Response: This option exists to allow users to input a custom column name to analyze by. 
TCR data can vary in formatting (e.g. some files might describe the amino acid column as 
“aminoAcid” while others can describe it as “aa”) so this option can help users load different 
data formats into iCAT. 
 
6. Please include information of computational time for training and prediction steps for 
each case. 
 
Response: 
 
Use case 1: 
Training time: 2.36 minutes 
Classification time: 30.6 seconds 
 
Use case 2: 
Training time: 47.81 seconds 
Classification time: 6.83 seconds 
 
Use case 3: 
Training time: 1.50 minutes 
Classification time: 33.12 seconds 
 
The manuscript was updated to reflect this information. 
 
7. Although feature from an option of ‘TCRV-CDR3-TCRJ’ is recommended, please include the 
performance for other features for each test case which could help readers understand and 
compare features. 
 
Response: In general, we found that using the J-gene and V-gene info improves accuracy in 
our testing, but other features are available in case researchers to believe they might get 
better results with them. Using the amino acid sequence for the monkeypox data,  1/5 
negative samples were identified correctly, while 6/10 positive samples were identified 
correctly. Using the DNA sequence, 5/5 negative samples were identified correctly and 3/10 
positive samples were identified correctly. 
 
8. What does TCRBV stand for? 
 
Response: It stands for T cell receptor beta chain variable region. 
 
9. What does VATS stand for? 
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Response: It stood for vaccine-associated target sequences. This is now changed to target-
associated receptor sequences (TARSs) for consistency in the manuscript. 
 
10. A correction constant is not shown in equation (2). 
 
Response: That is correct We updated the sentence for the equation in the manuscript. 
 
11. Whole genome sequences can distinguish DENGU from ZIKE with 100% accuracy. For 
the sentence ‘current laboratory testing cannot distinguish between the two’, are you 
excluding whole genome sequencing data? 
 
Response: We are limiting that comment to typical laboratory diagnostics which typically 
does not include whole-genome sequencing. 
 
12. Is it possible to make change range of acceptable into something like 1:99 or 1~99 
instead of 1 99 to indicate range? 
 
Response: We reflected this comment and iCAT now allows inputting either a space or a 
colon to delimit range values. 
 
13. Does the max p-value change automatically according to the training data provided? Or 
should it be changed manually based on the selected one by Fisher’s t-test? 
 
 
Response: The max p-value can be changed manually.  The purpose is to allow the user to 
modify the stringency of the diagnostic. This could be done after generating the diagnostic 
library and the user determines they would prefer more (or less) stringent parameters. 
  
14. Please revise typo in Figure 1(B) 
 
Response: Fixed typo in the new manuscript version. 
 
15. Please revise typo with ‘the minimum samples’ 
 
16. Please revise the following sentences: 
- The ratio of Cv to Cn is determined for each p-value. The p-value with the largest Cv:Cn 
ratio and offers significant coverage to distinguish (v)accinated from (n)aïve samples was 
chosen. 
- iCAT was configured to analyze by CDR3 amino acid sequence only 
 
Response: Sentences were revised in the new manuscript version to make them more clear. 
 
17. If the value is bigger, we can conclude that the sample is more associated to the the 
training group. Is this a correct sentence? 
 
Response: The sentence was revised in the new manuscript version. 
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18. From the training data, iCAT correctly classified 32 of 32 naïve samples as ”unexposed” 
and 58 of 58 vaccinated samples as ”exposed” (100% accuracy). Is this a correct sentence? 
 
Response: The sentence was revised in the new manuscript version.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 12 April 2021

https://doi.org/10.5256/f1000research.30069.r82160

© 2021 Qiao S et al. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Shuo-Wang Qiao   
Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, 
Norway 

Ying Yao   
Department of Immunology, University of Oslo, Oslo, Norway 

Diagnostic methods based on the detection of disease-specific or disease-associated T-cell 
receptor (TCR) sequences are novel approaches whose development is still in its infancy. This 
paper introduces an intuitive, easy-to-use, software package for the analysis of TCR deep 
sequencing data with the purpose of grouping data into ‘naïve/healthy’ or ‘diseased/exposed’ 
groups. The statistical methods used is rather rudimentary, but serve the purpose. It 
demonstrates remarkably high accuracy in three use cases, including a small dataset of COVID-19. 
However, the choice of parameter settings and how data is split into training and test datasets, is 
not well explained. Thus, one is left with a feeling that some over-fitting and over-tuning may have 
occurred. Nevertheless the shortcomings, overall this software package is first of its kind and will 
be welcomed by the growing community of scientists working with immune receptors and disease 
prediction. 
 
Major comments:

Introduction: Aside from the immensity of TCR diversity, both theoretical and within each 
individual, by far the largest challenge to identifying signals of T-cell memory to a particular 
antigen, is the rarity of specific T cells to any given antigen. In circulation during the 
homeostatic memory phase, this number can be as low as 1 in 100 000 for CD4+ T cells, and 
may be up to 1% in the CD8 compartment. 
 

1. 

Operation: Does iCAT support both TCRB and TCRA data, separately, or in the same dataset? 
Or does it only support TCRB data? 
 

2. 

Setting (2) during training: at which level of TRBV and TRBJ allelic similarity is the tool tuned? 3. 
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In other words, would human TRBV7-2*01 and TRBV7-2*02 be considered the same, or 
different? How about human TRBV4-2 and TRBV4-3 that are very similar, especially at the 3’-
end where the last 40 amino acids are identical. Many HTS short reads would not be able to 
distinguish between these two gene segments.  
 
Use Case 1: The authors wrote that they analysed this dataset either by the CDR# amino 
acid sequence only, or with the V- and J-gene identity in addition. Did these two options 
behave differently? 
 

4. 

In the use cases, it is not common to report the accuracy on training dataset. it is not clear 
how the data was split into the training and testing dataset. More common practice is to do 
cross validation, and report the averaged precision, sensitivity, maybe F-score, especially for 
unbalanced samples. For Use case 2 for example, how were the 5 naïve and 10 exposed 
samples in the test group chosen, randomly? Would one get the same 100% accuracy if 
another random set of 5 naïve and 10 exposed samples was chosen? 
 

5. 

In the training tab, the default Max p-value is 0.1. Usually in disease associated studies, a 
more stringent cut-off p value is recommended. Considering the main purpose of iCAT is for 
diagnosis, the specificity is not as crucial, 0.1 might be a good choice. Is there any analysis 
supporting the choice, e.g. in the use cases or on other public available data which antigen 
specific sequences is known? 
 

6. 

In the prediction tab, it would be better to provide a measurement of uncertainty in 
addition to %TARS 
 

7. 

Some studies such as, Schneider-Hohendorf et al. (2018)1, Britanova et al. (2014)2, 
and DeWitt et al. (2018)3 suggested that MHC, age and sex also effect the immune receptor 
repertoire. Incorporating such meta information should be useful, even if in cases where 
the sample size is too limited for these factors to be modelled in the training, they are 
better to be randomized in training and testing datasets. 
 

8. 

How about computing time? How long did it take to do the training, and classification of for 
instance the use case 2 data? 
 

9. 

There are substantial public resources including some antigen-specific database and 
repertoire database. It might be useful to allow loading some commonly used datasets as 
controls in case the user has limited sample size.

10. 

Minor comments:
Figure legend 1: TCR sequencing of blood samples can be done with, but not limited to, 
genomic DNA. Many groups also use cDNA. 
 

1. 

Why does the tip of the iCAT’s tail has an antibody? If this were a TCR analysis tool, would it 
not be more appropriate with a cartoon drawing of TCR? 
 

2. 

What is VATS in last paragraph in Page 5, is it the same as TARS? 
 

3. 

In the library tab, pattern for significant TARS would make more sense, e.g. are they all 
similar or there were numbers of clusters based on the similarity?

4. 
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Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
No

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Immunology, T cells, TCR, single-cell receptor sequencing,

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 10 Jun 2021
Tae-Hyuk Ahn, Saint Louis University, St. Louis, USA 

Major comments: 
 
1. Introduction: Aside from the immensity of TCR diversity, both theoretical and within each 
individual, by far the largest challenge to identifying signals of T-cell memory to a particular 
antigen, is the rarity of specific T cells to any given antigen. In circulation during the 
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homeostatic memory phase, this number can be as low as 1 in 100 000 for CD4+ T cells, and 
may be up to 1% in the CD8 compartment. 
 
Response: We really appreciate all the great and thoughtful comments from the reviewer. 
As the reviewer commented, the rarity of specific T cells to a specific antigen is also a 
challenge in addition to the diversity and magnitude of the TCR repertoire. We updated the 
Introduction from the comment cited a reference for it. 
 
2. Operation: Does iCAT support both TCRB and TCRA data, separately, or in the same 
dataset? Or does it only support TCRB data? 
 
Response: iCAT has been developed and tested to analyze TCR beta chain of the T-cell 
receptor in the alpha/beta T cells. The column call for the V and J are vGeneName and 
jGeneName and do not distinguish between alpha and beta. So, as long as the remaining 
formatting is the same, there is no reason we couldn’t do either TCRA or TCRB.  However, it 
is not designed to do so in tandem. 
 
3. Setting (2) during training: at which level of TRBV and TRBJ allelic similarity is the tool 
tuned? In other words, would human TRBV7-2*01 and TRBV7-2*02 be considered the same, 
or different? How about human TRBV4-2 and TRBV4-3 that are very similar, especially at the 
3’-end where the last 40 amino acids are identical. Many HTS short reads would not be able 
to distinguish between these two gene segments. 
 
Response: We do not look that deeply into the different V and J chains. TRBV7-2*01 and 
TRBV7-2*02 are in the column vMaxResolved or jMaxResolved, which we do not use for the 
V and J calling. We use the vGeneName and jGeneName, which for this example, both would 
be called as TRBV7-2. But TRBV4-2 and TRBV4-3 will be called differently as those would be 
distinguished in the vGeneName column.  You can see this in the data table of the 
generated library, the selected V and J regions do not include the *01 or *02 details. This is 
also true when you look in the TSV file. 
 
4. Use Case 1: The authors wrote that they analysed this dataset either by the CDR# amino 
acid sequence only, or with the V- and J-gene identity in addition. Did these two options 
behave differently? 
 
Response: Using the V- and J-gene identity in addition to the CDR3 amino acid sequence 
results in significantly higher prediction accuracy in our testing, likely due to identifying 
more unique markers. Specifically, it results in fewer false positives. For example, in use 
case 1, using the amino acid sequence only resulted in correctly identifying only 1 / 10 of the 
pre-vaccination samples, while still correctly identifying 10/10 of the post-vaccination 
samples. 
 
5. In the use cases, it is not common to report the accuracy on training dataset. it is not 
clear how the data was split into the training and testing dataset. More common practice is 
to do cross validation, and report the averaged precision, sensitivity, maybe F-score, 
especially for unbalanced samples. For Use case 2 for example, how were the 5 naïve and 10 
exposed samples in the test group chosen, randomly? Would one get the same 100% 
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accuracy if another random set of 5 naïve and 10 exposed samples was chosen? 
 
Response: We agree it is not common to report the accuracy on the training data and it is 
not as useful as the accuracy on the independent testing data in evaluating a classification 
tool. However, we chose to include it to demonstrate this feature of the iCAT interface. This 
feature may be useful as a baseline-check after training in the usual scenarios where the 
ground truth for the testing data is not available. 
The independent samples in use case 2 were chosen randomly before training and excluded 
from the training set. We also repeated the test three times after receiving this question 
using a script to randomly select 15 samples for testing. The accuracy was at a 100% for all 
the new random tests. 
 
6. In the training tab, the default Max p-value is 0.1. Usually in disease associated studies, a 
more stringent cut-off p value is recommended. Considering the main purpose of iCAT is for 
diagnosis, the specificity is not as crucial, 0.1 might be a good choice. Is there any analysis 
supporting the choice, e.g. in the use cases or on other public available data which antigen 
specific sequences is known? 
 
Response: The max P-value is set at default to 0.1, it can be changed to any value.  We found 
through our own testing groups that it was a reasonable cut-off (for a default value) as p-
values above this tended to generate libraries that were not stringent enough. However, 
the user can manually alter the p-value to more stringent conditions.  It is worth noting that 
while the max p-value of the assay may be defaulted at 0.1, iCAT includes a feature for 
determining the optimal p-value threshold for library generation, which is likely to be well 
below the max allowed p-value. 
 
7. In the prediction tab, it would be better to provide a measurement of uncertainty in 
addition to %TARS 
 
Response:  This is a great comment and we totally agree that a measurement of uncertainty 
in addition to %TARS might be useful for iCAT users. We considered an uncertainty metric 
based on the difference between the probability density in the pre-exposure distribution 
and the probability density in the post-exposure distribution. This new feature has been 
implemented and now available on GitHub iCAT and we updated the README screenshot of 
the prediction tab. 
 
9. Some studies such as, Schneider-Hohendorf et al. (2018)1, Britanova et al. (2014)2, and 
DeWitt et al. (2018)3 suggested that MHC, age and sex also effect the immune receptor 
repertoire. Incorporating such meta information should be useful, even if in cases where 
the sample size is too limited for these factors to be modelled in the training, they are 
better to be randomized in training and testing datasets. 
 
Response: We agree this meta information can provide insightful context for different use 
cases. This is one of our goals for future versions of iCAT (iCAT 2.0). For example, we are 
especially excited to study the effect of clustering data based on HLA subtypes. In our 
opinion, this would be better explored in a separate paper. 
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*manuscript modification*10. How about computing time? How long did it take to do the 
training, and classification of for instance the use case 2 data? 
 
Response: Following are the results from use case 2.

Training time: 47.81 seconds○

Classification time: 6.83 seconds○

We updated the manuscript to reflect this information. 
 
11. There are substantial public resources including some antigen-specific database and 
repertoire database. It might be useful to allow loading some commonly used datasets as 
controls in case the user has limited sample size. 
 
Response: Providing commonly used datasets as default controls would be a convenient 
feature for some use cases. We considered including such datasets with the iCAT software 
package, but decided against it in the current version due to size consideration. We aimed 
to create a versatile and easy to use software tool. Using the instructions in this paper and 
on GitHub, we believe loading public datasets as needed can be performed conveniently by 
the average iCAT user. We will consider this feature in iCAT 2.0. 
 
Minor comments: 
 
1. Figure legend 1: TCR sequencing of blood samples can be done with, but not limited to, 
genomic DNA. Many groups also use cDNA. 
 
Response: Fixed in the new manuscript version. 
  
2. Why does the tip of the iCAT’s tail has an antibody? If this were a TCR analysis tool, would 
it not be more appropriate with a cartoon drawing of TCR? 
 
 
Response: While it is true that a TCR tail would be more descriptive of our tool, it is our 
opinion that an antibody makes a more aesthetic cat tail than a TCR. Its shape is also more 
widely recognizable and can give a general idea to non-specialists about what iCAT deals 
with at first glance. 
  
3. What is VATS in last paragraph in Page 5, is it the same as TARS? 
 
Response: Yes. Fixed in the new manuscript version. 
  
4. In the library tab, pattern for significant TARS would make more sense, e.g. are they all 
similar or there were numbers of clusters based on the similarity? 
 
Response: The current version of iCAT does not perform clustering of the target-associated 
receptor sequences based on similarity, but this can be developed and incorporated in 
future versions. We agree that it would be a useful addition for exploratory analyses. iCAT 
currently focuses on using the sequences for prediction, but provides a starting point for 
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further analyses by allowing the download of those significant sequences and some 
statistical information about their frequency in the training data.  
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