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The complement system is a highly conserved component of innate immunity that is
involved in recognizing and responding to pathogens. The system serves as a bridge
between innate and adaptive immunity, and modulation of the complement system can
affect the entire host immune response to a foreign insult. Neoplastic diseases have been
shown to engage the complement system in order to evade the immune system, gain a
selective growth advantage, and co-opt the surrounding environment for tumor
proliferation. Historically, the central nervous system has been considered to be an
immune-privileged environment, but it is now clear that there are active roles for both
innate and adaptive immunity within the central nervous system. Much of the research on
the role of immunological modulation of neoplastic disease within the central nervous
system has focused on adaptive immunity, even though innate immunity still plays a critical
role in the natural history of central nervous system neoplasms. Here, we review the
modulation of the complement system by a variety of neoplastic diseases of the central
nervous system. We also discuss gaps in the current body of knowledge and comment on
future directions for investigation.
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INTRODUCTION

The central nervous system (CNS) has been traditionally described as an immune-privileged
environment. However, cumulative data over the past two decades have demonstrated that within
the brain parenchyma as well as at the CNS endothelial surfaces, robust adaptive and innate
immune responses can be elicited during both normal development and disease processes. In the
context of neoplastic disease, inflammatory and immune mechanisms have been implicated in
disease progression, response to systemic and local therapy, neurodegeneration and cerebral edema.
The complement system, a component of the innate immunity, has been a major recent focus in the
area of neuroscience given the role of complement proteins in early detection of stress signals,
orchestrating both innate and adaptive responses and driving long-term neuroplasticity (1). In this
work, we review the recent updates on the role of different complement components in the
pathogenesis of neoplastic diseases of the CNS, both primary and metastatic, and the implications of
this role in therapeutic interventions.
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THE COMPLEMENT SYSTEM

The complement system is an integral component of innate
immunity. It was discovered in the late nineteenth century when
it was shown to “complement” the ability of heat-stabile
antibodies to kill bacteria (2). Similar to this seminal in vitro
experiment, the in vivo complement system both directly
responds to pathogens and indirectly recruits the adaptive
immune system to assist in host defense (3). The complement
system can be activated through one of three distinct pathways:
the classical pathway, the lectin pathway, and the alternative
pathway (4) (see Figure 1). The lectin pathway is triggered by
recognition of conserved molecular patterns expressed on cells
surfaces, whereas the classical pathway is triggered by antigen-
bound IgG or IgM antibodies (5). The alternative pathway can be
spontaneously activated on surfaces of foreign cells that lack
complement regulators, and it also serves as an amplification
loop for complement activation by other pathways (6).
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Through the sequential cleavage of unique zymogen proteins,
all pathways converge at the cleavage and activation of
complement protein C3 via the C3 convertase enzyme.
Activation of protein C3 leads to the production of C3
opsonins, the anaphylatoxins C3a and C5a, and ultimately the
membrane attack complex (MAC; C5b-9). Complement opsonins
(C1q, C3b/d) deposit on surfaces of cells to tag them for
phagocytosis and serve as activators of immune cells and
microglia (7, 8). The complement anaphylatoxins have a
multitude of proinflammatory effects including leukocyte
recruitment, vasodilation, and the induction of mast cell
degranulation and neutrophil oxidative burst. The MAC
assembles in cell membranes, disrupting osmotic regulation and
leading to cell lysis.

Complement opsonins also directly engage the development
of B cell immunity via CD21 and CD35. On B cells, activation of
these receptors lowers the threshold for B-cell receptor activation
(9). On follicular dendritic cells, their expression leads to the
FIGURE 1 | Schematic diagram of the complement cascade. The classical pathway begins with the binding of the C1 complex to antigen-antibody complexes
containing IgG or IgM. The lectin pathway is triggered by the binding of mannose-binding lectin (MBL), which is bound to proteolytic MBL-associated serine
proteases (MASPs), to carbohydrate moieties. Both of these pathways result in cleavage of C2 and C4 to form C3 convertase. The alternative pathway starts with
the autoactivation of C3, typically via direct binding of C3 to pathogens. This creates a unique version of C3 convertase that involves the cleavage of Factor B All
complement pathways converge with the cleavage of C3 into C3a and C3b. C3b associates with C3 convertase, which cleaves C5 into C5a and C5b. The
anaphylatoxins C3a and C5a have potent proinflammatory effects. C5b deposits on cell surfaces, where it forms the membrane attack complex (MAC), which
induces cell lysis. Various inhibitory proteins disrupt the complement cascade, as labelled within the figure above.
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retention of C3-coated particles for downstream presentation to
B cells (10). Additionally, the complement system impacts T cell
immunity. As in B cell immunity, C3 is thought to play a role in
antigen presentation by marking foreign materials for APCs to
phagocytose and present to T cells. However, studies on the role
of C3 in the development of T cell immunity are equivocal (11–
15), suggesting that this effect is antigen dependent. Murine
studies have implicated C3a and C5a anaphylatoxins as
chemoattractants that promote T cell recruitment either via
direct effects on T cells or via indirect effects on the cytokine
response of APCs (16, 17). Complement also provides negative
feedback on the immune response through the induction of a
regulatory phenotype in T cells through the co-stimulation of
CD3 and CD46 by complement proteins C3b and C4b (3, 18).

A variety of mechanisms serve to regulate the complement
system. The anaphylatoxins C3a and C5a are rapidly reduced via
the removal of a C-terminal arginine, which dramatically reduces
their biological activity (19). Similarly, C3b and C4b are cleaved
by the serine protease Factor I into inactive metabolites with
regards to complement activation, although the breakdown
products still serve as opsonins. Several of the C3b breakdown
products are bound by complement receptors (CR2, CR3, and
CR4) that function within both the adaptive and innate immune
systems (20). Factor H also accelerates the breakdown of C3
convertase in the alternative pathway (21). C3 convertase can be
inhibited by the effects of decay acceleration factor (DAF; CD55)
and C4 binding protein, as well. Upstream of the convergent
complement components, C1 inhibitor (C1-INH) inactivates
C1r and C1s as well as MASP2 (mannan-binding serine
protease 2) (22), which are involved in the classical and lectin
pathways, respectively. Downstream of the convergence of the
complement pathways, formation of the MAC is negatively
regulated by S protein, vimentin, and CD59 (4).

Properdin is the only known positive regulatory protein of the
complement cascade (23). It binds to and stabilizes C3
convertase in the alternative pathway (24). Additionally, it
inhibits the cleavage of C3b by Factor H (25, 26). A family of
proteins structurally similar to Factor H, known as Factor H
related proteins, also exist (27). However, the roles of these
proteins within the canonical complement cascade are still under
active investigation.
COMPLEMENT IN THE CENTRAL
NERVOUS SYSTEM

Circulating complement proteins can extravasate into the CNS
when a pathologic inflammatory, infectious, or vascular process
disrupts the integrity of the BBB (28). However, complement
proteins can be found within the CSF of patients with an intact
BBB, and recent evidence has shown that CNS-resident cells,
including neurons and glial cells, are capable of producing nearly
all complement proteins independent of serum derived factors
(29). In vitro experiments demonstrated that astrocytes express
complement proteins C2 through C9 and Factor B as well as
regulatory proteins, such as Factor H and Factor I (30–32).
Frontiers in Immunology | www.frontiersin.org 3
Astrocytes have also been shown to express C5a receptor 1
(C5aR1), as well as the membrane regulatory proteins CD46,
CD55, CD59, and CR1 (33). Similarly, both oligodendrocytes
(34) and neurons (35, 36) have been shown to express
complement proteins of the classical and alternative pathways.
A subset of these genes are also expressed by microglia (37, 38).

In the healthy CNS, microglia recognize complement proteins
C1q and C3 opsonins on synapses to be eliminated in the process
of synaptic remodeling (39, 40). Low concentrations of MAC
have also been shown to be protective for oligodendrocytes
against apoptosis secondary to caspase-3 activation (41, 42). In
pathologic states, the activation of complement proteins has been
linked to the exacerbation of neuroinflammatory and
neurodegenerative pathways in multiple sclerosis (43), stroke
(1), and neurodegenerative diseases (44–46).

Neoplastic diseases within the CNS can modulate the
expression and function of complement proteins in order to
facilitate a pro-growth niche. The role of complement in cancer
is complex, and evidence exists for both activation and inhibition
of the complement cascade to result in tumorigenesis.
Historically, due to the role of complement in immune
surveillance (47, 48), it was thought that complement
activation protected against neoplastic disease. However, more
recent literature has demonstrated that complement activation
within primary tumor microenvironments can enhance
neoplastic growth (48, 49). The CNS provides a unique
microenvironment of its own, and a diverse number of
primary and secondary neoplasms can invade the CNS.
Although the direct effects of complement on metastatic
disease may be conserved regardless of their location, studies
of complement modulation in tumors located outside the CNS
may not directly translate to those located within the CNS when
it comes to complement-dependent changes in the
tumor microenvironment.

In this review, we discuss the role of different complement
components in the pathology of CNS tumors and their
implication for therapeutic interventions. A summary of the
studies of complement modulation in CNS tumors, organized by
disease state, can be found in Table 1. Particular focus will be
placed on malignant neoplastic diseases that continue to have
poor prognosis (e.g., glioma, metastasis, and leptomeningeal
disease) where complement modulation may play a significant
therapeutic role.
COMPLEMENT IN NEOPLASTIC
DISEASES OF THE CNS

Complement in Glioma and Glioblastoma
Multiforme
A “glioma” refers to any tumor that is thought to be of glial cell
origin (70), including astrocytomas, oligodendrogliomas,
ependymomas, and other rare or mixed subtypes within this
family (71). High-dose radiation exposure and genetic
syndromes (e.g., Li-Fraumeni syndrome, neurofibromatosis,
tuberous sclerosis) are the only proven risk factors for the
October 2021 | Volume 12 | Article 689435
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development of gliomas (70). Glioblastoma (i.e., WHO Grade IV
astrocytoma) is the most common glioma and carries the worst
prognosis. The specific inflammatory microenvironment of
glioblastoma contributes to its aggressiveness, recurrence, and
resistance to treatment (72). Although much of the research on
immune modulation in glioma progression has focused on the
adaptive immune system, innate immunity and complement also
play roles in shaping the tumor microenvironment and
orchestrating both adaptive and innate immune responses.

Classical Pathway in Glioma
Consistent with the paradigm of immune evasion, current
research on complement modulation in glioblastoma has
focused on the classical pathway and the C1 complex. In both
in-vitro and in-vivomodels, glioblastoma was shown to upregulate
the expression of the C1-INH protein that prevents the assembly
of the C1 complex and inhibits the initiation of complement
Frontiers in Immunology | www.frontiersin.org 4
activation via the classical pathway (50). In synchrony with these
findings, human glioblastoma tumor samples have been shown to
demonstrate upregulation of the C1 complex proteins (C1q, C1s)
as well as C1-INH protein (50). However, in complement
pathology, mRNA upregulation does not necessarily correlate
with function, given the need for proteolytic cleavage for
complement activation. An increase in C1-INH effect results in
upregulation of proximal classical pathway genes, which may
explain the co-increase in expression of both C1q/C1s and C1-
INH genes. Following these observations, the use of C1-INH as a
treatment in a murine non-orthotopic model of glioblastoma
demonstrated reduced tumor growth and prolonged host
survival (73) (see Table 2 regarding preliminary targeted
therapeutics). Serum analysis of rats in these studies showed a
decrease in circulating IL-1b, one of the major proinflammatory
cytokine downstream of the inflammasome complex that is
produced by glioblastoma cells (77).
TABLE 1 | Complement expression in brain neoplasms.

Component Change Material Source Disease Model Reference

C1q, C1-INH Overexpressed RNA, Protein Tumor cells Glioma In vitro human patient-derived cells, In vivo rat glioma (50)
C1q Overexpressed RNA, Protein Tumor cells Glioma Human glioma samples (51)
C1r, C1s Overexpressed RNA Tumor cells Glioma Human glioma samples (52)
MASP-1/3 Overexpressed RNA, Protein Tumor cells Glioma In vitro immortalized human and rodent cells (53, 54)
C3 Overexpressed RNA Tumor cells Glioma In vitro human patient-derived cells, In vivo mouse

xenograft
(55)

Factor H Overexpressed Protein; RNA,
Protein

Tumor cells Glioma In vitro immortalized human cells (56, 57)

FHL-1 Overexpressed RNA, Protein Tumor cells Glioma In vitro immortalized human cells (57)
FHR5 Overexpressed Protein Tumor cells Glioma In vitro human patient-derived cells (58)
CD55 Overexpressed Protein Tumor cells Glioma In vitro immortalized human cells (59)
CD59 Overexpressed Protein Tumor cells Glioma Human glioma samples, Glioma cell lines (60)
CD59 Overexpressed Protein Tumor cells Glioma In vitro immortalized human cells (59)
C1q, Factor H, C3aR,
C5aR

Overexpressed RNA Tumor cells Glioma Human glioma samples (61)

C1q Polymorphism DNA Tumor cells Metastasis Human tissue samples (breast) (62)
CD59 Overexpressed Protein Tumor cells Metastasis In vitro immortalized human cells (prostate) (63)
C1q, C3, C5, CD46 Mutated DNA Tumor cells Metastasis Matched primary and metastatic human tissue

(breast, lung, kidney)
(64)

C3 Overexpressed RNA, Protein Tumor cells,
CSF

LMD In vivo LMD-derived in vitro culture (breast, lung) (65)

C2, C3, MAC Overexpressed RNA, Protein CSF LMD Human CSF samples (melanoma) (66)
C1q, Factor H Overexpressed Protein CSF LMD Human CSF samples (lymphoma) (67)
C1q, C2, CR1, CFB,
C3aR

Upregulated RNA Brain tissue Radiation Induced
Brain Injury

Fractionated whole-brain irradiation in NHP (68)

CR3 Activated Protein Brain tissue Radiation Induced
Brain Injury

In vivo mouse (69)
October 2021 | Volume 12 | Art
TABLE 2 | Exogenous complement modulation as treatment in brain neoplasms.

Tumor Model Intervention Outcome Reference

Glioblastoma multiforme (GBM) In vivo rat GBM Anti-C1-INH monoclonal antibody Increased survival, decreased
tumor growth

(73)

Metastasis In vitro prostate metastatic cells Anti-CD59 antibody Complement-mediated cytolysis (74)
Leptomeningeal disease (LMD) In vivo mouse MDA 231 (breast) LLM (lung)

PC9 (lung)
C3 shRNA knockdown Reduced LMD growth (65)

Leptomeningeal disease (LMD) Human peripheral blood (lymphoma) Anti-CD20 monoclonal antibody
(rituximab)

C3b upregulation, NK cell
inactivation

(75)

Leptomeningeal disease (LMD) Human CSF (lymphoma) Anti-CD20 monoclonal antibody
(rituximab)

C3 and MAC upregulation (76)
icle 689435
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In addition to its role as an initiator of complement activation,
the C1 complex also includes the C1q protein. The C1q protein has
an independent function of opsonization and clearance of apoptotic
blebs, a process that is implicated in immune tolerance (78) and that
has been described in the settings of autoimmunity (79, 80),
angiogenesis (81), and tumorigenesis (80, 82). Although C1-INH
binds to C1r and C1s, it does not bind to or inactivate C1q. Like C1r
and C1s (52), C1q is also upregulated in response to the increased
levels of C1-INH in glioblastoma (50). There is a greater than 4-fold
change in C1q expression observed in human glioblastoma tissue
samples (50), and genomic expression of C1q is positively correlated
with unfavorable prognosis for patients in national glioma databases
(51, 61). The tumorigenic effects of C1q are thought to be a product
of both increased angiogenesis, promoting immune tolerance by
clearance of antigenic products of tumor invasion, as well as direct
promotion of adhesion and proliferation through integration within
the extracellular matrix (82). C1q expression has been shown to
activate canonical WNT signaling pathways (83), which have been
shown to facilitate epithelial-to-mesenchymal transition of
glioblastoma cells in vitro (84). Conversely, C1q has also been
shown to inhibit tumor growth in models of breast (85), ovarian
(86), and prostate cancers (87). It is thought that this inhibitory
phenotype is secondary to increased tumor cell apoptosis. In the
CNS, C1q is recognized by microglia during the process of synaptic
pruning (39, 40), a mechanism that can also be carried out by
astrocytes (88, 89). Additionally, C1q has been shown to induce a
tumorigenic phenotype in tumor associated macrophages (90), a
process that may extend to microglia (91, 92). Therefore, these
findings suggest that the pro-growth and pro-survival effects of C1q
on astroglial cells is preserved during malignant transformation as
seen in primary brain tumors (i.e., gliomas). However, this may also
explain why C1q has mostly a pro-apoptotic and tumor inhibitory
effect on brain metastases as opposed to its effect on primary brain
tumor cells.

Lectin Pathway in Glioma
The lectin pathway is initiated by the binding of mannose-binding
lectin (MBL), which is structurally and functionally similar to C1q
of the classical pathway (93). MBL predominantly binds to
carbohydrate patterns, such as those found on pathogens (94–96)
or IgM (97). When this binding occurs, the process activates MBL-
associated serine proteases (MASPs) that subsequently cleave
downstream complement proteins to propagate activation of the
cascade (98). Three distinct MASPs have been described (98, 99),
each of which has unique protease activity. In vitro studies of human
and rat glioma cells have demonstrated their ability to secrete high
levels of MASP-1 and MASP-3 (53, 54). It remains unclear whether
there is a unique role for these proteases in disease progression or
whether their upregulation is in response to upregulated C1-INH,
which can also bind and inhibit the function of MASPs (72).
Additional research is necessary to elucidate the role of MASP-1/
3 in the natural history of glioma.

Alternative Pathway and Complement Regulators in
Glioma
The alternative complement pathway plays a pivotal role in the
amplification of complement activation and downstream
Frontiers in Immunology | www.frontiersin.org 5
effectors of complement by its feedforward effect on
complement protein C3 activation. The alternative pathway is
capable of promoting pathological levels of complement
activation that may be able to evade the endogenous
complement inhibitory proteins on surfaces of neurons and
glia, as has been shown in ischemic and traumatic brain injury
(100–103). Glioblastoma cells have demonstrated the ability to
synthesize complement proteins, including C3 (55) and its
receptor (61). Additionally, Factor H, which is expressed by
astrocytes in the CNS, is a major fluid phase inhibitor of the
alternative complement pathway. In vitro studies have
demonstrated that glioblastoma cells can produce Factor H
(56, 57), a result that has been supported by studies on ex vivo
patient samples (61). Similarly, FH-like protein 1 (FHL-1) (57), a
truncated form of Factor H that retains inhibitory activity against
C3, is secreted by glioblastoma cells in vitro (21, 104). In addition
to Factor H, glioblastoma cells were also shown to have
upregulated expression of complement factor H related protein
5 (FHR5) (58). However, the physiological and pathological
functions of the newly described FHR5 are still controversial
(58, 105, 106).

Membrane-bound CD55 both prevents the assembly of and
causes the dissociation of both C3 and C5 convertase (4, 107).
Downstream of C3 and C5 activation, the cell-surface protein
CD59 inhibits the formation of the terminal MAC by preventing
C9 protein polymerization (108). Human-derived glioblastoma
cell lines grown in vitro have been shown to have upregulated
CD55 and CD59 (59, 60), which may be correlated with
mutations in the p53 tumor suppressor gene (109). Expression
of CD55 and CD59 could theoretically inhibit complement
activation at the surface of growing GBM tumors in vivo, and
CD59 overexpression has been observed in human glioma
samples (60). However, lack of CD55 expression was found to
be correlated with poor prognosis in solid tumors, such as breast
cancer (110), and so further research is necessary to elucidate the
effects of these proteins in glioblastoma at the organismal level.
Moreover, the CD55 expression observed in GBM may be a
multifactorial phenomenon.

Collectively, the current literature on the role of complement
in glioblastoma support an overall tendency of the tumor to
suppress the activation of the C3 protein and downstream
effectors, while simultaneously preserving the functions of the
C1q opsonins necessary for enhanced immune tolerance during
tumor progression. This is in contrast to other primary cancers,
such as cervical (111), breast (112), and lung (113), in which the
complement system is activated in preclinical models to promote
immune tolerance through the enhanced production of
regulatory T cells (Tregs) and suppression of conventional T
cells (114). Tregs are a major source of immune tolerance in
glioblastoma, as Treg infiltration directly correlates to the WHO
tumor grade (115), but the interplay between the complement
system and Tregs within the context of glioma has yet to be
conclusively elucidated.

Complement in Brain Metastasis
Brain metastases are the most common type of intracranial
tumor in adults (116). The most common sources of brain
October 2021 | Volume 12 | Article 689435
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metastases are from primary breast, lung, and skin (i.e.,
melanoma) cancers (117). The “seed and soil” hypothesis
defines metastasis to the brain, whereby circulating tumor cells
attach to endothelial cells in brain vasculature, extravasate, and
proliferate within the brain parenchyma (118). The majority of
cancer cells that successfully extravasate into the brain
parenchyma are ill-adapted to this microenvironment and
subsequently die (119). However, this microenvironment
imposes a selective pressure on migrating cancer cells that
ultimately selects successful clones to seed the brain (120–122).
A major component of this selective process is an ability of the
metastasizing cell to evade the immune response (123). As a link
between innate and adaptive immunity, complement modulation
is one potential avenue for metastatic tumor cells to initiate
this process.

Hypercoagulability in Metastatic Disease
Many metastatic cancers also present with thrombosis secondary
to hypercoagulation (124). Modulation of the complement
cascade is one potential factor contributing to this observed
hypercoagulability in cancer (125–127). Pathway analysis has
demonstrated a concomitant enrichment of proteins in the
complement and coagulation pathways for brain metastases in
breast, kidney, and lung cancer (64). Complement and
coagulation are intrinsically related. For example, several
complement proteins interact with tissue factor (TF; Factor III)
and TF-bearing microparticles produced by tumor cells (128,
129). Hypercoagulation and thrombosis impact the metastatic
process via dysregulation of the immune system. Peritumoral
thrombosis has been shown to recruit inflammatory monocytes
that promote metastatic tumor cell survival (130). Additionally,
thrombi may induce a tumorigenic phenotype in neutrophils
that helps to maintain a metastatic niche (131). Thrombin has
also been shown to inhibit the expression of tumor suppressor
genes within tumor cells (132). Furthermore, platelets can release
growth factors that stimulate tumor growth, angiogenesis, and
epithelial-to-mesenchymal transition (133, 134). Platelets have
also demonstrated the ability to inhibit NK cell lysis of tumor
cells, as well (135, 136). Moreover, it has been hypothesized that
platelets, fibrin, and thrombin can shield circulating tumor cells
from shear forces as they extravasate (127, 137). Clinically,
anticoagulation has been shown to decrease the incidence of
lung metastases (138, 139), but the effect of systemic
anticoagulation on the development of brain metastasis
remains unclear.

Breast Cancer Metastasis
In this context, a single nucleotide polymorphism (SNP) within
the C1q protein has been associated with an increased rate of
breast cancer metastasis (62, 64). This association is even more
pronounced for metastatic sites associate with hematogenous
spread, such as the brain. The C1q protein is composed of six
trimers of C1qA, C1qB, and C1qC chains (140). Among all of the
known polymorphisms in these components, the only SNP
within a coding region is at the 276th position of C1qA.
Patients with either a homogenous or heterogeneous A-to-G
polymorphism in the C1qA chain were found to have an
Frontiers in Immunology | www.frontiersin.org 6
increased risk of developing metastasis to bone, brain, or liver
compared to patients without this polymorphism, even after
adjusting for node and receptor status. Patients with the SNP also
had a reduced time to develop these extranodal metastases.
Previous studies have associated the “A” polymorphism with
the development of systemic lupus erythematosus (141). This
may imply that enhanced solid organ metastases with the “G”
polymorphism is secondary to decreased immune activity,
potentially due to reduced ability for the C1 complex to bind
to and clear circulating tumor cells.

Prostate Metastasis
Similar to the case of glioma, malignant prostate cells have been
shown to overexpress CD59 in vitro (63). Prostasomes are
secretory vesicles produced by prostate cells, and they have
been shown to contain the complement regulatory proteins
CD46 and CD59 (142). In the case of prostate cancer, these
prostasomes are secreted into the tumor microenvironment as
opposed to the seminal plasma, which may contribute to the
immune evasion and malignant potential of the growing tumor.
A study by Babiker et al. demonstrated that prostasomes
produced from prostate cancer cells contained a higher
concentration of CD59 than those produced from benign
prostate cells (63). Additionally, this study demonstrated that
tumor-derived prostasomes were able to transfer CD59 to the
surface of malignant cells in vitro. Prostasomes from brain-
metastasis-derived DU145 cells exhibited the highest average
CD59 content and one of the largest inhibitory effects on
complement. These cells have been shown to be sensitive to
complement-mediated cytolysis in the presence of a CD59-
neutralizing antibody (74) (see Table 2), reinforcing the role of
this molecular interaction. Follow-up studies are necessary to
further elucidate the role of CD59 expression on the metastatic
potential of prostate cells in vivo.

Primary CNS Lymphoma
In CNS lymphomas, there is a growing body of evidence to
support a role for complement in the pathogenesis of disease.
Analysis of the CSF of patients with primary CNS lymphoma
(PCNSL) demonstrates an upregulation of proteins associated
with the innate immune system, including complement proteins
C1q and Factor H (67). The upregulation of Factor H may
contribute to overall suppression of the complement system and
promotion of a tumorigenic microenvironment similar to studies
in glioma, as discussed previously. However, the upregulation of
C1q has been associated with a variety of downstream effects in
different cancers and requires further exploration in PCNSL.
Complement suppression being tumorigenic in PCNSL would be
consistent with murine studies in non-CNS lymphoma that
demonstrated attenuated tumor progression with complement
activation (143).

Additionally, the intrathecal administration of rituximab, a
monoclonal antibody against CD20 on B cells, has been shown to
induce complement-dependent tumor cytotoxicity in PCNSL
(76, 144) (see Table 2). In one clinical trial, complement
proteins C3 and C5b-9 were found to be reproducibly
upregulated within the CSF in response to the intrathecal
October 2021 | Volume 12 | Article 689435
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administration of rituximab (76). Paradoxically, the constitutive
activation of C3 within the CSF was correlated with a worse
overall prognosis. The authors of this study hypothesize that this
phenomenon may be due to NK cell inactivation by C3b, which
has been previously demonstrated in the context of rituximab
therapy (75). Alternatively, this may be related to immune
dysregu la t ion secondary to the ro le o f C3a as a
chemoattractant. Another more recent retrospective trial
showed a correlation between hypocomplementemia and
reduced progression-free and overall survival (145). These
conflicting reports on the relationship between complement
activation and PCNSL progression suggest a more nuanced
role for complement in the natural history of disease, perhaps
unique to different B cell lymphoma subtypes.

Complement in Leptomeningeal Disease
Leptomeningeal disease (LMD), also known as leptomeningeal
metastasis, describes the spread of metastatic neoplastic disease
into the arachnoid mater, pia mater, and CSF (146).
Approximately 5 to 8 percent of all cancer patients will
develop LMD (147), with a uniformly dismal prognosis.
Common cancers to present with LMD include acute
lymphoblastic leukemia (ALL), breast cancer, lung cancer,
melanoma, and non-Hodgkin lymphoma (146). Seeding of the
leptomeninges can occur either via preexisting metastases within
the CNS or via the extension of a tumor mass that abuts the
meninges (148). The exact molecular pathophysiology of LMD
dissemination is poorly understood, but it is thought to abide by
the general principles of metastatic invasion, which include the
potential for immune invasion and vascular remodeling (149).

Work from Boire et al. has demonstrated that complement
protein C3 is upregulated in metastatic tumor cells and facilitates
leptomeningeal spread. In xenograft and syngeneic murine
models of breast and lung cancer, tissue samples from LMD
demonstrated significantly increased C3 expression compared to
samples from the primary tumors (65). Knockdown of C3
expression with intrathecal short hairpin RNA (shRNA)
dramatically reduced metastasis to the leptomeninges in these
murine models (see Table 2). In naïve mice, administration of
exogenous C3a led to increased extravasation of intravenously
administered dextran to the CSF, which implies that tumor-
produced C3a might disrupt the blood-CSF barrier in order to
facilitate leptomeningeal spread. Moreover, mice deficient in the
receptor for the C3a anaphylatoxin showed decreased growth of
cancer cells inoculated directly into the leptomeningeal space,
suggesting that C3a also primes the CSF for tumor invasion.
Analysis of CSF samples from patients with LMD also
demonstrated increased C3 expression, and decreases in C2,
C3, and C4 within the CSF correlated with response to
intrathecal treatment in these patients.

Leptomeningeal Melanoma
The role of complement in leptomeningeal melanoma (LMM) is
also an area of active research, but recent data suggest that
complement activation is implicated in the natural history of the
disease. Pathway enrichment on CSF samples collected from
patients with LMM demonstrated upregulation in various
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proteins involved in the complement cascade for patients who
were poor responders to treatment (66). These proteins include
C2, C3, and those that form the MAC. Studies in syngeneic
murine models of melanoma have shown that the C3a receptor is
necessary for the growth and spread of disease (150). Specifically,
they demonstrated that interaction with this receptor disrupts
neutrophil and CD4+ T cell responses within the tumor
microenvironment. More research is necessary to further
characterize the biomolecular changes that underly the
development of LMM and how complement is modulated
throughout the course of disease.

Complement in Radiation Necrosis
Radiation therapy (RT) remains a major component of the
standard of care treatment for brain tumors. Despite
significant improvement with the use of targeted and
stereotactic radiosurgery to limit normal tissue toxicity,
radiation necrosis (RN) remains a major adverse effect of RT.
The incidence of RN has continued to increase given the more
frequent use of adjuvant immunological therapy. RN is an
undesirable, late exaggerated immune response to radiation-
induced damage that results in progressive cerebral edema and
peritumoral inflammation. Injury due to radiation can be further
classified based on its spatial pattern (diffuse vs. focal) and the
timing of injury in relation to treatment (acute, early delayed,
and late) (151). Late radiation injury develops months to years
after RT and is typically an irreversible and progressive
phenomenon. Radiation exposure leads to endothelial cell
injury, which manifests as dilated and thickened vessel walls.
Along with astrocyte hyperplasia and hypertrophy, these changes
are thought to comprise a “tissue injury unit” that precipitates
eventual white matter necrosis (152, 153). Competing theories
implicate oligodendrocyte damage and demyelination (154),
autoimmune vasculitis (151), as well as changes in the
fibrinolytic pathway (155) in the development of RN.

The role of complement in radiation-induced damage
remains underexplored. Genetic studies in syngeneic mouse
models of cancer and ex vivo human tumor samples have
demonstrated that the C3a and C5a anaphylatoxins are
upregulated in response to RT (156). In a murine model of
melanoma, pretreatment of dexamethasone prior to RT reduced
complement activation and reduced the efficacy of RT, as
assessed by tumor volume measurements in the days post-RT
(156). RT is known to engage the adaptive immune response
(157, 158), so it is logical that elements of the complement
cascade that bridge innate and adaptive immunity be engaged in
this process.

As part of the stress response, RT also induces the exposure of
damage-associated molecular patterns (DAMPs) and stress-
related neo-epitopes following radiation-induced cell death.
Exposure of these signals leads to a robust activation of the
innate and adaptive immune system in the brain (101, 103,
159). Post-radiation inflammation likely involves locally
activated and hematogenous-derived immune cells and
components, given the effect of neoplastic pathology and
radiation on blood brain barrier (BBB) integrity. The actual
pathological pathways linking RT-induced cell stress, toxic
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edema, and cell death are still unknown. Consequently, there is a
lack of targeted therapeutics to inhibit the initiation of this
toxic neuroinflammation.

Prior work has demonstrated that exposure of DAMPs
induces local activation of complement and deposition of C
opsonins (i.e., C3b/C3d) in various disease models (160, 161).
Relevant to malignancy and radiation exposure, prior work using
a lymphoma model demonstrated that complement opsonins
deposit locally after radiation injury and can be targeted by
complement inhibitors to prevent the exacerbation of
peritumoral inflammation (160). Studies in both rodents and
nonhuman primates have demonstrated that complement
proteins, including both opsonins and anaphylatoxins, as well
as complement receptors are overexpressed and activated in the
brain following radiation exposure (68, 69). Following its
activation by radiation-induced stress, the complement system
is then capable of self-amplification and robust activation of
components of innate and adaptive immunity. This amplified
activation is likely to promote worsening edema, mass effect, and
neurodegeneration in peritumoral brain tissue.
THERAPEUTIC MODULATION OF THE
COMPLEMENT SYSTEM

Complement has been implicated in nearly all pathologies and
disease of the CNS including vascular/ischemic stroke (1),
autoimmune (162), and traumatic CNS pathologies (100).
Despite the diverse pipeline of complement therapeutics
developed over the past decade (159, 163), there are still limited
complement inhibitors available to treat complement-related
pathologies. To date, eculizumab, an anti-C5 antibody, along
with its long-acting modification (i.e., Ultomiris) are the major
success stories for complement based therapeutics. Initially
approved to treat paroxysmal nocturnal hemoglobinuria and
more recently approved for myasthenia gravis and AQp4-IgG
positive neuromyelitis optica, anti-C5 acts systemically to inhibit
complement activation at the level of the C5-convretase (163).

Although access to the BBB remains a major challenge in
developing complement therapeutics, novel complement
inhibitors that target different aspects of the cascade, C3 and
C5 activation, are currently part of the treatment pipeline for
CNS pathologies with age-related macular degeneration being
the top targeted pathology. Although lampalizumab that targets
the alternative pathway failed to show clinical benefit in macular
degeneration, alternative inhibitors are still in different phases of
clinical development and include: Compstatin (C3 inhibitor)
along with its derivatives APL-1 and APL-2 (Apellis
Pharmaceuticals), Mirococept (APT070, C3 inhibitor), PMX-
53 (C5a receptor antagonist), C1-INH (inhibits classical and
lectin pathways), Tesidolumab (inhibitor of C5 activation)
among others (163).

In addition to the systemic therapeutics listed above, new
generation of complement therapeutics are currently early in the
translational spectrum and include tissue-targeted therapeutics
that self-target to sites of active complement breakdown. In the
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setting of ischemic or traumatic brain injury, robust deposition
of the complement breakdown product C3b/C3d provide a
promising target to deliver therapeutics. As reviewed in (159),
different generations of these targeted therapeutics have been
described. Examples are complement receptor 2 (CR2) based
inhibitors that constitute of fusion proteins of CR2 and inhibitors
of one of different complement activation pathways; namely,
CR2-fH, CR2-Crry and CR2-CD59 have been well studied in
acute neurological pathologies such as stroke and traumatic
brain injury. A similar approach include the tissue-targeted
terminal pathway inhibitor CD59-2a-CRIg that uses the CRIg
superfamily domains to target sites of C3 deposition and deliver
complement inhibitor CD59 to the site of pathology. Finally, a
different generation of targeted inhibitors applicable to CNS
disease was designed using fusion proteins of single-chain
variable fragments (scFv) of natural IgM antibodies that target
stress-induced neo-epitopes fused to a complement inhibitor to
allow its deliver to sites of active disease (159). This latter
approach will have the added therapeutic value of inhibiting
the antibody-based trigger of complement activation in addition
to the targeted complement pathway.

Regarding complement modulation in the setting of CNS
neoplastic disease, major frontiers in complement-targeted
therapeutics in glioma are likely to include a focus on C1q-
targeted therapeutics, given its consistent role in driving tumor
progression, as well as C3-targeted therapeutics in the context of
radiation to limit radiation-induced edema and degeneration
allowing for maximal treatment dosing. Similarly, C3-targeted
therapeutics (both C3 convertase inhibitors and C3a antagonists)
are specifically attractive for metastatic disease given the role of
C3 in driving edema after radiation, which is routinely used for
these tumors, as well as the role of C3 in leptomeningeal spread.
Systemic suppression of these complement components by
therapeutics remains a major limitation due to limited
bioavailability in the CNS and the risk of suppression of
systemic defense mechanisms in a population known to be
prone to infections. The use of tissue-targeted complement
therapeutics [e.g., CR2-targeted or antibody targeted (159)] is
one major avenue for overcoming these limitations.
CONCLUSIONS

As presented in this review, complement modulation has been
implicated in the development and progression of brain and
spine tumors as well as cell injury in the peritumoral
environment. As CNS neoplasms are a heterogeneous group of
diseases, it follows that the implicated complement mechanisms
are similarly diverse. The current body of evidence with regards
to glioma supports predominantly inhibitory changes, in
contrast to more recent evidence in non-CNS tumors that
characterize complement activation as tumorigenic, whereas
data in brain metastases, LMD, and RN present a mixed
picture with regards to complement activation and inhibition.
The proposed pathways in this review suggest novel diagnostic
and therapeutic targets for a population of patients notoriously
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difficult to treat, both at initial diagnosis and with recurrence.
This work also supports the potential role for targeted
complement modulation in CNS tumors and emphasizes the
need for more translational and preclinical studies in this field.
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