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Abstract

INTRODUCTION:We evaluated the accuracy of remote and in-person digital tests to

distinguish between older adults with and without AD pathological change and used

theMontreal Cognitive Assessment (MoCA) as a comparison test.

METHODS: Participants were 69 cognitively normal older adults with known beta-

amyloid (Aβ) PET status. Participants completed smartphone-based assessments

3×/day for 8 days, followed by TabCAT tasks, DCTclock™, and MoCA at an in-person

study visit. We calculated the area under the curve (AUC) to compare task accuracies

to distinguish Aβ status.
RESULTS: Average performance on the episodic memory (Prices) smartphone task

showed the highest accuracy (AUC= 0.77) to distinguish Aβ status. On in-personmea-

sures, accuracy to distinguish Aβ status was greatest for the TabCAT Favorites task

(AUC= 0.76), relative to the DCTclockTM (AUC= 0.73) andMoCA (AUC= 0.74).

DISCUSSION: Although further validation is needed, our results suggest that sev-

eral digital assessments may be suitable for more widespread cognitive screening

application.
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1 INTRODUCTION

With record levels of older adults currently living with Alzheimer’s

disease (AD), there is an urgent need for more sensitive and scalable

screening tools to facilitate earlier diagnosis and intervention for AD

and related dementias.1 In part due to multiple studies showing that

cognitive impairment goes unrecognized or misdiagnosed in 27% to

81% of patients in primary care settings,2,3 the Patient Protection

and Affordable Care Act now requires an Annual Wellness Visit for

older adults, including assessment to detect cognitive impairment. The

use of brief, easily administered cognitive screening tools may help

to identify patients with dementia; however, existing screening tools

have many limitations and are typically not sensitive to mild cognitive

impairment or preclinical AD.4,5 Additionally, primary care providers

may not have time to administer cognitive tests, thereby limiting the

number of patients that are screened.3 Therefore, there is a need to

find alternative screening measures that are able to circumvent these

challenges.

Multiple tablet-based cognitive assessments have been shown to

be accurate and reliable for in-person and remote administration, and

can be more readily adjusted for different ethnicities, cultures, and

languages.6–9 More recently, smartphone app- and web-based cog-

nitive assessments for remote screening and monitoring have also

been developing rapidly.10–12 Older adults are increasingly using both

smartphones and tablets,13 and the adoption of this technology for

cognitive screening in various settings is feasible, including in older

adults with no prior experience with touchscreen technology.14–16

There are several potential advantages to using digital cognitive

assessments in remote and primary care settings, including reduced

practitioner burden, improved ease of repeat testing, and better cost

and time effectiveness of care.17,18 Digital cognitive assessments

may also allow clinicians to reach underserved and under-resourced

populations and adapt digital assessments to numerous languages,

thus addressing healthcare disparities.19 Visual working memory and

episodicmemorymeasures are shown tobe sensitive to early-stageAD

and can be easily adapted for digital presentation with minimal need

for written or auditory language.20,21 Smartphone- and web-based

cognitive screening tools have the additional advantage of improv-

ing accessibility for those in rural areas or with physical or financial

limitations that prevent them from visiting the clinic.17,22,23 Remote

assessment approaches also have psychometric benefits, including

increased ecological validity (ie, being at home may reduce test anxi-

ety and better capture day-to-day cognitive abilities), easy collection

of multiple data points at different times of day, and automated scor-

ingmechanisms that reduce scoring errors, potentially leading tomore

reliable and sensitive detection of cognitive change over time.18,24

Despite these benefits, there are also potential costs to be aware of,

including poor adherence, and a lack of examiner control over envi-

ronmental distractors or interference from others.25 For this reason,

remote digital assessments are likely best utilized as a method for

screening andmonitoring, but not diagnosis, of cognitive disorders.

There are numerous examples of successful in-clinic digital assess-

ment validation work in the literature. The TabCAT Brain Health

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using Google Scholar and meeting abstracts and pre-

sentations. Existing cognitive screening measures fall

short in capturing preclinical Alzheimer’s disease. Digital

assessment technology has the potential to deliver more

efficient and sensitive screening, but requires rigorous

validation.

2. Interpretation: Our findings show that several brief dig-

ital screening approaches (memory-specific tasks on the

MobileMonitoring of Cognitive Change [M2C2] and Tab-

CAT) are noninferior to the Montreal Cognitive Assess-

ment for distinguishing cerebral beta-amyloid status.

3. Future directions: Further validation of these digital

screening tools in community and clinic-based samples

is needed. Additional studies should also include the

following: (1) examination of M2C2 task convergent

validity with a battery of gold-standard neuropsycho-

logical tests; (b) evaluation of digital screening measure

psychometrics in diverse underrepresented and under-

served populations; and (c) investigation of repeated

remoteassessmentmetrics, includingpractice effects and

intraindividual variability, for screening purposes.

Assessment (BHA) is a 15-min, tablet-based cognitive screening tool

being used globally for research in a variety of settings, languages, and

cultures.6,7,26 BHA subtests have shownmoderate to high correlations

with reference standard neuropsychological tests, as well as medial

temporal, frontal, parietal, and basal ganglia volumes.26 The BHA has

also demonstrated sensitivity to predict cerebral beta-amyloid (Aβ)
status in cognitively normal individuals and associations with regional

levels of tau positron emission tomography (PET) signal in the medial

temporal lobe.27,28 Harvard Aging Brain Study (HABS) researchers

have also developed and/or validated several digital assessments with

cognitively healthy adults, including tablet and digital pen-based mea-

sures. The HABS demonstrated that performance on a digitized clock

drawing measure, the DCTclockTM, is able to distinguish between nor-

mal cognition andMCI and is associated with cerebral amyloid and tau

pathology, suggesting utility for early detection.29 This task has also

recently been shown to effectively distinguish between MCI subtypes

(eg, amnestic versus dysexecutive) in amemory clinic sample.30

Finally, a number of studies are leveraging smartphones to measure

cognitive performance remotely, with the aim of identifying early

markers of decline.31 Smartphone-based digital assessments are

reliable and feasible for repeated assessments of cognitive function

in naturalistic settings.24,31–33 In one study, an ecological momentary

assessment protocol was employed among a diverse adult lifes-

pan sample (aged 24 to 65 years) where participants completed

smartphone-based cognitive tests up to five times a day for 14
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consecutive days.24 These measures were highly reliable and associ-

atedwith in-lab assessments, and adherence to the remote assessment

protocol was good. We have similarly demonstrated high daily adher-

ence and within-person reliabilities of average scores across sessions

ranging from 0.89 to 0.97 in a sample of cognitively unimpaired

older adults who completed brief app-based testing sessions three

times per day for several days.32 Additionally, older adults with MCI

have recently been found to have greater within-day variability

on smartphone-based measures of processing speed and memory

compared to their cognitively healthy counterparts.31 Within-day

variability versus day-to-day variability was found to bemore sensitive

to MCI, providing important insight to how repeated remote digital

assessments can be utilized in a clinical setting.31 Together, these

findings suggest that using mobile app-based cognitive assessments in

short bursts is feasible and reliable in older adult samples.

The overarching goal of this pilot study was to conduct an ini-

tial validation of novel smartphone-based remote assessments and

clinic-based digital assessments in a convenience sample of cogni-

tively healthy older adults. We compared the accuracy of these digital

measures to distinguish between participants with and without AD

pathological change (preclinical AD) determined via Aβ PET scan.

We also compared digital task accuracies with the Montreal Cogni-

tive Assessment (MoCA), a clinical cognitive screening tool sensitive

to MCI, as a reference standard. We hypothesized that remote dig-

ital assessments would demonstrate noninferior accuracy to detect

preclinical AD relative to clinic-based digital screening tools and the

MoCA. Further, we hypothesized that participants with AD patholog-

ical changewould show reduced learning curves on smartphone-based

visual working memory and episodic memory subtests over an 8-day

assessment period relative to those without AD pathological change,

revealing subtle cognitive impairment.

2 METHODS

2.1 Procedures

Participants were cognitively unimpaired older adults (ages 60 to

80) from the Butler Hospital Alzheimer’s Prevention Registry, a local

database of older adults interested in AD research at the Butler Hos-

pital Memory and Aging program. We used a targeted recruitment

to enroll up to 100 individuals with prior amyloid PET data (elevated

[Aβ+] or non-elevated [Aβ−] determined via clinical read) as well as

individuals without PET data. A total of 256 individuals were invited

to the study via email or phone call, and 146 consented and completed

online screening. Of those, 23 were excluded during screening. Three

participants withdrew from the study after enrollment. An enrollment

diagram and inclusion and exclusion table are included in the supple-

mentary material (Supplemental 1 and Supplemental 2, respectively).

Screeningwas conducted via online survey and themodifiedTelephone

Interview for Cognitive Status (TICSm).34 Unimpaired cognition was

defined as a TICSm cutoff score of ≥34.35 Participants completed an

exit survey online to provide feedback at the end of the study. A $20

gift card compensation was provided. The project was approved by the

Butler Hospital Institutional Review Board and all participants gave

consent.

2.2 Remote assessment

Android smartphones preloaded with the cognitive assessment app

were shipped to participants with a detailed use guide. All phones

were locked down to prevent use of other features (eg, web brows-

ing, camera). Cognitive tasks were completed for 8 consecutive days

in the Mobile Monitoring of Cognitive Change (M2C2) app, a cog-

nitive testing platform developed as part of the National Institute

of Aging’s Mobile Toolbox initiative (Figure 1).24 On each of the 8

days, participants completed brief (ie, 3 to 4 minutes) M2C2 sessions

within morning, afternoon, and evening time windows. Extra sessions

(optional or makeup) could be completed on day 9. Support for the

M2C2 assessments was logged during the remote phase only (n = 52).

A majority (30/52) of participants required a support check-in, but

only two required more than one. Top reasons for support included

the following: could not hear phone beep, logged out of the app, start

date mismatch/error, and date adjustment needed due to participant

reasons or shipping issues.

2.3 M2C2 tasks

We selected established M2C2 cognitive measures of visual work-

ing memory (Color Shapes), processing speed (Symbol Match),

and episodic memory (Prices) with prior evidence of sensitivity to

age and/or age-related neuropathology as described previously

(Figure 1).24,32 Each task took approximately 60 seconds to com-

plete. The Prices task is a forced-choice recognition task, where

participants incidentally encode grocery item-price pairs for later

recall while judging whether or not the item’s price is “good.”36,37

Recall trials begin immediately after the learning trials. Performance

is summarized as the proportion of correct responses on 10 recall

trials. The Color Shapes task is a visual array change detection task,

measuring intra-item feature binding, where participants determine

if shapes change color across two sequential presentations in which

the shape locations change.38,39 Performance is summarized with the

hit rate (proportion of correct identifications) and false-alarm rate

(proportion of misidentified stimuli).40 The Symbol Match task is a

speeded continuous performance task of conjunctive feature search,

where participants are asked to identify matching symbol pairs.32,41

Performance is summarized as the median reaction time to complete

the task across all trials (in milliseconds).

2.4 In-person assessment

After completion of the remote assessments, participants were sched-

uled for a single study visit to complete in-person neuropsychological
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F IGURE 1 Mobile assessment interface forMobileMonitoring of Cognitive Change tasks. Participants complete approximately 1minute of
survey questions at the start of each study session, including questions about sleep quality at the start of themorning session. The Prices task is
completed in two phases: the learning trials (phase 1), followed by immediate delay forced choice recognition trials (phase 2).

assessments, including the MoCA, TabCAT BHA, and DCTclockTM

(Linus Health). The MoCA is a 10-minute, paper-and-pencil-based

measure routinely used in both clinical practice and research to

screen for MCI and dementia in older adults.42 The TabCAT BHA is

a 15-minute, tablet-based cognitive screening test developed at the

University of California San Francisco Memory and Aging Center.26

The BHA consists of subtests of paired associates learning, executive

functions and processing speed, visuospatial skills, and language,

and has alternative forms developed for repeat assessment. The

DCTclockTM is similar to the standard paper-and-pencil clock drawing

test with command and copy conditions, but uses a digital pen to cap-

ture clock images drawn by the participant. A machine learning-based

scoring algorithm is used to evaluate the drawing process and features

and calculates a total score as well as other composite performance

metrics.43

2.5 Protocol adjustments for the SARS-CoV-2
pandemic

Due to SARS-CoV-2 pandemic restrictions, the first 52 participants

enrolled in the study completed only the remote portion of the study

and have been characterized previously.32 These participants were

later recontacted and invited to participate in the in-person study

visit as described above. A total of 40/52 participants completed this

follow-up in-person visit, which took place approximately 18 months

(M = 513.6 days, SD = 86.7 days) after they completed the remote

assessment (see Supplemental 1). The remainder of the sample (n=70)

enrolled in the study after restrictions were lifted and completed the

remote M2C2 sessions followed by the in-person study visit within

approximately 1 month of each other (M = 12.5 days, SD = 9.4 days).

Because participants from across all protocol phases were included
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in this analysis, a variable for protocol type (remote only, short delay

follow-up, and longdelay follow-up)was included inour statisticalmod-

els to groupparticipants and control for potential effects related to this

variation.

2.6 Analysis plan

We conducted a receiver operating characteristic (ROC) curve anal-

ysis and computed the area under the ROC curve (AUC) analyses

to characterize the accuracies of each digital test and the MoCA to

distinguish Aβ status, after controlling for age and protocol type. To

determine whether accuracy to distinguish Aβ status differed signif-

icantly between the digital cognitive tests and the MoCA, we used a

q-test to compare standardized regression coefficients, taking a nonin-

feriority approach.44,45 Noninferiority testing is a form of equivalence

testing, where researchers test if there is an absence of the smallest

effect size of clinical interest.44 An equivalence test would test if the

relationship between a given digital task andAβ status is equivalent (ie,
not higher or not lower than some pre-specified caliper) to the rela-

tionship between MoCA results and Aβ status. This test is two-sided,
by definition, and approached using two one-sided tests. Noninferior-

ity testing is analogous to a one-sided test, where the purpose is to

determine if one effect is “not worse” than another effect (eg, if the

relationship between a digital task and Aβ status is not weaker than

the relationship between MoCA results and Aβ status). If the results

show noninferiority between a digital task and theMoCA, then it could

be considered reasonable to use the digital task in place of the MoCA

when conducting research on Aβ and AD. We obtained the standard-

ized regression coefficients by fitting a probit regressionmodelwithAβ
status as the outcome, cognitive test as the predictor, and adjusting for

age and protocol type.We then converted the regression coefficient to

a polyserial regression coefficient, which can be Fisher z-transformed

to conduct the q-test.45 The value of q is defined as the difference

between two Fisher z-transformed correlations, where q = 0.10 is a

small effect, 0.30 is a moderate effect, and 0.50 is a large effect. For

the noninferiority analysis, we set a lower bound of 0.30 based on the

moderate effect size. Thus, if the lower 90% confidence interval on

the difference between standardized regression coefficients did not

exceed−0.30,we could conclude the digital taskwas not inferior to the

MoCA.44 The 90% confidence interval is used for this analysis, because

the noninferiority test is analogous to a one-sided statistical test.

3 RESULTS

3.1 Participant characteristics

Of the 122 participants who completed remote assessments, 73 had

Aβ PET status data (Aβ+ n = 25, Aβ− n= 48). To reduce the possibility

of a false negative in the Aβ− group, we restricted the allowable time

window between the PET date and study screening date for this group

to nomore than 3 years unless more recent biomarker confirmation of

status was available. This excluded four Aβ− participants, and thus our

final analytic sample consisted of 69 participants (see Supplemental 3).

There were no significant demographic differences between partici-

pants by Aβ PET status, with the exception of age, which was slightly

higher in the group Aβ+ group (see Table 1 demographics). There were

also no significant differences in Aβ status by protocol type used to

adapt to the SARS-CoV-2 pandemic. Finally, there were no significant

differences in baseline characteristics by protocol type,with the excep-

tion of age. The short delay group was somewhat younger (mean age

67.5) than the long delay (mean age 70.5) and remote only (mean age

70.1) groups (p= 0.03). The final sample (n= 69) had a mean age of 69

years (SD = 4.6), a mean education of 16.4 years (SD = 2.6), was 72%

female, and 91%White (Table 1).

Participants completed an average of 22.2 (SD = 2.9) out of 24

assigned M2C2 sessions (3 sessions per day for 8 days). Adherence

ranged from 100% on days 1 to 2, to 88% on day 7, and 65% on day

8. On average, the Aβ+ group completed 22.9 sessions (SD = 1.4)

and the Aβ− group completed 21.8 sessions (SD = 3.3). Performance

on all M2C2 tasks was significantly lower among participants with

older age. Women performed significantly better on working memory

and episodic memory tasks relative to men. There were no detectable

significant differences in task performance on the basis of race or edu-

cation. SeeTable2 for correlationsbetweendemographic variables and

cognitive assessments. Age, sex, and protocol type were controlled for

in subsequent analyses.

3.2 Task accuracies to detect Aβ status

To obtain summary-level area under the ROC curve (AUC) estimates,

we used logistic regression models with Aβ status as the outcome,

and cognitive tasks (ie, M2C2 tasks, MoCA, DCTclockTM, or TabCAT)

as predictors. Different models were run for each cognitive task.

Table 3 displays the AUC results for each cognitive test. Standardized

regression coefficients are reported for each task with and without

adjustment for age, sex, and protocol type. The adjusted baseline AUC

was 0.73. The Prices task showed the highest AUC amongM2C2 tasks

(AUC = 0.77) (Figure 2). The remaining M2C2 tests had AUCs of 0.73

(Figure 2). The TabCAT Favorites task showed the highest AUC among

in-person tests (AUC = 0.76), followed by TabCAT BHA Composite,

DCTclockTM (AUC= 0.73), and theMoCA (AUC= 0.74) (Figure 3). The

AUC analyses for M2C2 tasks were run with and without the inclu-

sion of the remote only participants (Supplemental 4) to allow formore

direct comparison between theM2C2 and in-person tasks. No qualita-

tive difference was observed between the analyses with and without

these participants.

3.3 Comparison with the MoCA

The righthand columns of Table 3 show the results of comparing the

M2C2 tasks, TabCAT, andDCTclockTM to theMoCA including q and the

q-test results. The q and the q-test results were calculated based on the



6 of 11 THOMPSON ET AL.

TABLE 1 Sample characteristics by amyloid status (N= 69).

Characteristic OverallN= 69a Aβ− n= 44a Aβ+ n= 25a p-valueb

Race – – – 0.44

American Indian or Alaska Native 1 (1.5%) 0 (0%) 1 (4.3%) –

Asian 0 (0%) 0 (0%) 0 (0%) –

Black or African American 2 (3.0%) 2 (4.5%) 0 (0%) –

More than one race 3 (4.5%) 2 (4.5%) 1 (4.3%) –

White 61 (91%) 40 (91%) 21 (91%) –

Unknown 2 0 2 –

Ethnicity – – – 0.55

Hispanic or Latino 2 (3.2%) 2 (4.8%) 0 (0%) –

Non-Hispanic or Latino 61 (97%) 40 (95%) 21 (100%) –

Unknown 6 2 4 –

Gender – – – 0.95

Female 50 (72%) 32 (73%) 18 (72%) –

Male 19 (28%) 12 (27%) 7 (28%) –

Age (years) 69.1 (4.6) 68.1 (4.0) 70.8 (5.0) 0.02

Education (years) 16.35 (2.60) 16.32 (2.63) 16.40 (2.61) 0.90

MoCA (total score) 27.10 (1.91) 27.32 (1.86) 26.67 (1.96) 0.21

TICSm (total score) 39.01(3.09) 39.43 (3.34) 38.28 (2.48) 0.14

Protocol type – – – 0.38

Delayed 31 (45%) 21 (48%) 10 (40%) –

Moderately delayed 30 (43%) 20 (45%) 10 (40%) –

Remote only 8 (17%) 3 (6.8%) 5 (20%) –

Abbreviations: Aβ, beta-amyloid;MoCA,Montreal Cognitive Assessment; TICSm, modified Telephone Interview for Cognitive Status.
an (%); Mean (SD).
bFisher’s exact test; Pearson’s Chi-squared test; One-way ANOVA.

age- and protocol type-adjusted standardized regression coefficients.

TabCAT Favorites and M2C2 Prices accuracy were both superior to

the MoCA (Table 3). TabCAT BHA composite was the only other met-

ric that achieved noninferiority to theMoCA. TheM2C2 Color Shapes

hit rate and Symbol match reaction time were both clearly noninferior.

DCTclockTM and Color Shapes False alarms were borderline inferior

(Table 3).

4 DISCUSSION

Digital cognitive assessments are increasingly utilized in clinical

research as a novel method to detect AD-related pathological and cog-

nitive changes that occur years before clinical diagnosis.14 The present

study sought to evaluate two primary aims: first—to examine whether

brief, smartphone-based digital cognitive assessments could be used to

distinguish cognitively normal individuals based on Aβ PET status; and

second—to compare several novel digital assessments (both remote

and in-person) to theMoCA, a standard paper-and-pencil-based cogni-

tive screening measure, in terms of their ability to distinguish cerebral

Aβ PET status.

Consistent with expectations and prior work, two digital tasks

assessing memory, the TabCAT Favorites task (administered by an

examiner via tablet) and the M2C2 Prices task (self-administered

remotely via smartphone), demonstrated the best ability to distinguish

Aβ PET status of all administered tasks. Both of these measures utilize

a paired associates learning paradigm consistently shown to be sen-

sitive to subtle AD-related cognitive impairment and progression of

cerebral Aβ burden on PET imaging.46,47 Our findings also show that

both the TabCAT Favorites task and M2C2 Prices task were superior

to the MoCA for distinguishing Aβ status. These findings suggest that
TabCAT Favorites andM2C2 Prices (or similar paired associates learn-

ing paradigms) may improve upon standard paper-and-pencil-based

screening measures for detecting early AD-related cognitive changes,

while providing advantages of brevity and easy administration with

digital testing. The TabCAT BHA composite score also demonstrated

noninferiority to the MoCA, suggesting that this may be an additional

measure to consider for further investigation.

In contrast, the DCTclockTM and the M2C2 Symbol Match and

Color Shapes tasks failed to demonstrate noninferiority to the MoCA

and had little to no association with Aβ status, findings that are

somewhat inconsistent with a small but growing literature suggest-
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TABLE 3 Area under the curve and regression coefficients for each cognitive test, comparison of regression coefficients (q) for each test
relative to theMoCA.

Cognitive Test AUCa

Unadjusted

standardized

regression

coefficients

Adjusted

standardized

regression

coefficientsa q 90%CI q-test p-value Noninferiority

In-person tests

MoCA (total score) 0.74 −0.12 −0.11 – – – – NA

TabCAT (favorites) 0.76 −0.40 −0.42 0.33 0.13, 0.54 2.72 0.01 Noninferior (superior)

TabCAT (composite) 0.73 −0.11 −0.15 0.04 −0.16, 0.24 0.33 0.75 Noninferior

DCTclockTM (total score) 0.73 −0.01 −0.01 −0.10 −0.303, 0.10 −0.82 0.41 Possibly inferior,
uncorrelated with Aβ+

M2C2 tests

Prices (accuracy) 0.77 −0.43 −0.41 0.33 0.12, 0.53 2.65 0.01 Noninferior (superior)

Color shapes (false alarm) 0.73 −0.17a −0.07b −0.18 −0.39, 0.02 −1.50 0.13 Possibly inferior

Color shapes (hit rate) 0.73 −0.09 −0.02 −0.09 −0.29, 0.11 −0.72 0.47 Noninferior, uncorrelated
with Aβ+

Symbol match (reaction time) 0.73 −0.01b 0.18b 0.07 −0.13, 0.28 0.59 0.56 Noninferior

Note: AUC is discriminating between amyloid positive (n = 25) and amyloid negative (n = 44) participants. Standardized regression coefficients refer to an

increase in the log odds of being amyloid positive per standard deviation difference in the test score. The statistic q refers to the difference between two

Fisher’s z transformed standardized regression coefficients, where 0.1 is a small effect, 0.3 is a moderate effect, and 0.5 is a large effect. The value of q is
defined as the difference between adjusted standardized regression coefficients (MoCA − other test), with q calculated based on the age- and protocol-

adjusted standardized regression coefficients. Noninferiority can be claimed if the 90%CI does not exceed−0.30.

Abbreviations: AUC, area under the curve; CI, confidence interval; M2C2,MobileMonitoring of Cognitive Change;MoCA,Montreal Cognitive Assessment.
aModels adjusted for age and protocol type (short delay follow-up, long delay follow-up, remote only). The adjusted coefficients are adjusted for age and

protocol type, whereas the unadjusted coefficients are not.
bCoefficient multiplied by−1 so higher scores indicate better performance instead of worse performance.

F IGURE 2 Receiver operating characteristic curves forMobileMonitoring of Cognitive Changemetrics distinguishing amyloid positron
emission tomography status.
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F IGURE 3 Receiver operating characteristic curves for in-person digital assessment measures distinguishing amyloid PET status. MoCA,
Montreal Cognitive Assessment; PET, positron emission tomography.

ing that these metrics may be sensitive to preclinical and prodromal

AD.11,29 Possible reasons for the discrepancy include the small sam-

ple size or fact that we were limited to dichotomous PET Aβ status

data instead of standardized uptake value ratio (SUVr) values. Previ-

ous studies using the DCTclockTM had continuous biomarker variables

and therefore may have been better suited to detect more subtle

associations.29 The absence of a relationship between Color Shapes

performance and Aβ status in this study is partially aligned with a

recent meta-analysis showing that group differences in working mem-

ory performance between individuals who were Aβ+ versus Aβ−were

much smaller than differences seen for global cognition and other

domains.48 Additionally, recent work that has examined color-shape

binding paradigms and their relationship with AD biomarkers found

stronger associations with tau thanwith Aβ.49

4.1 Limitations and future directions

The present study has several strengths including the head-to-head

comparison of mutliple digital tests, inclusion of Aβ PET scan data, and

use of a fully remote, app-based cognitive assessment protocol, which

allowed us to continue data collection despite research disruptions

during the SARS-CoV-2 pandemic. Despite these strengths, this study

is not without limitations that should be considered and addressed in

future work. In particular, more work is needed before these digital

measures may be ready for use as screening tools in general medical

settings. First, given that the study was conducted in a cognitively nor-

mal sample enriched for AD preclinical pathologic change, additional

work is needed to determine if task performance predicts not only Aβ
PET status, but additional clinical correlates such as conversion to cog-

nitively impaired states over time. Relatedly, the present study was

cross-sectional, and further research comparing digital assessments

to standard screening measures over time is necessary to assess the

reliability of the novel digital assessments for routine screening and

monitoring in real-world clinical settings. Another consideration is the

sociodemographic homogeneity of our sample. The majority of partic-

ipants were White individuals and had high levels of education. These

individuals also all had prior experience using smartphones. Finally, our

participants were recruited from an AD research registry and there-

fore were self-selected and motivated to contribute to AD research.

Together, these factors suggest that our findingsmay be limited in gen-

eralizability to the broader U.S. older adult population. Nonetheless,

this pilot study supports further protocol development and validation

efforts for larger studies trialing digital tools in broader settings, such

as primary care.

Our future studies plan to examine M2C2 task convergent validity

with a battery of gold-standard neuropsychological tests that mea-

sure the same cognitive domains, and evaluate the utility of digital

screeningmeasures inmore racially and ethnically diverse populations,

including Spanish-speaking individuals. We also seek to develop pro-

tocols for the use of these measures in primary care practices, with

attention to maximizing adherence and convenience for patients, and
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minimizing burden for healthcare providers. A unique advantage of

in-person digital assessments is their potential to reduce burden for

healthcare providers by automating much of the administration and

scoring process. Finally, there are advantages to conducting remote,

self-administered cognitive screenings via smartphone app, including

the ability to characterize subtle performance changes over time via

brief repeated testing sessions. More sensitive and ecologically valid

metrics of cognition are obtainable through high frequency remote

assessment, including examination of practice effects and intraindi-

vidual variability, which have previously demonstrated sensitivity to

cerebral Aβ burden andMCI. These types of analyses will be a focus of

future investigation in this study.31,50,51 Important feasibility and scal-

ability logistics to consider for future research include: (1) the need for

participants touse their own smartphones andother electronic devices

to complete assessments, and (2) the need to reduce the number of

assessment days tominimize participant burden.

5 CONCLUSIONS

This study demonstrated that select brief digital cognitive assessments

have the ability to distinguish individuals with elevated cerebral Aβ
from those without elevated cerebral Aβ. Further, our results sug-

gest that two measures, specifically the memory-based tasks in M2C2

and TabCAT, are superior to the MoCA, a gold standard paper-and-

pencil cognitive screening measure, in the prediction of Aβ PET status.

Although further validation in community and clinic-based samples is

needed, these early positive results suggest that remote digital cogni-

tive assessments offer opportunities for increased sensitivity to detect

early pathological changes in neurodegenerative disorders andmay be

suitable for more widespread cognitive screening.
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