)

Check for
updates

Alignment-Free Z-Curve Genomic Cepstral
Coefficients and Machine Learning
for Classification of Viruses

Emmanuel Adetiba'>®? , Oludayo O. OlugbaraS,
Tunmike B. Taiw03, Marion O. Adebiyi4, Joke A. Badejol,
Matthew B. Akanlel, and Victor O. Matthews'

! Department of Electrical and Information Engineering, College of Engineering,
Covenant University, Ota, Nigeria
emmanuel. adetiba@covenantuniversity. edu. ng
2 HRA, Institute for Systems Science, Durban University of Technology,
P.O. Box 1334, Durban, South Africa
3 ICT and Society Research Group, Durban University of Technology,
P.O. Box 1334, Durban 4000, South Africa
* Department of Computer and Information Science,
College of Science and Technology, Covenant University, Ota, Nigeria

Abstract. Accurate detection of pathogenic viruses has become highly
imperative. This is because viral diseases constitute a huge threat to human
health and wellbeing on a global scale. However, both traditional and recent
techniques for viral detection suffer from various setbacks. In codicil, some of
the existing alignment-free methods are also limited with respect to viral
detection accuracy. In this paper, we present the development of an
alignment-free, digital signal processing based method for pathogenic viral
detection named Z-Curve Genomic Cesptral Coefficients (ZCGCC). To evaluate
the method, ZCGCC were computed from twenty six pathogenic viral strains
extracted from the ViPR corpus. Naive Bayesian classifier, which is a popular
machine learning method was experimentally trained and validated using the
extracted ZCGCC and other alignment-free methods in the literature. Compar-
ative results show that the proposed ZCGCC gives good accuracy (93.0385%)
and improved performance to existing alignment-free methods.

Keywords: Alignment-free - Bayesian - Classifier - Naive - Pathogenic
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1 Introduction

Novel and re-emerging viruses continue to surface and unleash havocs on human
health worldwide. Some of these viruses spread rapidly across the globe and they
culminate in high morbidity and mortality. For example, the Severe Acute Respiratory
Syndrome (SARS) coronavirus caused a global pandemic in 2003, which resulted in
approximately 916 deaths and affected around 30 countries [1]. The most recent out-
break of Ebola Virus Disease (EVD), which was the largest in the history of the
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disease, started in December 2013 (a decade after the SARS epidemic) and continued
until April 2015 in countries like Southern Guinea, Liberia, Nigeria and Sierra Leone.
Reports on EVD indicated that there were a total of 15,052 laboratory confirmed cases
and 11,169 deaths [2]. Hence, the prompt and unambiguous detection of pathogenic
viruses is of critical importance in order to actively control and prevent viral diseases
outbreak.

Next Generation Sequencing (NGS) technologies provide unprecedented oppor-
tunities to researchers with respect to the development of new methodologies for viral
detection. This is because a plethora of viral genomic sequences from NGS based
studies are available in the public domain for unrestricted access by researchers.
However, researchers have opined that given the abundant NGS data, the analysis of
such data is the most challenging aspect of genomic based viral detection [3]. Thus, this
opens up a remarkable opportunity for researchers in the bioinformatics and Genomic
Signal Processing (GSP) [4, 5] fields. Genomic Signal Processing (GSP) is an emerging
branch of bioinformatics, which involves the use of Digital Signal Processing
(DSP) techniques for genomic data analysis and the use of the resultant biological facts
to develop system based applications [5].

The traditional methods that were mostly in use to identify the origin of genome
sequences are pairwise and multiple sequence alignment. However, sequence align-
ment method is fraught with difficulties for genome-wide comparative analysis of
viruses. This is because there is a high rate of divergence between different virus
sequences due to gene mutation, horizontal gene transfer as well as gene duplication,
insertion and deletion [8]. Likewise, there is currently no universal oligonucleotide that
is present in all viruses, which can be used for homologous searches against public
databases to detect viruses [3].

To address the problems in the alignment methods, several alignment-free methods
have been developed for viral detection using genomic sequences. These include
k-mers methods such as G-C content, dinucleotide composition profile and frequency
chaos game representation [9-12, 26]. Another category of alignment-free methods
which was recently developed by researchers is the genome space based methods [13,
14]. The Natural Vector (NV) representation and its different variants are representative
examples of genome space alignment-free methods [13, 15, 16]. However, the per-
formance accuracy using some of the k-mers and NV methods still leave room for
improvement [15, 16, 26].

In the study at hand, we developed GSP-based features named Z-Curve Genomic
Cepstral Coefficients (ZCGCC), as an alignment-free method that could be applied for
the classification of pathogenic viruses. To evaluate the developed features, we
extracted the genomic sequences of twenty six pathogenic viral strains from the Virus
Pathogen Database and Analysis Resource (ViPR) corpus [5, 6]. The twenty six viral
strains belong to four pathogenic viral species (namely - Enterovirus, Dengue,
HepatitisC and Ebola), which are currently attracting global attentions due to their
causation of deadly diseases [5]. Different configurations of the naive Bayes classifier
were trained and validated with the ZCGCC. Naive Bayes classifier was selected for
this study because of its attractive physiognomies, which have been widely explored
for accurate classification of genomic sequences [7].
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2 Materials and Methods

2.1 Dataset

Genomic sequences of twenty six viral strains were extracted from the Virus Pathogen
Database and Analysis Resource (ViPR) corpus [6] for this study. The extracted strains
belong to four pathogenic viral species namely the Ebolavirus, Dengue virus,
Hepatitis C and Enterovirus D68, which have been largely responsible for epidemic
disease outbreak. The available strains for each of these species are selected for the
study at hand to achieve an elaborate and more robust classification than the study in
[5]. The distribution of the extracted data presents a challenge known as imbalance
dataset, which is addressed with the random oversampling strategy in this study.
Furthermore, there are high variations in sequence length even for samples that belong
to the same viral strain. For example, the number of sequences for the Ebola Zaire
strain varies from 22 to 19,897 while EnterovirusH varies from 20 to 7,374. These huge
differences in the length of nucleotides within the same viral strain clearly illustrate the
reason why alignment based and some existing alignment free methods cannot offer
accurate viral detection [17]. Thus, this provides the rationale for an investigation of a
DSP technique in the current study. In total, 1,948 samples of viral strains were
extracted. Since each of the viral strains represent a class in the dataset, our experi-
mentation dataset consequently contains twenty six different classes.

2.2 Z-Curve Genomic Cepstral Coefficients

Deoxyribonucleic Acid (DNA) is a biomolecule that stores the digital information that
constitute the genetic blueprint of living organisms [9]. Each nucleotide in a DNA is
one of Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). DNA sequence
analysis using DSP methods requires mapping of nucleotides to appropriate numbers
before any other computational operations can be performed. The selection of the
representative numbers affects how well the properties of these nucleotides are reflected
for the detection of valuable biological characteristics [18]. The Z-Curve genomic
mapping method is selected in this study because of its reported strengths over other
competing methods [19, 20, 27, 28]. The steps for computing the ZCGCC being
proposed are represented in the block diagram shown in Fig. 1 and the computation
procedures are presented subsequently.

Step 1: The first block in Fig. 1 involves the computation of Z-curve from the input
nucleotide sequences. Z-curve is a three-dimensional space curve, which constitute a
unique numerical representation of a given DNA sequence [19]. A vital advantage of
the Z-curve representation over the other nucleotide numerical representation methods
is its reproducibility property. This implies that once the coordinate of Z-curve are well
defined, the corresponding nucleotides can be uniquely reconstructed [20]. Given a
nucleotide sequences that is read from the 5’ to the 3’ — end with N bases that are
inspected from the first base to nth base, the cumulative occurring numbers of each of
the bases A, C, G and T are represented by An, Cn, Gn and Tn respectively. For points
Q;, Vi=20,1, 2, ..., n—11in a 3-D coordinate system, the line that connects the
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Fig. 1. Functional block diagram of the Z-Curve Genomic Cepstral Coefficients (ZCGCC).

nodes QO(X07 Yo, ZO)’ Ql(xl’ Y1, Zl)’ Q2(X2’ Y2, 22)7 EERE) Qn(xn’ Yn» Zn)’ in a successive
manner is the Z-Curve of the nucleotide sequences being examined. These nodes are
mathematically represented as [20, 28]:

x[n] =24, +G,) —n Vn=20,1,2,..,N -1
y[n] = 2(An +C,) —n (1)
Zn] =24, +T,) — n

where Ay = Cp = Gy = Ty = 0 and xp = y9o =20 =0
In order to derive biological meaning from Eq. (1), it is normalized using
A, + C, + G, + T, = n, to obtain:

x[n] = (A,+G,) — (C,+T,)=R,—-Y, VYn=0,1,2,... N—1
yn] = (A, +C) — (G, +T,) =M, — K, (2)
Z[I’l] = (An +Tn) (Cn n) = Wn - Sn

where Rn, Yn, Mn, Kn, Wn and Sn are the distributions of the bases of purine,
pyrimidine, amino, keto, weak hydrogen bonds and strong hydrogen bonds respec-
tively [21]. The variables x[n], y[n] and z[n] in Eq. 2, which are also illustrated as the
outputs of the first block in Fig. 1 are the three independent components of the
Z-Curve, with each having distinct biological meaning. Component x[n] represent the
distribution of the bases of the purine/pyrimidine (i.e. A or G/C or T) for the first to the
nth input nucleotides and it possesses the following attributes:

Positive if R, > Y,
x[n] = < Negative if R, <Y, (3)
Zero ifR, =Y,
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The second component of Z-Curve, which is yn is the distribution of the bases of
the amino/keto group (i.e. A or C/G or T) along the first to nth input nucleotides and it
possesses the following attributes:

Positive if M, > K,
y[n] = < Negative if M, <K, (4)
Zero if M, = K,

The third component of Z-Curve, zn is the distribution of the bases of the weak
hydrogen bond/strong hydrogen bond (i.e. A or T/C or G) along the first to the nth
input nucleotides with the following characteristics:

Positive if W, > S,
z[n] = < Negative if W, <S, (5)
Zero if W, =8,

Step 2: The three Z-Curve components computed in the first step, which are streams of
digital signals obtained from the input nucleotides are transmitted to the second block
in Fig. 1. At this stage, Discrete Fourier Transform (DFT) is applied to the digital
signals individually as follows:

i2mkn

N—1
X[k] — Z _x[n]eijT Vk = O7 1,2,...7N* 1

Y =2 ynle 7 (6)

where X[k], Y[k] and Z[k] are the spectra of the digital signals. The power spectrum,
which is a quadratic combination of these spectra were computed for some selected
pathogenic viral sequences in this study and the outputs are presented in Sect. 4.

Step 3: Each of the nucleotide spectra computed in the previous step contains peaks
which represent the dominant frequency components in the input nucleotide signals.
The smooth curve that connects the peaks on a spectrum is referred to as the spectral
envelope. The spectral envelope carry the identity of the input nucleotide sequences
similar to what obtains in other DSP applications such as speech and mechanical fault
diagnosis [22, 23]. The separation of the spectral envelope and spectral details from the
spectrum is referred to as cepstral analysis. The required procedure for cepstral analysis
are represented with the third, fourth and fifth blocks in Fig. 1 and mathematically
depicted as follows:
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Caln] = Zlog( [k
¢yln] = Z log(Y[k])e¥* (7)
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Using Euler’s formulae, Eq. (7) becomes:

N-1 N-1
cxln) = Z() log(X [k]) cos(22k2) + j Eo log(X [k]) sin(%%)
“ 2nkn
cyln] = Zolog( k]) cos —i—]Zlog ) sin( N ) ®)
N-1 . N-1 .
eofn] = ;) log(Z[k]) cos(") +J ;) log(Z[k]) sin(=5*)
real cepstrum complex cepstrum

where each of ¢,[n], ¢,[n] and c,[n] represents the complex Z-Curve cepstrum of the x
[n], y[n] and z[n] components of the Z-Curve for the input nucleotides respectively.
The complex cepstrum is a combination of the real and imaginary cepstrum as shown
in Eq. (8). The real cepstrum is the log magnitude spectrum of each of the respective
signals while the imaginary cepstrum is the phase components. The spectral envelope
and spectral details are captured in the real cepstrum. It should be noted that the word
“cepstrum” was coined by reversing the first syllable of “spectrum”. Hence, in the
cepstrum domain, quefrency also stands for frequency and lifter is used in place of filter
[22]. The spectral envelope is the low quefrency components while the spectral details
are the high quefrency components in the cepstrum domain. Authors in other DSP
application domains have reported that the first 15 or 20 coefficients of a cepstrum
appositely represent the spectral envelope [24]. As depicted with the fifth block of
Fig. 1, the first 15 or 20 coefficients (spectral envelope) of the real cepstrum are liftered
using the window:

I, 0<n<L
win] = { 0, elsewhere )

where L is the cut off length of the liftering window, which can be either 15 or 20 as
earlier stated. The liftering window in Eq. (9) is multiplied with each of the real cepstra
sections of Eq. (8) to obtain:
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ci[n] = win] . cx[n]
ciyn] = win] . ¢yn] (10)

c[n] = win] . ¢;[n]

where ci[n], c;y[n] and ¢y [n] are the low quefrency coefficients of ¢,[n], ¢y[n] and c¢,[n]
respectively.

Step 4: In the final step depicted with the last block of Fig. 1, the low quefrency
cepstral coefficients obtained from Step 3 are concatenated to obtain the Z-Curve
Genomic Cepstral Coefficients (ZCGCC) in this study. The ZCGCC is a compact
genomic feature vector, which represent the distribution of the dominant components of
the bases of purine, pyrimidine, amino, keto, weak and strong hydrogen bonds in the
input nucleotide sequences. The ZCGCC feature vector is therefore an alignment-free
identity of the input nucleotide sequences and it can either be 45 or 60 elements in
length depending on if L in Eq. (9) is 15 or 20 respectively. Naive Bayesian classifier
hereafter in this study to determine the discriminatory potency of ZCGCC when it is
applied to extract features from the pathogenic viral dataset.

2.3 Experiments

In this study, three experiments were carried out on a PC with an Intel Core i5 CPU, of
2.50 GHz speed, 6.00 GB RAM, and runs 64-bit Windows 8 operating system. In all
the experiments, the forty five and sixty element ZCGCC were utilized and their
performances were compared using appropriate metrics. In the first experiment, the
naive Bayes classifier was trained with the ZCGCC extracted from the imbalance
dataset. In the second experiments, random oversampling was applied to obtain a
balanced dataset. The random oversampling strategy involves the addition of instances
to the minority class in a random manner [25]. Since the highest number of instances
for any class in the dataset is 100 (Table 1), we increased the number of instances for
all the minority classes (instances < 100) in the dataset to 100 to obtain the balanced
dataset. The ZCGCC feature vectors extracted from the balanced dataset were further
used to train the naive Bayes classifier. The third experiment involved the comparison
of the variant of ZCGCC that gave the best result in the second experiment using the
balanced dataset with two other alignment free methods in the literature, namely,
Electron Ion Interaction Pseudopotential — Genomic Cepstral Coefficient (EIIP-GCC)
[5] and Frequency Chaos Game Representation (FCGR) [26].

3 Results and Discussion

3.1 Power Spectrums of the Z-Curve Encoded Viruses

Figure 2 shows the distinct power spectrums of the different strains of Enterovirus,
HepatitisC, Dengue and Ebola viruses. Similar to the illustrations in Fig. 2, previous



Alignment-Free Z-Curve Genomic Cepstral Coefficients and Machine Learning

297

sssssssssss

nnnnnnnnnnn

..............

............

JETm

lw "

HepatitisCvruss

HepatitisCviuss

EbolaReston

Denguevirus1

Ebolasudan

A | sl
I EEEEK] "o ) ) o £
K K .
" Denguevirus3 Denguevirusd it AM ol

= o x:cnc‘xs\t
M e o o e om ow

Marburgivirus

Iw." m J LW”’ ”\"'

Fig. 2. Power spectrums of Z-Curve encoded Enterovirus, HepatitisC, Dengue and Ebola
viruses.

studies have also utilized power spectral of Z-Curve to graphically illustrate the
mitochondria DNA of homo sapiens [27] and lung cancer biomarker genes [28, 29].

3.2 Classifier Training Results

The results of the first experiment in which the imbalanced dataset was investigated are
shown in Table 1. Four different naive Bayes kernel functions were tested, namely
Gaussian, uniform, epanechnikov and triangular [30]. The sixty element ZCGCC gave
higher accuracies and low Misclassification Errors (ME) for each of the kernel func-
tions. Meanwhile, the triangular function ranked best (accuracy = 91.2218%, ME =
0.0878) for the sixty element ZCGCC. Two-sample t-test was further utilized to
investigate if the difference between the forty five and sixty element ZCGCC is sta-
tistically significant. The test statistic indicates that the null hypothesis of no difference
between the mean of the two sets of accuracies is rejected, p < 0.05 (p = 0.0278) as
well as for the two sets of MEs, p < 0.05 (p = 0.0280). This shows that the perfor-
mance of the sixty element ZCGCC is significantly better than that of the forty five
element ZCGCC for the imbalanced dataset.
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Table 1. Experimental results of the imbalanced dataset with ZCGCC.

Kernel function | ZCGCC (45 elements) | ZCGCC (60 elements)
Accuracy (%) | ME Accuracy (%) | ME
Triangular 89.5277 0.1047 1 91.2218 0.0878
Gaussian 89.0144 0.1099 | 90.6571 0.0934
Epanechnikov | 87.7823 0.1222 | 90.1437 0.0986
Uniform 87.1150 0.1289 | 89.3224 0.1068

Table 2 shows the results of the second experiment in which the balanced dataset
obtained through random oversampling was used to train the naive Bayes classifier.
The sixty element ZCGCC also gave higher accuracies and lower MEs for all the
kernel functions compare to its 45 elements counterpart. Similar to the first experiment,
the triangular kernel function gave the best overall performance result for the sixty
element ZCGCC (accuracy = 93.0385%, ME = 0.0696).

It is also remarkable that the performance results of the ZCGCC for the balanced
dataset in the second experiment are better than the corresponding ZCGCC in the first
experiment for all the kernel functions. This shows that random oversampling method
positively influenced the performance results of the ZCGCC. Since the sixty element
ZCGCC gave superior performances in the first and second experiments over the forty
element ZCGCC, we further investigated if the improvement of the sixty element
ZCGCC for the balanced dataset (second experiment) over the sixty element ZCGCC
for the imbalanced dataset (first experiment) is statistically significant. The null
hypothesis of no difference between the two sets of accuracies is rejected because
p < 0.05 (p = 0.0122) and the null hypothesis of no difference between the mean of the
two sets of MEs is also rejected, p < 0.05 (p = 0.0122). Thus, the performance results
of the sixty element ZCGCC using the balanced dataset is significantly better than
those for the imbalanced dataset.

Thus, the sixty element ZCGCC is proposed as an alignment free method for viral
pathogen detection in this study based on its overall best performance.

Table 2. Experimental results of the balanced dataset with ZCGCC
Kernel function | ZCGCC (45 elements) | ZCGCC (60 elements)

Accuracy (%) | ME Accuracy (%) | ME
Triangular 91.9615 0.0804 | 93.0385 0.0696
Gaussian 91.6538 0.0835|92.7308 0.0727
Uniform 90.6923 0.0937 | 91.2308 0.0877
Epanechnikov |90.6154 0.0938 | 92.3462 0.0765

The third experiment was carried out to compare the proposed alignment free
method in this study (i.e. sixty element ZCGCC) with two other alignment free
methods in the literature, namely EIIP-GCC [6] and FCGR [26]. Table 3 shows the
results of the third experiment for EIIP-GCC and FCGR using the balanced dataset.
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We deem it adequate to use the balanced dataset for the comparison in this third
experiment since it produced the best result for the proposed alignment free method in
the second experiment. The performance results of the proposed sixty element ZCGCC
in Table 2 for all the kernel functions are better than those of EIIP-GCC in Table 3 for
all the corresponding kernel functions. For instance, the triangular kernel function gave
the highest accuracy of 93.0385% (ME = 0.0696) for the ZCGCC whereas the accu-
racy obtained with the triangular kernel function for the EIIP-GCC was 84.5%
(ME = 0.1550). Furthermore, the statistical significance of the improvement in the
performance of the proposed ZCGCC over EIIP is statistically significant, p < 0.05
(p = 8.82e—006).

The performance result of the proposed ZCGCC in Table 2, which was obtained
using the triangular kernel function is also slightly better than the highest performance
result of the FCGR (accuracy = 92.9231%, ME = 0.0708).

Table 3. Experimental results of the balanced dataset with EIIP-GCC and FCGR

Kernel function | EIIP-GCC FCGR

Accuracy (%) | ME Accuracy (%) | ME
Epanechnikov | 84.6154 0.153892.9231 0.0708
Triangular 84.5000 0.1550 | 92.6923 0.0731
Uniform 83.1154 0.1688 | 92.3846 0.0762
Gaussian 82.7308 0.1727 | 91.8846 0.0812

It can be inferred from the results obtained in this study that the first 20 elements of
the real cepstrum is more representative of the spectral envelope for the genomic signal.
A previous study reported the development of ZCURVE_V, which is a gene finding
application for viruses using DNA sequences and the Z-Curve mathematical paradigm.
The authors reported that ZCURVE_V can accurately predict genes in viral genomes as
short as about 1000 nucleotides [19]. However, the alignment free ZCGCC method
proposed in this study detect viral genomes of both long and short lengths with
accuracy that compares favorably with existing alignment-free methods in the
literature.

4 Conclusion

We have successfully reported the development of ZCGCC, which is an alignment-free
method for virus detection in this paper. The sixty element ZCGCC gave superior
performance to the EIIP-GCC and comparable performance to FCGR. However,
ZCGCC provides remarkable advantages such as low dimension, global genome
analysis and low computational requirements, which make it a promising method for
developing diagnostic tool for detection of pathogenic viral diseases. Future works will
include an investigation of the ZCGCC for the detection of other organisms in the
prokaryotic and eukaryotic domains of life. We also hope to experiment with other
machine learning methods to investigate the possibility of improved performance.
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