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Abstract

A novel data mining procedure is proposed for identifying potential pathway-gene biomark-

ers from preclinical drug sensitivity data for predicting clinical responses to erlotinib or sora-

fenib. The analysis applies linear ridge regression modeling to generate a small (N~1000)

set of baseline gene expressions that jointly yield quality predictions of preclinical drug sen-

sitivity data and clinical responses. Standard clustering of the pathway-gene combinations

from gene set enrichment analysis of this initial gene set, according to their shared appear-

ance in molecular function pathways, yields a reduced (N~300) set of potential pathway-

gene biomarkers. A modified method for quantifying pathway fitness is used to determine

smaller numbers of over and under expressed genes that correspond with favorable and

unfavorable clinical responses. Detailed literature-based evidence is provided in support of

the roles of these under and over expressed genes in compound efficacy. RandomForest

analysis of potential pathway-gene biomarkers finds average treatment prediction errors of

10% and 22%, respectively, for patients receiving erlotinib or sorafenib that had a favorable

clinical response. Higher errors were found for both compounds when predicting an unfavor-

able clinical response. Collectively these results suggest complementary roles for biomarker

genes and biomarker pathways when predicting clinical responses from preclinical data.

Introduction

For over a decade claims have been made that intensive analysis of the human genome using

measurements of gene expressions, mutations and single nucleotide polymorphisms (SNPs)

will reveal cures for cancer. Yet as more data is generated some assert that little new biology

has been revealed [1], especially when distinguishing cancer causing from bystander mutations

[2], or developing therapeutic strategies based on combinations of gene signals within the

overall genomic landscape[3]. Research efforts that link gene signals from preclinical studies of

cultured cancer cells to outcomes from clinical trials of human cancers [4] may offer critically

sought after guidance for personalized gene-directed cancer therapies [5,6].
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Frequently cited strategies for linking preclinical and clinical data include a greater focus

on specific ‘controlling’ components of cancer biology, such as kinase signaling or DNA repair

pathways[7,8], or on developing novel informatic methods of data analysis[9,10]. Following

these suggestions, the method proposed here will study agents that putatively target kinase sig-

naling pathways, using a novel statistical analysis of publicly available preclinical and clinical

data. Two data sources will be examined; i) preclinical data, derived from measures of baseline

gene expressions within the Sanger Cancer Genome Project [11] (CGP, hereafter) and CGP

tumor cell drug sensitivity (CGP IC50, hereafter) and ii) clinical data derived from pre-treat-

ment patient baseline gene expressions and post-treatment survival data from the MD Ander-

son BATTLE (Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer

Elimination) studies[12]. The proposed goals are; i) to develop statistical models that use base-

line gene expressions to link preclinical CGP IC50 with BATTLE clinical efficacy, ii) to extend

these gene-based results to molecular function pathways and apply their associated pathway

fitness scores to identify potential pathway-gene biomarkers, iii) to provide quantitative assess-

ments of pathway-gene biomarkers as predictors of patient response, and iv) to offer literature

support for the roles of model-derived pathway-gene biomarkers in compound efficacy.

Although the limitations of gene expression-based methods for making successful clinical pre-

dictions have been noted[13], and, in some instances, effectively overcome by combining gene

expressions with mutation status[4], the analysis proposed here will strictly adhere to using

only baseline gene expressions for outcome predictions; thereby acknowledging the growing

evidence that many cancers lack important genomic defects, inclusive of mutations or SNPs

[2,3,14] and offering a perspective consistent with using preclinical gene expression status for

personalized therapeutic strategies.

The tyrosine kinase inhibitors (TKIs), erlotinib and sorafenib, selected for the BATTLE

studies, have proven survival benefits in the treatment of several cancers, including chronic

myeloid leukemia, breast, liver, renal and lung cancer [15]. Erlotinib’s putative target is EGFR,

while sorafenib is a multi-kinase inhibitor with reported activity against tyrosine protein

kinases, such as VEGFR, PDGFR, c-Kit receptors, and serine/threonine kinases, such as C-Raf

and B-Raf [16,17]. Evidence supports both compounds as multi-kinase targeting agents

[18,19]. Predictive models that link erlotinib and sorafenib preclinical to clinical results (and

vice versa) pose major challenges. For example, using ridge regression modeling (in the

CARET package[20]), ten-fold cross-validations for predicting preclinical CGP IC50 from

BATTLE gene expressions yielded good R2 values (observed versus model predicted) of 0.76

for erlotinib and 0.66 for sorafenib. Reversing this comparison found R2 values of 0.69 and

0.64 for erlotinib and sorafenib, respectively, for ridge regression predictions of BATTLE clini-

cal responses, using only BATTLE gene expressions. In contrast, using preclinical IC50 ridge

regression modeling to predict BATTLE clinical data or using clinical BATTLE ridge regres-

sion modeling to predict CGP IC50 yielded R2 values below 0.2 for each drug. These results

support the need for alternative predictive models that link preclinical IC50 to clinical response

data.

Additional challenges when linking preclinical and clinical data can be found within a

recently published method [21] that reported an excellent model for predicting BATTLE

patient Progression Free Survival (PFS or Months to Progression, hereafter) from preclinical

CGP IC50. Using ridge regression modeling[22,23] based on gene expressions derived from

the 15 most and 55 least sensitive CGP tumor cells, yielded an 89% classification accuracy for

predicting CGP IC50 of the training set, a strong p-value (p<3.0e-4) separating the sensitive

from insensitive tumor cells, with credible Spearman correlation statistics (rho = 0.64, p =

5.3e-4) when comparing model predictions to observed BATTLE PFS. However, small devia-

tions in tumor cell selection in the training model, for example using a model developed from
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the 10th percentiles of sensitive and resistant CGP tumor cells, yields poor (i.e. non-significant)

model predictions of BATTLE PFS. This result suggests that while not all models trained using

preclinical CGP IC50 data yield accurate prediction accuracies, an appropriate selection of

ridge regression models based on subset sampling of existing data can yield sufficiently good

predictive results to support the clinical feasibility of this approach.

Motivated by a FDA-led initiative examining poor predictions of complex endpoints, such

as cancer survival using ‘curated’ gene expression biomarkers, Li et al. [24] proposed a novel

strategy for improved model performance. Using the preclinical CGP IC50 and BATTLE data

for erlotinib and sorafenib, their statistical prediction model applied a pathway-based gene fil-

tering step, whereby biomarker gene selection was based on pathway linkages to these drugs’

Mechanism of Action (MOA). Using a splitting strategy between drug sensitive and resistant

tumor cells, statistical training models were derived consisting of combinations of tumor cells

and gene expressions that ‘capture consistent biomarker features across their training dataset’

(a panel of 240 human cancer cell lines, www.Eurofinspanlabs.com). Validation of their

approach found clinical prediction accuracies comparable to Geeleher et al.[21]. Although the

steps for pathway-based gene filtering and tumor cell selection were not precisely provided,

the benefit of pathway-based gene selection for subset sampling of the complete dataset

appears to be advantageous for model prediction.

Building from these previous results, a data mining strategy is proposed that develops

robust preclinical training models for clinical prediction. This strategy uses large-scale random

sampling of i) training models that strongly correlate preclinical CGP IC50 predictions with

model-averaged gene expressions, and ii) test models, using patient gene expressions applied

to each training model, that also yield clinical predictions that strongly correlate with BATTLE

clinical outcome. Biomarker genes are selected from models satisfying these joint criteria and

on their appearance in GO:molecular function pathways. A qualitative assessment of treatment

prediction accuracies for these biomarker genes is provided. The results will include;

1. identification of a subset of potential biomarker genes using correlative measures of good-

ness of fit for linear ridge model predictions of preclinical CGP IC50 and BATTLE clinical

outcome

2. analysis of linear ridge derived biomarker genes using

a. traditional statistical methods based on comparing genes within the distribution tails

(i.e. sensitive and resistant tumor cells) for preclinical CGP IC50 and BATTLE patients

with the best and worst clinical outcome

b. pathway-gene clustering of results from Gene Set Enrichment Analysis (GSEA)

c. application of pathway fitness scores for identifying important targeted pathways and

their genes (e.g. pathway-gene biomarkers)

3. development and quantitative assessment of predictors for BATTLE clinical outcome from

pathway-gene biomarkers based on

a. Random Forest(RF)-derived prediction errors

b. Receiver-Operator-Character (ROC) analysis

Collectively, these results will be shown to yield reliable predictive models of BATTLE clini-

cal outcome using preclinical CGP IC50 data.
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Methods

Data availability

The CGP data is publically available from http://www.cancerrxgene.org/downloads. The BAT-

TLE microarray and patient response data are publically available as Series GSE33072 in the

Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)).

Linear ridge regression

Linear ridge regressions were completed using the CRAN R package (ridge::linearRidge),

applying the ridge parameter selection method of Cule and De Lorio[25], on unscaled data.

CGP IC50 values were available in 258 and 285 tumor cells for erlotinib and sorafenib, respec-

tively; with 11,582 and 11,884 gene expressions from these tumor cells mutually available in

the CGP and BATTLE datasets. As a reference, linear ridge modeling using the complete set of

CGP IC50 and CGP gene expressions yielded Pearson correlation coefficients of model IC50

predictions versus CGP IC50 values of 0.91 (p = 2.2e-16) for erlotinib and 0.65 (p = 2.1e-16) for

sorafenib. In contrast, predictions of BATTLE clinical results using CGP IC50 derived linear

ridge models were quite poor, yielding Pearson correlation coefficients of -0.27(p = 0.19) and

0.16 (p = 0.33) for erlotinib and sorafenib, respectively. These results are consistent with the

previously discussed CARET-based finding of poor clinical predictions using preclinical CGP

IC50 data. In addition, Pearson correlations of CGP IC50 values with each tumor cell’s gene

expressions finds 1477 genes for erlotinib (p< = 0.05, FDR corrected) and only 1 gene for sor-

afenib. Although the former number of genes is manageable for pathway analysis, the latter is

not.

Following the designs of Geeleher et al. [21] and Li et al.[24] (and their apparent success),

subsets of CGP tumor cells and their gene expressions were analyzed. Simulations (N = 20 X

106), arbitrarily based on 20, 30 and 50 tumor cells and 200, 300 and 500 gene expressions,

were completed. Due to the large numbers of regression samples and the relatively shorter

compute times of linear versus logistic regression; the former was chosen for this analysis. The

goal is to develop predictive models of preclinical CGP IC50, using CGP gene expressions, then

apply this model, using the clinical gene expressions of these same genes, to predict BATTLE

clinical responses. Model evaluations are based on statistical p-values from correlative fittings

of model-derived predictions of preclinical CGP IC50 data and BATTLE clinical patient

response data. Two levels of correlative comparisons are made. The first uses the p-value for

the Pearson correlation of each linear ridge regression training model’s predicted preclinical

CGP IC50 against the model’s gene expressions, averaged across each tumor cell in the training

model (referred to hereafter as log(pval_IC50)). The second correlative comparison is based on

the p-value of Pearson correlations between the test model’s prediction of BATTLE clinical

response, using BATTLE patient-derived gene expressions in the training model, and the

observed clinical response, (referred to hereafter as log(pval_clinical)). Correlative compari-

sons required the range of model predicted CGP IC50 and model predicted BATTLE patient

responses to be at least 80% of their observed values.

Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA [26]) will be used to identify pathways associated with

subsets of genes identified from linear ridge regression analysis. GSEA results are limited to

only pathways with at least 2 shared genes; with application of a False Discovery Rate (FDR)

against a chance finding at the typical threshold of 0.05. GSEA reporting will be restricted to

the topmost significant (FDR q-score) pathways and will emphasize recurrent biological
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themes for these pathways rather than individual pathways. GSEA will be restricted to only the

GO:molecular function ontology, which involves task-related genes that function in transport,

binding and modifying molecules (e.g. phosphorylation) within the cell. These tasks are

regarded here as appropriate for examinations of pathways relevant to these therapeutic com-

pounds. See http://geneontology.org/page/molecular-function-ontology-guidelines for a com-

plete description of the GO:molecular function ontology.

Pathway fitness scores

Pathway fitness scores (H) are based on modifications to a previously developed method

described in Huang et al.[27]). This calculation is based on the t-statistic testing the signifi-

cance of differential tumor cell gene expressions between the upper and lower percentiles of

Months to Progression for BATTLE patients (referred to hereafter as the responder and non-

responder patients, respectively). The t-statistic for genes in a pathway and genes not in a path-

way are compared as two sample populations using the Kruskal–Wallis rank sum procedure.

H is generated using the rank sum for all correlation coefficients, then assessing the ranks for

correlation coefficients of genes in the pathway versus genes not in the pathway. Pathway fit-

ness represents a quantitative measure of concordance for within pathway gene expressions

when compared to all non-pathway gene expressions (see Appendix, Huang et al. [27] for fur-

ther details). A large absolute value of H indicates a strong difference between the two sample

populations. A positive H indicates pathway gene expressions that are mostly over expressed

in the responder versus non-responder BATTLE patients. A negative H indicates pathway

gene expressions that are mostly over expressed in the non-responder versus responder BAT-

TLE patients. Important genes can be assessed according to their contribution to the total

pathway fitness score by recalculating H in the absence of each pathway gene (i.e. leave-one-

out). The relative contribution of each gene to H, referred as delta(fitness), represents the aver-

aged contribution to pathway fitness scores for all pathways having this gene. Ordering these

results according to delta(fitness), then selecting the extreme (positive and negative) values

provides a means to identify only the topmost genes contributing to H. Reported values of

delta(fitness) will be limited to pathway gene expressions showing a modest (p< = 0.2) correla-

tion with clinical outcome.

Random Forests

Random Forests (RF) will be used to rate how well gene expressions, selected jointly from cor-

relative statistics and pathway fitness scores, predict patient response. Introduced in 2001 by

Leo Breiman[28,29], RF function as an ensemble learning method based on the aggregation of

many decision trees. The general idea is to build a large number of decision trees using a subset

of random samples from the training data (referred to as bagging for bootstrap aggregation)

then use a simple majority-rule vote for final decision making. The concept of aggregating the

results of many decision trees has resulted in a stable algorithm, robust to noisy data[29]. A

useful analogy of this process would be an orchestra composed of 1st, 2nd and 3rd musicians in

the brass, woodwind, and percussion sections. Any one musician’s mistake is less apparent,

since what you hear (i.e. your decision about the music) is based on many inputs. RF split the

data into the sample, validation and test datasets. Default RF build 500 trees using a randomly

sampled subset of the data. The validation dataset has not been used to build the specific model

but to see whether the model is better or worse than the previous model. Once satisfied with

tuning in terms of the validation dataset the model is applied to the test dataset for the final

unbiased estimate of prediction error. RF calculations are implemented in the R-package,
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using the RATTLE utility http://rattle.togaware.com/ for defining RF parameters and sam-

pling, validation and testing steps.

Two issues are important when assessing RF predictions. The first is due to RF inherent

random sampling of the data; which produces different results for each RF calculation (unless

the same seed is selected). This issue can be addressed by averaging RF predictions across

many simulations. The second issue involves class assignment; RF error rates for correct pre-

diction requires a priori class assignment, here, to either a responder or non-responder class.

Class assignments were determined by optimizing RF prediction errors for different splits of

the response data into responder and non-responder groups. These results define the optimal

boundary of class assignment for assessing the role of sample size in prediction errors.

Cytoscape analysis

To provide an alternative perspective of the results obtained here, pathway fitness scores and

pathway genes will be visualized by generating a Cytoscape [30] network interaction map. The

steps to accomplish this are;

1. build a non-redundant pairwise set of pathway genes selected from gene sets derived from

GSEA pathways

2. calculate all pathway fitness scores

3. select the upper and lower 20th percentiles pathway fitness scores

4. weight pairwise pathway genes with their pathway fitness score

a. generate a force directed network model using these weights

Results

Random sampling—Linear ridge modeling

The results plotted in Fig 1 display, on the x-axis, the log(pval_clinical) for the correlations of

model predicted versus clinical outcome and, on the y-axis, the log(pval_IC50) for the correla-

tion of model predicted preclinical CGP IC50 versus tumor averaged gene expressions. These

results represent 20 million simulations based on a training model using random samplings of

30 tumor cells and 300 genes. For reference there are n!/r!(n-r)! ~ 1041 combinations for select-

ing cells and ~10600 combinations for selecting genes. Admittedly, compromising with 20 mil-

lion samples represents a very small coverage of the complete cell-gene space. Notable in Fig 1

is the presence of training models that have good log(pval_IC50) for preclinical CGP IC50 pre-

diction and poor log(pval_clinical) for clinical prediction, and vice-versa. Extrapolating these

results to Geeleher et al. [21] and Li et al. [24] supports the existence of good training models

of preclinical CGP IC50 producing broadly variable results for goodness of fit to BATTLE clini-

cal outcome. Cross validation of model predictions based on training and test subsets derived

from each of the 30–300 cell-gene samplings were not completed in this analysis. Cross-vali-

dated models may shorten calculation times by eliminating the need for assessing pval_IC50

and pval_clinical, however are not expected to significantly influence the reported results.

The adaptation proposed here, to improve the limitations related to variations in prediction

accuracy, incorporates the quality of clinical prediction when selecting the most appropriate

samplings of gene-cell combinations for linear ridge regression. Rather than selecting one

training model then assessing its performance for clinical prediction and reporting only the

‘best’ results, a random selection of gene-cell combinations is used to build each training
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model, which in turn is tested for goodness of clinical prediction. This strategy is supported by

inspection of Fig 1, where relatively few instances exist for good log(pval_IC50) and good log

(pval_clinical) (shown as red circles in Fig 1). Ad hoc thresholds were adjusted for log(p-val-

ues) that define goodness of model correlative fits, combined with inclusion of positive and

negative predictive power (ppvclinical and npvclinical, respectively) for clinical response, to yield

a relatively small number of training models (53 training models for erlotinib and 48 training

models for sorafenib; see Fig 1 caption for details). This adaptation serves to eliminate false

positive training models (i.e. training models that have excellent correlations of predicted pre-

clinical CGP IC50 to model-averaged gene expressions, yet yield poor predictions of clinical

outcome, and vice-versa). Hereafter, this joint strategy for model selection will be referred to

as dual filtering.

Results for linear ridge regression models using alternative sizes of gene-cell combinations

found that smaller numbers of genes (n = 200) and tumor cells (n = 20) yielded results qualita-

tively similar to those displayed in Fig 1, yet with surprisingly few hits sharing a low log(pva-

l_IC50) and a low log(pval_clinical). Models based on larger numbers of gene(n = 500)-cell

(n = 50) combinations, with 20 million simulations and the same threshold for model accep-

tance as used in Fig 1, yielded no hits comparable (to the 30–300 cell-gene model) for either

erlotinib or sorafenib. This result may be due in part to the considerably larger gene-cell space,

when compared to using 300 genes and 30 cells, and the need for greater than 20 million ran-

domly-chosen samples. In summary, alternative numbers of gene-cell combinations for linear

ridge models may yield slightly different results, however it is believed that using 300 genes

and 30 tumor cells represents a reasonable compromise for adequately sampling gene-cell

Fig 1. Erlotinib (left panel) and sorafenib (right panel) for log(pval_clinical) of the Pearson correlation coefficient for each training model’s

prediction of the clinical response(x-axis) versus the log(pval_IC50) for the correlation coefficient of each model’s prediction of IC50 versus

the mean of each gene’s expression in the training model (y-axis). These results represent 20 million random picks of 30 tumor cells and 300

genes from the CGP database of IC50 values for erlotinib and sorafenib. For erlotinib, only 53 simulations achieved the arbitrary threshold requirements

of log(pval_IC50) < -11, log(pval_clinical) < -6, ppvclinical < 0.45 and npvclinical<0.45 and. These models appear as the red circles in the left panel. For

sorafenib only 48 simulations achieved the threshold requirements of log(pval_IC50) < -8.5, log(pval_clinical) < -8.5, ppvclinical < 0.65 and npvclinical <
0.65). Ppv and npv calculations require selection of a boundary between good and poor responses. These calculations use the mean of the predictive

values as this boundary. Evident from this figure is the occurrence of training models with excellent correlative statistics that fail to meet the thresholds

for ppv and npv.

https://doi.org/10.1371/journal.pone.0181991.g001
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space that yield numbers of tumor cells and genes comparable to Geeleher et al. [21] and Li

et al.[24]. Extensive simulations (>20 million) using randomized data produced no hits with

log(p-values) below the dual filtering thresholds described in the caption to Fig 1. This result is

not surprising since it is unlikely that a training model based on randomized CGP IC50 values

would yield significant correlative statistics. The importance of this result supports the claim

that models jointly sharing strong values for pval_IC50 and pval_clinical are distinct from ran-

domly selected cell-gene combinations.

Erlotinib—Linear ridge modeling

Fig 2 plots the Months to Progression for the 25 patients in the BATTLE study versus the average

predicted chemosensitivity for the 53 training model’s predictions of the test data. The Pearson

Fig 2. Plot represents the average performance of the 53 linear ridge models selected by dual filtering of random simulations based on

goodness of fit of the predicted preclinical erlotinib IC50 data with model averaged gene expressions (training data), and goodness of fit

to the clinical outcome of BATTLE patients receiving erlotinib (test data). X-axis represents the model predicted chemosensitivity when using

the BATTLE gene expressions in the training model. Y-axis represents the 25 patient’s observed Months to Progression. Correlative statistics

appear in the upper right.

https://doi.org/10.1371/journal.pone.0181991.g002
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correlation for this plot is -0.68, with a p-value for significance of 1.68e-4. On average, this correla-

tion achieves a statistical significance exceeding that found by Geeleher et al. [21] and Li et al.[24].

The performance statistics for the 53 accepted regression training models are listed in S1 Table.

In summary, an average correlation coefficient of -0.62 was observed for each training model’s

prediction versus observed Months to Progression for the BATTLE data, with an average log(p-

value) of -6.97 (p = 1.20e-3). Average ppvclinical and npvclinical values for these models were 0.54

and 0.79, respectively. Pearson correlations of model predicted CGP IC50 to observed CGP IC50

were all above 0.97, with p-values in the 10−14 to 10−19 range. An average correlation coefficient of

0.75 was observed for the training model’s prediction of CGP IC50 versus the model-averaged

gene expressions, with an average log(p-value) of -13.58 (p = 4.00e-6).

Fisher’s exact statistics were used to assess whether the 53 linear ridge models were enriched

for tumor cell type (n = 258) or tumor tissue type (n = 17). Sixty-two percent (161/258) of the

tumor cells screened against erlotinib were included in at least one in the 53 linear ridge mod-

els. A Fisher’s exact test finds the most statistically significant tumor cell enrichment for TE-12

(upper_aerodigestive) (p<0.0037), OS-RC-2 (renal) (p<0.0122), TE-6 (upper aerodigestive)

(p<0.0122), TK10 (renal) (p<0.012), LB996 (renal) (p<0.0298), EW-12 (bone) (p<0.033) and

NCI-H2171 (lung) (p<0.033). Assessing enriched tumor tissue types finds blood (p<0.00147)

and kidney (p<0.000833) to be enriched. For reference, Fisher’s exact tests for tissue type

enrichment within the 50 most erlotinib sensitive tumor cells finds enrichment for only renal

(p<0.048) tissue, while only lung (p<0.0046) and blood (p<0.015) were enriched in the 50

most erlotinib resistant tumors. These results support a slight enrichment in renal tumors for

the linear ridge models with a broad sampling of all tumor types.

Erlotinib—Statistical analysis for potential biomarker genes

Over 3k genes appear in the topmost 53 training models, with 741 genes existing in at least two

of these training models. These 741 gene expressions constitute potential biomarker genes for

jointly separating erlotinib CGP IC50 chemo-sensitive from chemo-resistant responses, and

erlotinib treated BATTLE responders from non-responders. These 741 genes can be analyzed

using traditional Student’s t-tests, based on comparisons of the upper and lower 30th percen-

tiles of preclinical CGP IC50 and BATTLE patient responses. Two-hundred and twenty-four

differential gene expressions (of the 741 regression-derived genes) are found based on a Stu-

dent’s t-test (p<0.05) using erlotinib’s CGP IC50’s sensitive versus resistant responses and 129

differential gene expressions are found based on Student’s t-tests comparing erlotinib’s BAT-

TLE patient responders to non-responders. However, these gene sets fail to intersect. In sum-

mary, GSEA pathways are found that associate preclinical CGP IC50 chemo-resistance and

poor BATTLE patient responses to TRANSPORTER pathways, and preclinical CGP IC50

chemo-sensitivity and better BATTLE patient responses to GSEA pathways involving known

targets of erlotinib; including LIGASE, OXIDOREDUCTASE and DIMERIZATION associ-

ated pathways. Within this gene set is EGFR, which functions in ubiquitin protein ligase bind-

ing and protein dimerization, and is also consistent with erlotinib targeting the oxidoreductase

activity of cytochrome P450 (http://www.drugbank.ca/drugs/DB00530). Although these results

fail to identify a common set of genes as potential biomarkers, GSEA identifies common GO:

molecular function pathways that associate erlotinib preclinical CGP IC50 with BATTLE clini-

cal outcomes. A detailed discussion of this analysis appears in S1 Text.

Sorafenib- Linear ridge modeling

Fig 3 plots the Months to Progression for the 37 BATTLE patients receiving sorafenib versus

the average model predictions of chemosensitivity for the 48 linear ridge models passing the p-
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value thresholds for goodness of fit to each dataset. The Pearson correlation coefficient for the

model predictions versus Months to Progression of -0.75 is highly significant (p = 1.19e-7).

The statistics for the performance of the 48 accepted training models are listed in S2 Table. In

summary, an average Pearson correlation coefficient of -0.61 was observed for the linear ridge

model’s prediction of Months to Progression to that observed from the BATTLE clinical data.

The average p-value for these correlations was 8.26e-5 (log(p-value) = -9.71), with averages of

0.69 and 0.74 for ppvclinical and npvclinical, respectively. The Pearson correlations of model pre-

diction to observed CGP IC50 values were all above 0.97, with p-values in the 10−14 to 10−19

range. An average correlation coefficient of 0.67 was observed for the training model’s predic-

tion of CGP IC50 and the model’s averaged gene expression values, with an average log(p-

Fig 3. Plot represents the average performance of the 48 linear ridge models selected by dual filtering of the random simulations based

on goodness of fit of the predicted preclinical sorafenib IC50 data with averaged gene expressions (training data) and goodness of model

fit to the clinical outcome for 37 BATTLE patients receiving sorafenib (test data). X-axis represents the model predicted chemosensitivity when

using the BATTLE gene expressions in the training model. Y-axis represents the patient’s observed Months to Progression. Correlative statistics

appear in the upper right region of the plot.

https://doi.org/10.1371/journal.pone.0181991.g003
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value) of -9.98 (p = 7.82e-5). Fisher’s exact statistics were used to assess whether the 48 linear

ridge models were enriched for tumor cell type (n = 285) or tumor tissue type (n = 17). Sev-

enty-eight percent (223/285) of the tumor cells screened against sorafenib were included in at

least one in the 48 linear ridge models. Fisher’s exact tests for tumor cell enrichment of these

linear ridge models finds enrichment for HOP-62 (NSCLC:adenocarcinoma) (p<0.0049), D-

247MG (glioma) (p<0.0071), MRK-nu-1 (breast) (p<0.0098), OS-RC-2 (renal) (p<0.0135),

TE-5 (upper_aerodigestive) (p<0.0159), J-RT3-T3-5 (leukemia) (p<0.0186) and SR (blood)

(p<0.0186). Assessing enriched tumor tissue types, however, finds only lung (p<0.032) to be

enriched. For reference, Fisher’s exact tests for tissue type enrichment within the 50 most sora-

fenib sensitive tumor cells finds blood (p<0.0018) and lung (p<0.0315) tissues to be enriched,

while only lung tumors (p<0.013) were enriched in the 50 most sorafenib resistant tumors.

These results support a slight enrichment in lung tumors for the linear ridge models and a

broad sampling of all tumor types.

Sorafenib—Statistical analysis for potential biomarker genes

As above with erlotinib, the aim is to identify subsets of gene expressions that separate sorafenib

chemo-sensitive from chemo-resistant preclinical CGP IC50, and also separate sorafenib treated

BATTLE responders from non-responders. Eight-hundred and fifty-one genes represent the most

frequently occurring genes in sorafenib’s 48 linear ridge models. Comparing the upper and lower

30th percentile of significance scores finds 104 differential gene expressions (of the 851 genes)

based on sorafenib’s preclinical CGP IC50’s and 90 differential gene expressions based on sorafe-

nib’s BATTLE patient responses, with only 11 genes in common. Summarizing these results; genes

relatively over expressed in the chemo-sensitive versus chemo-resistant CGP IC50 tumor cells finds

GO:molecular function pathways for RECEPTOR, TRANSFERASE and LIGASE ACTIVITY. No

GSEA overlaps were found for differentially expressed genes associated with CGP IC50 chemo-

resistance. In contrast, GSEA for genes relatively over expressed in BATTLE responders versus

non-responders finds GO:molecular function pathways; RECEPTOR ACTIVITY and LIGAND_-

DEPENDENT_NUCLEAR_RECEPTOR_ACTIVITY. Genes relatively over expressed in BATTLE

non-responders versus responders are associated with DNA BINDING and KINASE BINDING

pathways. A broad interpretation of these findings suggests an association between sorafenib BAT-

TLE responders and CGP IC50 chemo-sensitivity; for pathways associated with over expressed

genes known to be targets of sorafenib. As observed with erlotinib, however, this type of analysis

yields useful results, yet fails to find a unified set of biomarker genes that establish linkages between

preclinical CGP IC50 data and BATTLE clinical responses. A detailed discussion of this analysis

appears in S2 Text.

Erlotinib—GSEA for 741 genes derived from linear ridge regression

The 741 genes derived from linear ridge regressions for erlotinib are common to only a small frac-

tion of genes derived when applying the traditional Student’s t-tests described above, yet, these

genes are jointly associated with strong correlations of preclinical CGP IC50 to model-averaged gene

expressions and strong correlations of model predicted to BATTLE observed clinical responses (cf.

Fig 1). GSEA of these 741 genes finds two broad categories: one consisting of TRANSPORTER_AC

TIVITY and the other consisting of KINASE_ACTIVITY. Given that erlotinib is a TKI (tyrosine

kinase inhibitor) it is reassuring to find TRANSMEMBRANE_RECEPTOR_PROTEIN_TYROSI-

NE_KINASE_ACTIVITY within the GO:molecular function pathways having the lowest FDR q-

values for this gene set (see S3 Table for the complete list of GSEA pathways). Furthermore, seven

additional GSEA pathways are found that represent MEMBRANE_KINASE_ACTIVITY; inclusive

of pathways involved in TRANSFERRING_PHOSPHORUS_CONTAINING_GROUPS. The
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other category of GO:molecular function pathways, consisting of TRANSPORTER_ACTIVITY,

appears in six GSEA entries.

Two-hundred and forty-one of the 741 genes exist within topmost 100 GSEA pathways hav-

ing a FDR q-value below 0.05. These pathway-gene associations can be clustered (Minkowski

distance metric, Wards linkage) in both dimensions; where pathway genes are assigned a one

for present and zero otherwise. Clustering consolidates GSEA pathways having the most simi-

lar gene members and genes having the most shared appearance in pathways. Fig 4 displays

the clustered results for the subset of pathway-gene clusters having the highest overlap of

shared members (see S1 Fig for the clustered plot of all 100 pathway-gene associations). Path-

way-gene clusters (referred to hereafter as meta-clusters) are organized from top to bottom in

Fig 4. The first meta-cluster consists of TRANSPORTER and CHANNEL_ACTIVITY related

GO:molecular functions (rows 1–14). The second meta-cluster consists of KINASE_ACTIV

ITY, NUCLEOTIDE_BINDING, GTPase, PHOSPHATASE and HYDROLASE pathways

(rows 15–29). Each of these meta-clusters share common genes, however, few genes are com-

mon to both meta-clusters. GSEA pathways with poorer FDR q-values, found in the lower por-

tion of Fig 4, involve less similar sets of pathway genes when compared to the groups near the

top. However, the LIGASE (rows 34–38), HYDROLASE (rows 50, 52 and 54), TRANSCRIP-

TION and DNA BINDING (rows 55,56) and DIMERIZATION (rows 59,60) pathways may

also represent molecular functions important for the efficacy of erlotinib. The erlotinib bio-

marker genes EGFR and ALK [31] appear in pathways found in rows 15–29, with EGFR also

found in the DIMERIZATION pathways. Overall, 6 tyrosine kinases (EGFR, KDR, LTK, ALK,

ROR1 and TIE) appear in pathways found in rows 15–23. Although noted as a tumor suppres-

sor when mutated[32], ARID1A’s appearance in the DNA BINDING pathway is consistent

with the potential role of chromatin remodeling in selected cancers[33,34].

Pathway fitness scores are shown as the vertical bar plot at the right of Fig 4. These results

find negative H values to be associated with meta-cluster(rows 1–14) (TRANSPORTER and

CHANNEL_ACTIVITY) and meta-cluster(rows 48–56) (HYDROLASE, PHOSPHATASE,

TRANSCRIPTION and DNA BINDING ACTIVITY) and positive H values to be associated

with pathways for KINASE_ACTIVITY, meta-cluster(rows 15–23), NUCLEOTIDE_BIND

ING, meta-cluster(rows 24–28), PHOSPHATASE and GTPase_ACTIVITY, meta-cluster

(rows 29–32), LIGASE_ACTIVITY, meta-cluster(rows 33–38) and ION_BINDING, meta-

cluster(rows 39–42).

Table 1 summarizes genes identified as contributing the most to each pathway fitness

score. An illustration of using positive and negative pathway fitness scores for identifying

potentially important genes is provided here. Using as an example the meta-cluster (rows 15–

23) with positive pathway fitness scores. All 23 genes in this meta-cluster are in the TRANS-

FERASE_ACTIVITY_TRANSFERRING_PHOSPHOROUS_CONTAINING_GROUPS path-

way, with 40% or more of these genes appearing in the other 8 pathways in this meta-cluster.

The genes associated with the 9 pathways in this meta-cluster finds STK11, STK10, MPP3,

LTK, DGKE, HIPK3, MARK1 and CPNE3 as contributing the most to pathway fitness scores.

Fig 5 summarizes these results. The bottom 4 genes in this list are relatively under expressed

in the responder versus non-responder patients, while the top 4 genes are relatively over

expressed in the responder versus non-responder patients. Literature supports roles for these

genes in erlotinib efficacy. STK11(also known as LKB1)-deficient cells exhibit enhanced sensi-

tivity to erlotinib in vitro and in vivo, an effect associated with alterations in energy metabolism

and mitochondrial dysfunction, resulting in impaired ATP homeostasis and increased ROS

[35]. Relative STK11 under expression in responders versus non-responders is consistent with

this finding. LTK shares a high degree of homology (nearly 80% identical) with ALK [51,52]

and is thought to promote growth and survival through activation of RAS/MAPK and PI3K/
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AKT signaling pathways[53]; an effect that would be expected to be diminished with relatively

lower expression in responders compared to non-responders. MPP3 is member of the family

of membrane-associated proteins that interact with the cytoskeleton and regulate cell prolifera-

tion, signaling pathways, and intracellular junctions. PI3K can be activated by forming a com-

plex with MAGuK-family proteins MPP3[54]. Studies exploring the activation of PI3K/AKT/

mTOR signaling in HPV-induced cancers find that erlotinib can induce growth delay of xeno-

grafted HPV-containing cervical carcinoma cells [55]. Under expression of MPP3 in BATTLE

responders could contribute to reduced activation of PI3K and enhanced erlotinib efficacy. A

detailed discussion of this analysis appears in S3 Text.

Fig 6 displays the pathway fitness results for the genes selected in meta-cluster (rows 49–

55), with negative fitness scores. This meta-cluster has two genes as top ranked contributors to

pathway fitness (DUSP6 and SBF1), both relatively over expressed in non-responders versus

responders. DUSP2 (Dual Specificity Phosphatase 2) is a member of the dual specificity

Fig 4. Clustered plot of the topmost significant GSEA pathways and the genes appearing in each pathway. Rows (GSEA Pathways) and

columns (one’s for genes in each pathway, zeroes otherwise) have been clustered using a Minkowski’s distance metric and Wards linkage. Pathway

genes in each row are colored spectrally by their log(FDR q-value), (blue to red, most to least negative) as listed in S3 Table. FDR q-values were not

used for clustering, only the presence or absence of pathway genes. The top 61 GSEA pathways were arbitrarily selected for display to enhance

readability of labels. The complete clustered plot for all significant (FDR <0.05) GSEA pathways appears in S2 Fig. The pathway fitness scores, H,

appear in the vertical bar plot at the right. A minimum of 5 pathway genes are required for a non-zero fitness score.

https://doi.org/10.1371/journal.pone.0181991.g004
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Table 1. Summary of the potential erlotinib biomarker genes identified using pathway fitness scores. Column 1 identifies the meta-cluster as viewed

in Fig 4. Column 2 list whether the pathway fitness score is positive (+) or negative (-). Column 3 lists the gene. Column 4 lists the differential gene expression

comparing responders(R) to non-responders(N). Over expression in responders is indicated by a +/-, and vice versa for over expression in non-responders.

Column 5 lists the putative MOAs.

Meta-cluster H Gene Expression (R/

N)

Putative MOA

Rows 15–23,24–

32,33–38

+ STK11,

STK10

-/+ ATP homeostasis and increased ROS [35].

Rows 15–23 + MPP3 -/+ cytoskeleton, cell proliferation, signaling pathways, and intracellular junctions.

Rows 15–23 + LTK -/+ promote growth and survival via RAS/MAPK

Rows 15–23,24–32 + HIPK3 +/- transcriptional regulation, signal transduction, and regulation of protein stability[36]

Rows 15–23,24–32 + MARK1 +/- cell cycle activation and DNA repair[37]

Rows 15–23,24–32 + DGKE +/- regulates protein kinase C (PKC), a family of serine/threonine kinases that has been shown to be

involved in EGFR and KRAS signaling[38]

Rows 15–23 + CPNE3 +/- ERBB2-mediated tumor cell migration [39]

Rows 24–32 + SMARCA5 +/- helicase and ATPase activities[40]

Rows 24–32 + RUVBL1 +/- helicase DNA-binding partners involved in EGFR-mediated transcriptional activation[41]

Rows 33–38 + ANAPC2 -/+ ubiquitin ligase essential for mitotic progression[42]

Rows 33–38 + GCLM -/+ ER stress response[43]

Rows 33–38 + WWP1 -/+ E3 ubiquitin ligase that targets HER4 [44]

Rows 33–38 + MMP16 -/+ extracellular matrix, migration and invasion[45]

Rows 1–14 - CACNG5 -/+ trafficking and channel gating[46]

Rows 1–14 - KCNJ3 -/+ cell proliferation[47]

Rows 1–14 - NOX5 -/+ regulation of redox-dependent processes[48]

Rows 49–55 - DUSP6 -/+ regulate MAPs[49]

Rows 49–55 - SBF1 -/+ growth and differentiation[50]

https://doi.org/10.1371/journal.pone.0181991.t001

Fig 5. Erlotinib meta-cluster (rows 15–23): The middle panel displays the expression profiles for the genes in meta-clade rows

15–23. Expressions are ordered vertically according to their contribution to the total pathway fitness score, delta(fitness), which is

displayed in the left panel. The right panel displays the statistical significance (p_value) for either the t-test comparing the upper and lower

20th percentiles of patient responses or the correlation of gene expression to Months to Progression (shown above the middle panel).

https://doi.org/10.1371/journal.pone.0181991.g005
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protein phosphatase subfamily that inactivates their target kinases by dephosphorylating both

the phosphoserine/threonine and phosphotyrosine residues. They negatively regulate mem-

bers of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK,

p38), which are associated with cellular proliferation and differentiation. Their relative under

expression in BATTLE responders versus non-responders is consistent with the roles of dual

specificity phosphatases in tumor responses to drugs that target Ras/ERK[49]. SBF1 (SET

Binding Factor 1) is a member of the protein-tyrosine phosphatase family. However, the

encoded protein does not appear to be a catalytically active phosphatase because it lacks several

amino acids in the catalytic pocket. This protein contains a Guanine nucleotide Exchange Fac-

tor (GEF) domain which is necessary for growth and differentiation [50]. Over expression of

GEFs in erlotinib-resistant cell lines increased NFκB activation in several different types of

cancer cells [56].

Sorafenib—GSEA for 851 genes derived from linear ridge modeling

GSEA finds that 309 of the 851 most frequently appearing genes associated with the 48 linear

ridge regressions are found within the GO:molecular function pathways with acceptable FDR

q-values. Fig 7 plots the clustered results (Minkowski distance metric, Wards linkage) for

these pathways. As found with erlotinib, these results find better log(FDR q-values) and more

shared pathway:gene members in the upper portion of the plot. Meta-clusters with positive fit-

ness scores consist of KINASE related pathways (rows 1–5), RECEPTOR_ACTIVITY and

ATP or NUCLEOTIDE_BINDING pathways (rows 11–12,13–18) and CHEMOKINE_AC-

TIVITY pathways (rows 40–43). Meta-clusters with negative fitness scores consist of TRANS-

PORTER pathways (rows 6–10) and KINASE_BINDING pathways (rows 35–39). Noteworthy

in Fig 7 are GSEA pathways associated with RECEPTOR_ACTIVITY (rows 11–12) and

NUCLEOTIDE_BINDING (rows 13–18) also sharing genes found at the topmost meta-cluster

associated with KINASE_ACTIVITY (rows 1–5).

Fig 6. Erlotinib meta-cluster (rows 49–55): The middle panel displays the expression profiles for the genes in meta-cluster(rows

49–55). Expressions are ordered vertically according to their contribution to the total pathway fitness score, delta(fitness), displayed in the

left panel. The right panel displays the statistical significance (p_value) for either the t-test comparing the upper and lower 20th percentiles of

patient responses or the correlation of gene expression to Months to Progression (shown above the middle panel).

https://doi.org/10.1371/journal.pone.0181991.g006
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Table 2 summarizes the pathway-fitness-selected genes for the sorafenib meta-clusters. An

illustration of using positive and negative pathway fitness scores for identifying potentially

important genes is provided below. An example meta-cluster with positive pathway fitness

scores, appearing in meta-cluster (rows 1–5) finds TYK2, SPHK1, EFNA4, TRIB1 and

NEK11. The first three genes are relatively under expressed in sorafenib responders versus

non-responders while the latter two genes are relatively over expressed in sorafenib responders

versus non-responders. The effects of relative under expression for these genes may be inferred

from the literature. TYK2 is a member of the Janus kinase family which is involved in activat-

ing the JAK-STAT (Signal Transducer and Activator of Transcription) signaling pathway and

driving cell proliferation [57]. Resistance to sorafenib has been proposed to involve crosstalk

between PI3K/AKT and JAK-STAT pathways[58], with literature support for TYK2 interfer-

ence with sorafenib efficacy[59]. Under expression of TYK2 may diminish JAK-STAT’s role in

cell proliferation and contribute to enhanced sorafenib efficacy. The pro-apoptotic lipid sphin-

gosine, when phosphorylated by sphingosine kinases (SKs), inclusive of SPHK1 (Sphingosine

Kinase 1), generates the mitogenic lipid sphingosine-1-phosphate. Inhibition of SKs’ activity

delays tumor growth in a mouse mammary adenocarcinoma model, suppresses the MAP

Fig 7. Clustered plot of the topmost significant GSEA pathways and the genes appearing in each pathway. Rows (GSEA Pathways) and columns

(one for genes in each pathway, zero otherwise) have been clustered using Minkowski distance metric and Wards linkage. Pathway genes in each row of this

clustered plot are colored spectrally by their log(FDR p-val), (blue to red, most to least negative) as listed in S4 Table. FDR values were not used for

clustering, only the presence or absence of pathway genes. The top 45 GSEA pathways were arbitrarily selected for display to enhance readability of labels.

The complete clustered plot for all significant (FDR <0.05) GSEA pathways appears in S2 Fig. The pathway fitness scores, H, appear in the vertical bar plot

at the right. A minimum of 5 genes are required for a non-zero fitness score.

https://doi.org/10.1371/journal.pone.0181991.g007
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kinase pathway [60], decreases ERK phosphorylation and is synergistic with sorafenib cytotox-

icity [61]. Here, relative SPHK1 under expression in sorafenib responders when compared to

non-responders may parallel these effects and contribute to enhanced sorafenib efficacy. The

ephrins (inclusive of EFNA4, Eph-Related Receptor Tyrosine Kinase Ligand 4) and EPH-

related receptors comprise the largest subfamily of receptor protein-tyrosine kinases and are

crucial for migration, repulsion and adhesion during neuronal, vascular and epithelial devel-

opment. Hypoxia-inducible transcription factor-2alpha in endothelial cells regulates tumor

neovascularization through activation of ephrin A1[62]. It has been proposed that hypoxia,

induced as a result of the antiangiogenic effects of sustained sorafenib treatment, may be an

important factor in sorafenib acquired resistance[63]. Under expression of EFNA4 may miti-

gate tumor neovascularization and enhance sorafenib efficacy. Relative gene over expression

in BATTLE responders compared to non-responders is observed for NEK11 and TRIB1.

NEK11, plays an important role in the G2/M checkpoint response to DNA damage [64,65],

while TRIB1 (Tribbles pseudokinase 1) interacts with and regulates activation of MAPK

kinases [66]. As potential targets of sorafenib, their relative over expression may offer sites of

inhibition that could enhance sorafenib efficacy. A detailed discussion of this analysis appears

in S4 Text.

An example of negative fitness scores is meta-cluster (rows 6–10), which consists of

TRANSPORTER pathways, mainly comprised of the family of solute carriers (SLC5A6,

SLC5A1, SLC13A4, SLC12A1, SLC34A1 and SLC16A7). Top ranked genes contributing to

pathway scores include SLC5A1 and SLC1A4, which are over expressed in the responder ver-

sus non-responder patients. Over 400 SLC transporter genes have now been identified, repre-

senting 55 families, including ion coupled transporters, exchangers and passive transporters

located at the plasma membrane or in intracellular organelles. These super families are respon-

sible for mediating the transport of a wide spectrum of substrates, including nutrients and

Table 2. Summary of the potential sorafenib biomarker genes identified using pathway fitness scores. Column 1 identifies the meta-cluster as viewed

in Fig 7. Column 2 list whether the pathway fitness score is positive (+) or negative (-). Column 3 lists the gene. Column 4 lists the differential gene expression

comparing responders(R) to non-responders(N). Over expression in responders is indicated by a +/-, and vice versa for over expression in non-responders.

Column 5 lists the putative MOAs.

Meta-cluster H Gene Expression (R/N) Putative MOA

Rows 1–5 + TYK2 -/+ signaling cell proliferation[57]

Rows 1–5,13–18 + SPHK1 -/+ suppresses MAP kinase[60]

Rows 1–5:13–18 + EFNA4 -/+ migration, repulsion and adhesion[62]

Rows 1–5,13–18 + NEK11 +/- response to DNA damage [64,65]

Rows 1–5,13–18 + TRIB1 +/- activation of MAP kinases[66]

Rows 13–18 + RRAGB +/- GTPase signal transduction[67]

Rows 13–18 + BMPR1B +/- Serine/threonine protein kinase[68]

Rows 40–43 + CCL20 +/- pro-apoptotic cytokine [69]

Rows 6–10 - SLC5A1 +/- transport of nutrients and drugs[70]

Rows 6–10 - SLC1A4 +/- transport of nutrients and drugs[70]

Rows 6–10 - SEC61B -/+ Protein translocation in the ER[71]

Rows 6–10 - COX4I1 +/- mitochondrial electron transport[72]

Rows 6–10 - COX7A1 +/- mitochondrial electron transport[72]

Rows 6–10 - KCNK3 +/- potassium channel proteins[73]

Rows 6–10 - KCNC3 +/- potassium channel proteins[73]

Rows 35–39 - FOXO3 -/+ PI3K/Akt activity[74]

Rows 35–39 - CDKN2D -/+ Cyclin-dependent kinase inhibitors[75]

Rows 35–39 - CDKN2C -/+ Cyclin-dependent kinase inhibitors[75]

https://doi.org/10.1371/journal.pone.0181991.t002
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drugs[70]. Cancer cells with enhanced expression of SLC transporters for certain nutritional

requirements may provide a growth advantage over normal cells when nutrients become

restricted[70]. Sorafenib does not appear to rely on active transport to enter the cell, nor is it a

substrate for ABC efflux transporters. Consequently the role of SLC over-expression in sorafe-

nib BATTLE responders does not appear to be related to transporter-mediated alterations of

drug influx [76]. A more likely possibility is due to the recent finding that multi-kinase inhibi-

tors also selectively inhibit solute carriers [76,77].

Erlotinib and sorafenib—Shared genes and GSEA pathways

Fewer than 3% (n = 17 genes) of the genes selected from dual-filtered linear ridge models for

erlotinib and sorafenib are common to the GSEA clustered plots in Figs 4 and 7. Not surpris-

ingly, approximately half (n = 23, Table 3) of the GSEA pathways exist jointly in Figs 4 and 7.

Shared pathways include KINASE_ACTIVITY, NUCLEOTIDE_BINDING and TRANSPOR-

TER_ACTIVITY, with the latter pathway consistent with preclinical CGP IC50 chemo-resis-

tance and poor BATTLE patient responses and the former pathways consistent with preclinical

CGP IC50 chemo-sensitivity and favorable BATTLE patient responses. These results find poten-

tial biomarker genes with divergent roles in compound efficacy. In contrast, a convergent set of

pathways appear to be important for compound efficacy, at least for these agents.

Predictive biomarkers

The results above indicate that pathway-genes displayed in Figs 4 and 7 comprise a potential

set of pathway-gene biomarkers (251 for erlotinib and 309 for sorafenib) that link preclinical

CGP IC50 with BATTLE patient responses. As presented earlier, the number of potential bio-

marker pathway-genes can be reduced according to their contribution to individual pathway

fitness scores, which essentially weights genes within each pathway according to how well their

expression profiles match BATTLE patient responses. The differential expressions of these

pathway-specific genes have potential roles in compound sensitivity and resistance, and thus

cannot be treated independently when assessing their capacity as predictive biomarkers. A col-

lective set of 59 and 51 predictive biomarkers, for erlotinib and sorafenib, respectively, was

obtained by selecting GSEA pathway-derived genes in Figs 4 and 7 with statistical matches

(p<0.2) to patient response data and having contributions to pathway fitness scores in the

upper and lower 40th percentile of each set of scores. The general aim is to assess how well the

subsets of genes contributing the most to pathway fitness scores predict clinical outcome. The

results for erlotinib will be presented first.

Fig 8 displays the clustered results for the 59 genes that satisfy the above required statistical

criteria. Green labels at the right edge identify genes listed in Table 1 as contributing the most

to pathway fitness scores. Row and column clustering of these gene expressions identifies popu-

lations of relatively over (red) and under (blue) expressed genes. A bar plot of patient response,

ordered according to the independently clustered gene expressions, appears at the bottom of

the image to provide a visual indication of gene expressions associated with the better and

poorer patient responses. Inspection finds over expression of genes in row clades F and G corre-

spond mostly to non-responders (column clade D), whereas over expression of genes in row

clade E corresponds to responder patients (column clades A and B). A Student’s t-test of patient

responses in column clades A and B to column clades C and D has a significance score of 5.57e-

4. These results provide qualitative support for this set of biomarker pathway-gene expressions

as being predictive of erlotinib patient response.

Biomarker pathway-gene expressions for erlotinib can be independently analyzed using

singular value decomposition (SVD) to identify which genes contribute the most to the
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variation in the observed data. SVD is formally derived from the observed data (i.e. gene

expressions) and is capable of completely reproducing the data when all principal components

(PCs) are used. The eigenvectors associated with these PCs can be used to determine the con-

tribution of each gene to the total variation in the data, referred to as their ‘impact value’.

These results find a mutual overlap between genes with the greatest impact values and the

genes derived from pathway scores (listed in S1 Table). Furthermore, SVD on the complete

erlotinib gene subset (cf. Fig 4) finds that the pathway-derived genes fall within upper 50th per-

centile of impact values. These results indicate a qualitative correspondence between genes

contributing the most to pathway fitness scores and SVD-derived impact values.

RF calculations were used to determine the clinical prediction errors when using these 59

genes. Class assignments were obtained by calculating RF prediction errors when using differ-

ent splits of the patient response data. Averaging results from 50 RFs using different seeds

finds that a split, where the first 15 patient responses (ordered from greatest to least PFS) are

included in the responder class and the last 10 in the non-responder class, produces an average

prediction error of 6.8 +- 0.98% for responders and 28.3 +-5.7% for non-responders. This

result sets the optimal boundary of class assignment for assessing the role of sample size in pre-

diction errors. For comparison, prediction errors using the 251 genes from GSEA-derived

pathways, rather than the 59 derived above, finds that the responder prediction error rate for

the optimal split to be slightly poorer (10.1%) while the non-responder prediction error has

nearly doubled (47%). Consequently, while relatively good responder prediction errors exist

for both gene sets, non-responder prediction errors are considerably higher for the larger gene

set. This result supports the likelihood that a failure to accurately predict an unfavorable clini-

cal response may be more difficult when additional gene expressions are considered.

Three additional considerations are important when evaluating RFs predictions. The first

explores the robustness of RF predictions when using different data sizes for sampling, valida-

tion and testing, while the second provides an indication of the variation in RF error rate due

to the random selection of data used for each decision tree, and the third uses area under the

receiver-operator curve (AUCROC) to attach a statistical significance to predictions when com-

pared to randomized data. These results find an average RF prediction error (using 50 simula-

tions for each sample size) of 9.8 +- 1.2% and 39.3 +-5.9% for responders (n = 15) and non-

responders (n = 10), respectively, for RF predictions using 14, 16, 19 and 21 random samples

of master erlotinib dataset (Fig 8). The mean and standard deviation associated with these pre-

diction errors grows increasingly large with fewer sample sizes; 8.2+-3.1%, 9.5+-4.9%, 11.0

+-8.1%, 11.0+-10.1% for responders and 33.1+-11.0%, 38.0+-13.2%, 39.0+-17.1%, 48.0+-23.3%

Table 3. Pathways shared in the GSEA results for erlotinib and sorafenib.

ADENYL_NUCLEOTIDE_BINDING PHOSPHOTRAFASE_ACT_ALC_GP_AS_ACCPTR

ADENYL_RIBONUCLEOTIDE_BINDING PROTEIN_KINASE_ACTIVITY

CATION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY PROTEIN_TYROSINE_PHOSPHATASE_ACTIVITY

DNA_BINDING PURINE_NUCLEOTIDE_BINDING

HYDROLASE_ACTIVITY_ACTING_ON_ESTER_BONDS PURINE_RIBONUCLEOTIDE_BINDING

ION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY RECEPTOR_ACTIVITY

KINASE_ACTIVITY SUBSTRATE_SPECIFIC_TRMEMBRANE_TRNSPTER_ACTITY

NUCLEOTIDE_BINDING SUBSTRATE_SPECIFIC_TRANSPORTER_ACTIVITY

PHOSPHOPROTEIN_PHOSPHATASE_ACTIVITY TRANSCRIPTION_FACTOR_ACTIVITY

PHOSPHORIC_ESTER_HYDROLASE_ACTIVITY TRANSFERASE_ACTIVITY_TRANSING_PHOSP_GPS

PHOSPHORIC_MONOESTER_HYDROLASE_ACTIVITY TRANSMEMBRANE_RECEPTOR_ACTIVITY

TRANSMEMBRANE_TRANSPORTER_ACTIVITY

https://doi.org/10.1371/journal.pone.0181991.t003
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for non-responders. As expected, the smaller sample sizes diminish the quality of prediction.

AUCROC RF results yield an average of 0.83+-0.09 for these sample sizes, with the lowest

AUCROC (0.78) and the greatest variance (0.12) occurring for the smallest test set (n = 14). The

Fig 8. Clustered (Euclidean distance metric, Wards linkage) plot of 59 gene expressions (top panel) selected from

genes in the GSEA pathways that have statistical significance (p<0.2) when comparing the top and bottom 20th

percentiles of patient responses or have a significant (p<0.2) correlation with the response data and are found in the

upper 40th percentile of pathway fitness. Expressions are colored spectrally from blue (under expression) to red (over

expression). Bottom panel represents patient responses, ordered according to the clustered genes. Student’s t-test comparing

patient response in clades A and B to clades C and D has a significance score of 5.57e-4. Green labels at the right edge identify

genes contributing the most to pathway fitness scores (cf. Table 1).

https://doi.org/10.1371/journal.pone.0181991.g008
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average AUCROC achieves a statistical significance of p = 3.99e-22 when compared to AUC

from randomized input (e.g. AUC = 0.5).

Similar results are obtained for sorafenib. Fig 9 clusters the 51 genes (of the 309 linear ridge

genes appearing in the sorafenib GSEA pathways in Fig 7) to identify populations of relatively

over (red) and under (blue) expressed genes. Green labels at the right edge identify genes con-

tributing the greatness to pathway fitness (cf. Table 2). A bar plot of patient response, ordered

according to the independently clustered gene expressions, appears at the bottom of this image

Fig 9. Clustered (Euclidean distance metric, Wards linkage) plot of 51 gene expressions (top panel) selected from genes in the GSEA

pathways that have a significant (p<0.2) correlation with the response data. Expressions are colored spectrally from blue (under) to red (over).

Bottom panel represents patient responses, ordered according to the clustered genes. A Student’s t-test comparison of the patient responses in

clade A compared to clades B and C has a significance of p = 6.70e-5. Green labels at the right edge identify genes contributing the most to pathway

fitness scores (cf. Table 2).

https://doi.org/10.1371/journal.pone.0181991.g009
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to provide a visual indication of gene expressions associated with the better and worse patient

responses. A Student’s t-test comparing the patient responses in column clade A compared to

clades B and C has a significance of p = 6.70e-5. SVD of these 51 gene expressions finds the

pathway-derived genes listed in Table 2 fall within the upper 30th percentiles of SVD-derived

impact values.

RF results find that using a split with 22 of the most responsive patients in the responder

class, with the remaining 15 in the non-responder class produces a minimum prediction error

of 17.7 +- 4.7% for responders and 43.6 +- 7.2% for non-responders. A comparison of these

prediction errors to results based on the 309 genes from GSEA (Fig 7) finds the responder

prediction error to be comparable (18.1%), while the non-responder prediction error has

increased to 65%. Consequently, as found above with erlotinib, relatively good responder pre-

diction errors exist for both gene sets, yet non-responder prediction errors are considerably

higher for the larger gene set, again supporting the likelihood that a failure to achieve a favor-

able clinical response may be more difficult to predict accurately when additional gene expres-

sions are considered. RF prediction errors for sample sizes of 21, 24, 28 and 31 finds an

average of 26.0+-15.5%, 24.4+-13.5%, 20.6+-9.8% and 20.5+-7.2% for responders and 52.8

+-11.0%, 54.9+-15.9%, 58.8+-18.3% and 58.3+-17.1% for non-responders, with an overall

average of 21.9+-12.9% for responders and 52.4+-16.4% for non-responders. An average

AUCROC of 0.64+-0.10 is found for these 4 samples, with the greatest variance on AUC occur-

ring for the smallest test set (n = 21). The average AUCROC achieves a statistical significance of

p = 6.76e-44 when compared to AUCROC from randomized input (e.g. AUC = 0.5). For com-

parison, RF prediction errors based on genes derived from individual meta-clusters (cf. Figs 4

and 7) were 5–20% higher when compared to the collective gene set in Fig 8. In general, the

prediction errors for responders remained reasonably good, while much poorer prediction

errors were found for the non-responders.

A number of comparisons were made between of the proposed method for biomarker

gene-pathway selection and alternative models using either the complete set of 396 GO:molec-

ular function pathways or the complete set of genes within these pathways that intersect the

expressions available for erlotinib (n = 4627) and sorafenib (n = 4850). In brief, pathway fitness

scores derived from the complete gene set shared strong correlations with the pathway fitness

scores shown in Figs 4 and 7 (r = 0.843, p = 1.652e-17 for erlotinib and r = 0.752, p = 1.19e-7

for sorafenib). Pathway fitness scores for all 396 pathways found that with the exception of the

ATP_BINDING pathway, none of the additional possible GSEA pathways had larger (in abso-

lute value) fitness scores than those found for erlotinib. The sorafenib results for 396 pathways

identified GENERAL_RNA_POLYMERASE_II_TRANSCRIPTION_FACTOR_ACTIVITY

and STRUCTURE_MOLECULE_ACTIVITY with larger (in absolute value) fitness scores

than reported in Fig 7. Since neither of these pathways were in the GSEA set (FDR q-value <

= 0.05) they were excluded in this analysis. These results indicate the importance of using

GSEA for pathway selection. To further amplify the importance of GSEA, pathway fitness

scores were obtained for all 396 GO:molecular function pathways using the expanded gene set

for erlotinib (n = 4627) and sorafenib (n = 4850). Relatively few (<5) pathways from the exist-

ing analysis were found in the best GSEA FDR q-values. These results indicate that the proce-

dures of gene selection using dual filtering of ridge regressions and GSEA of their most

frequent genes generates results that are not mimicked when excluding these data mining

steps. A detailed discussion of this analysis appears in S5 Text.

Expanding on the importance of dual filtering, GSEA was completed for genes selected

from the extremes of either log(pval_IC50) or log(pval_clinical) (see Fig 1). Adjusting thresh-

olds to yield comparable numbers of linear ridge models and completing GSEA for the most

frequently occurring genes in these models finds, for erlotinib, 18 GSEA pathways in common
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to both selection schemes, with 13 of these pathways also found from the dual filtering. The

results for sorafenib find 24 GSEA pathways in common to both selection schemes, with 14 of

these pathways also found from dual filtering. Notable GSEA pathways excluded from these

lists include, for erlotinib; TRANSMEMBRANE_RECEPTOR_PROTEIN_TYROSINE_KIN

ASE_ACTIVITY and the family of TRANSPORT pathways, and for sorafenib; PROTEIN_SE

RINE_KINASE_ACTIVITY and multiple NUCLEOTIDE_BINDING pathways. In both cases,

dual filtering appears to include pathways that are jointly relevant to IC50 chemo-responsive-

ness and patient outcome. These results no not preclude analyses based on pathways derived

from genes selected from linear ridge models using either log(pval_IC50) or log(pval_clinical),

however they suggest that dual-filtering represents a, potentially, superior method for path-

way-gene selection.

Fig 10 displays the Cytoscape network derived for erlotinib. Only 52 genes are associated

with topmost and bottom most fitness scores of the GSEA pathways for erlotinib. These results

indicate that relatively few pathway-genes may serve as potential biomarkers important for iden-

tifying favorable and non-favorable patient responses. The lower right plot in Fig 10 displays the

clustered (Euclidean distance metric, Wards linkage) pairwise Pearson correlations for these 52

gene expressions. The axis labels for genes associated pathways having negative fitness scores

(TRANSMEMBRANE_TRANSPORTER_ACTIVITY and KINASE_BINDING) are highlighted

in green. This plot illustrates the concordance of within pathway gene expressions and fitness

scores. While individual genes may have expressions that correlate with other pathway genes, it

is the cumulative effect of within pathway correlations that leads to the larger fitness scores.

Fig 11 displays the Cytoscape network derived for sorafenib. Only 52 genes are associated

with topmost and bottom most fitness scores of the GSEA pathways for sorafenib (having the

same number of genes as erlotinib is a coincidence). These results indicate that relatively few

pathway-genes may serve as potential biomarkers important for identifying favorable and non-

favorable patient responses. The lower right plot in Fig 11 displays the clustered (Euclidean dis-

tance metric, Wards linkage) pairwise Pearson correlations for these 52 gene expressions. The

axis labels for genes associated pathways having negative fitness scores (TRANSMEMBRANE_

TRANSPORTER_ACTIVITY and KINASE_BINDING) are highlighted in green. This plot illus-

trates the concordance of within pathway gene expressions and fitness scores. While individual

genes may have expressions that correlate with other pathway genes, it is the cumulative effect of

within pathway correlations that leads to the larger fitness scores.

Discussion

It is generally accepted that cancer is a complex disease involving the integration of multiple

genomic defects that impact hallmark processes such as cellular proliferation, signaling, DNA

repair and replication, and apoptosis[3,78,79]. The converse view, that altered cellular pro-

cesses (otherwise known as networks or pathways) are the result of individual genomic aberra-

tions, represents an equally attractive idea[4]. A naïve, yet appropriate, extension of this latter

view accepts the likelihood that pathways may be vulnerable to cancer-causing perturbations

from numerous, and most-likely unrelated, genomic aberrations. The results presented here

support this latter view. Application of novel methods of data mining, designed to select for

specific phenotypic variations (e.g. preclinical IC50 chemo-sensitivity/insensitivity and favor-

able/unfavorable clinical outcome), identify informative genomic features (gene expression

profiles) that collectively reveal shared cellular functions (pathways) and are biologically and

clinically predictive. Stratification of these phenotypic variations appears to involve common

pathways, many lacking shared genes. This result is consistent with Waddington’s theory of

genetic canalization (robustness)[80,81], where pathways sharing common biological
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Fig 10. Cytoscape network diagrams using pathway fitness scores as edge weights between pairwise pathway genes (nodes). Results

display networks for the upper and lower 20th percentiles of fitness scores. For display purposes, meta-pathway labels are used as abbreviations

from those shown in Fig 4. Four meta-pathways, comprising fifty-two genes, are identified. Node edges are colored to indicate relative gene

expressions between responder and non-responder groups (red: relative over expression, blue: relative under expression). Nodes for genes

derived from pathway fitness scores are shown in yellow. The full pathway names for the meta-pathway labels are:

KINASE_ACTIVITY/PHOSPHOTRANSFERASE_ACTIVITY/NUCLEOTIDE_BINDING:

PROTEIN_KINASE_ACTIVITY

PHOSPHOTRANSFERASE_ACTIVITY_ALCOHOL_GROUP_AS_ACCEPTOR

TRANSFERASE_ACTIVITY_TRANSFERRING_PHOSPHORUS_CONTAINING_GROUPS

ADENYL_NUCLEOTIDE_BINDING

ADENYL_RIBONUCLEOTIDE_BINDING

NUCLEOTIDE_BINDING

PURINE_NUCLEOTIDE_BINDING

PURINE_RIBONUCLEOTIDE_BINDING

METAL_ION_BINDING:

TRANSITION_METAL_ION_BINDING

ZINC_ION_BINDING

LIGASE_ACTIVITY:

ACID_AMINO_ACID_LIGASE_ACTIVITY

LIGASE_ACTIVITY

TRANSMEMBRANE_TRANSPORTER_ACTIVITY:

CATION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY

METAL_ION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY

SUBSTRATE_SPECIFIC_TRANSMEMBRANE_TRANSPORTER_ACTIVITY

SUBSTRATE_SPECIFIC_TRANSPORTER_ACTIVITY

TRANSMEMBRANE_TRANSPORTER_ACTIVITY

Lower Right Panel: Clustered (Euclidean distance metric, Wards linkage) plot of pairwise Pearson correlations (red:+1 blue:-1) for the 52 genes
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functions may lack shared genomic features, yet have an impact on phenotypic variations in,

for example, preclinical IC50 and clinical outcome. An equally interesting consequence of can-

alization’s role in providing a strong defense against genomic defects is the likelihood that

pathways sharing biological functions may offer additional opportunities for therapeutic

attack. Consequently, drugs that impact any given pathway also impact neighboring pathways

that share common biological functions; an effect that may contribute to enhanced efficacy or

unwanted side-effects. Thus, it is no surprise that an analysis of preclinical and clinical data

from these two putative TKIs finds nearly 50% of their indicated GSEA pathways to be in com-

mon. Although few genes are shared between these common pathways (Table 3) many have

been noted as important for TKIs. Examples include;

• ROR1 (Receptor Tyrosine Kinase-Like Orphan Receptor 1) is involved in signaling by

GCPR and ERK, has GO annotations for transferring phosphorus-containing groups and

protein tyrosine kinase activity (http://www.genecards.org) and is an important paralog of

this gene is ALK. Increased expression of ROR1 is associated with B-cell chronic lympho-

cytic leukemia and is constitutively phosphorylated in chronic lymphocytic leukemia (CLL)

[82,83] and Glioblastoma multiforme (GBM)[84].

• FOXO3 (forkhead box 3) expression plays a critical role in EGFR tyrosine kinase inhibitor-

induced BIM expression and apoptosis[85,86].

• FZD4 (frizzled family receptor 4), a receptor for Wnt proteins, is a mediator of ERG onco-

gene–induced Wnt signaling and epithelial-to-mesenchymal transition in human prostate

cancer cells[87]. The Wnt/β-catenin pathway is well implicated in multiple tumors[88].

• WWP1 (WW Domain Containing E3 Ubiquitin Protein Ligase 1) is a Protein Coding gene.

Among its related pathways are Signaling by GPCR and the Immune System. GO annota-

tions related to this gene include ligase activity and ubiquitin-protein transferase activity.

Transitioning these potentially important biomarker genes into biomarker pathways finds

support in the existing literature. For example, epithelial-mesenchymal transition (EMT)

genes have been proposed as biomarkers for deciphering survival and drug responses of cancer

patients [89] via a set of 315 EMT biomarker genes as indicators of patient response. Using

these biomarker genes, GSEA identified 44 GO:Molecular Function pathways (FDR q-value

<0.05). Twenty of these pathways are common to the 24 pathways shared (Table 3) in the

GSEA results for erlotinib (Fig 4) and sorafenib (Fig 7). Identifying convergent pathways from

divergent genes supports a role for GSEA pathways, in addition to their constituent pathway

genes, as joint pathway-gene biomarkers of patient response.

It is important to emphasize that the results presented here cannot be regarded as an appro-

priate ‘validation’ of the models developed in this analysis. More correctly, the typical model

validation process, whereby a proposed model’s ability to predict a response without using val-

idation data, has been incorporated into the modeling process. Consequently, proposing a

model that a priori includes validation data, then assessing how well validation data can be pre-

dicted, represents circular reasoning. However, building models in this manner provides a

means to quantify how well such a model can predict response data, then, with an acceptable

outcome, critically examine the modeling components (e.g. genes and pathways) for relevance

identified in the upper panel. The axis labels for genes associated with pathways having negative fitness scores (TRANSMEMBRANE_TRANS

PORTER_ACTIVITY) are highlighted in green. This plot illustrates the concordance of within pathway gene expressions and fitness scores. While

individual genes may have expressions that correlate with other pathway genes, it is the cumulative effect of within pathway correlations that leads

to the larger fitness scores.

https://doi.org/10.1371/journal.pone.0181991.g010

Mining preclinical and clinical data for pathway-gene biomarkers predictive of clinical outcome

PLOS ONE | https://doi.org/10.1371/journal.pone.0181991 August 8, 2017 25 / 34

http://www.genecards.org/
https://doi.org/10.1371/journal.pone.0181991.g010
https://doi.org/10.1371/journal.pone.0181991


Fig 11. Cytoscape network diagrams using pathway fitness scores as edge weights between pairwise pathway genes (nodes). Results display

networks for the upper and lower 20th percentiles of fitness scores. For display purposes, meta-pathways labels, representing abbreviations from those

shown in Fig 7, are used. Six meta-pathways, comprising 52 genes, are identified for the GSEA genes analyzed. Node edges are colored to indicate relative

gene expressions between responder and non-responder groups (red: relative over expression, blue: relative under expression). Nodes for genes derived

from pathway fitness are shown in yellow. The full pathway names for the meta-pathway labels are:

PROTEIN_SERINE_THREONINE_KINASE_ACTIVITY:

PROTEIN_SERINE_THREONINE_KINASE_ACTIVITY

NUCLEOTIDE_BINDING:

ADENYL_NUCLEOTIDE_BINDING

ADENYL_RIBONUCLEOTIDE_BINDING

NUCLEOTIDE_BINDING

PURINE_NUCLEOTIDE_BINDING

PURINE_RIBONUCLEOTIDE_BINDING

ATP_BINDING

TRANSCRIPTION_FACTOR_BINDING:

TRANSCRIPTION_FACTOR_BINDING

CYTOKINE_ACTIVITY:
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to compound efficacy. Failure to achieve acceptable outcomes, even with the use of validation

data in the modeling process, would considerably undermine efforts to link preclinical and

clinical data. Acceptable outcomes, however, may provide a foundation for strengthening

models with additionally available clinical data and proposing modifications for improvement.

Thus, the results generated in this analysis do not represent a ‘validation’ of this modeling

effort, rather a means to identify consistent themes that link preclinical and clinical data.

Extending these biomarker pathway-genes into predictions of patient response remains a

significant challenge. Notably, the prediction errors would need to be substantially lowered to

enhance use in a clinical setting. Improving non-responsive patient prediction would appear to be

an immediate goal. Another consideration involves practical implementation. Ideally, each new

patient’s gene expression profiles would be appended to the existing sets of 25 and 37 BATTLE

patients, then re-analyzed, as above, with assessment of RF prediction errors. While this effort will

be important for building the database needed for modeling patient response, this does not address

each patient separately. An alternative approach towards patient-specific assessments is suggested

from the results reported herein. Recall that pathways with positive and negative fitness scores are

associated with clinical responders and non-responders, respectively. As a consequence, a simple t-

test can be constructed for each patient by comparing two pooled sets of gene expressions; one

from genes contributing the greatest to H>0 pathway scores (pooled_positive_expressions) and

the other from genes contributing the greatest to H<0 pathway scores (pooled_negative_expres-

sions). Fig 12 summarizes this process for erlotinib and sorafenib. The left (erlotinib) and right

(sorafenib) portions of this figure plot, in the upper panel; the dendrogram for clustering the collec-

tive sets of gene expressions (i.e. pooled_positive_expressions and pooled_negative_expressions),

in the second panel; the clustered gene expressions (n = 127 for erlotinib and 81 for sorafenib) and

in the third panel; the Months to Progression, ordered according to the top dendrogram. The

fourth panel plots the t_statistic comparing each patient’s pooled_negative_expressions to pooled_-

positive_expressions versus Months to Progression. Pearson correlations in this fourth panel yield

significant results; erlotinib (r = -0.71, p<5.78e-5, n = 127 genes) and sorafenib (r = -0.54, p = 6.9e-

4, n = 81 genes). These results support the potential use of a relatively small number of pathway-

genes, pooled according to their appearance in selected sets of pathways (i.e. large absolute(H)), as

a potential means to identify responder from non-responder BATTLE patients. This strategy, albeit

highly speculative, provides a practical approach for using pathway-gene biomarkers as possible

indicators of individual patient responses to erlotinib and sorafenib. The feasibility of this specula-

tive approach can be tested with additional clinical data.

Conclusions

These results offer multiple, potential criteria for predicting a patient’s therapeutic response.

Stressing that these criteria follow from i) an analysis using linear ridge modeled results that ii)

have been dually filtered using thresholds for model fits of existing preclinical IC50 and clinical

CYTOKINE_ACTIVITY

TRANSMEMBRANE_TRANSPORTER_ACTIVITY:

ION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY

KINASE_BINDING:

KINASE_BINDING

PROTEIN_KINASE_BINDING

Lower Right Panel: Clustered (Euclidean distance metric, Wards linkage) plot of pairwise Pearson correlations (red:+1 blue:-1) for the 52 genes identified in

the upper panel. Genes associated with negative pathway fitness scores (meta-pathways TRANSMEMBRANE_TRANSPORTER_ACTIVITY and

KINASE_BINDING are highlighted in green.

https://doi.org/10.1371/journal.pone.0181991.g011
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data, then iii) further filtered for existence within GSEA GO:molecular function pathways, and

iv) reduced according to their contribution to pathway fitness scores. Differential gene expres-

sions of these filtered genes yield models with an optimal RF prediction error below 22% for

patient responders receiving either sorafenib or erlotinib. Optimal RF prediction errors for

non-responders are nearly twice those found for responders. While an explanation for this dif-

ference cannot be addressed here, this result may be an indication than the opportunities for a

compound failing may greatly exceed those for succeeding, and by extension, more difficult to

predict. For example, the results found here clearly support a role for TRANSPORT in non-

responders. This type of activity would include the numerous resistance mechanisms involving

in the cellular export of a drug. Collectively, these results suggest potentially powerful roles for

biomarker pathway-genes when predicting clinical responses from preclinical data.

Fig 12. Results for selecting n = 127(erlotinib; left half) and n = 81(sorafenib; right half) patient-derived gene expressions using pathway scores.

Top panel for each drug displays the dendrogram from the clustered organization (correlation distance metric, Wards linkage) of gene expressions (second

panel). Third panel displays the Months to Progression for patients organized according to the dendrogram in the top panel. Fourth panel display the

correlation of the t_stat from a t-test comparing the gene expressions from pathways with large positive H scores to gene expressions from pathways with

large negative H scores to Months to Progression.

https://doi.org/10.1371/journal.pone.0181991.g012
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