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Understanding tropical cyclone (TC) climatology is a problem of
profound societal significance and deep scientific interest. The
annual cycle is the biggest radiatively forced signal in TC vari-
ability, presenting a key test of our understanding and modeling
of TC activity. TCs over the North Atlantic (NA) basin, which are
usually called hurricanes, have a sharp peak in the annual cycle,
with more than half concentrated in only 3 mo (August to Octo-
ber), yet existing theories of TC genesis often predict a much
smoother cycle. Here we apply a framework originally developed
to study TC response to climate change in which TC genesis is
determined by both the number of pre-TC synoptic disturbances
(TC “seeds”) and the probability of TC genesis from the seeds.
The combination of seeds and probability predicts a more con-
sistent hurricane annual cycle, reproducing the compact season,
as well as the abrupt increase from July to August in the NA
across observations and climate models. The seeds-probability TC
genesis framework also successfully captures TC annual cycles in
different basins. The concise representation of the climate sensi-
tivity of TCs from the annual cycle to climate change indicates that
the framework captures the essential elements of the TC climate
connection.
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Tropical cyclones (TCs) are a major natural hazard to life and
property (1). Therefore, understanding TC frequency vari-

ability and change in response to climate forcing (2–4) is not only
of fundamental scientific interest but also crucial in practice. Yet,
understanding the connection between climate and TC frequency
remains challenging (5–8). In fact, we still do not have a satisfying
theory even for its annual cycle. A particularly interesting region is
the North Atlantic (NA) basin, where TCs are usually called hur-
ricanes (NA TCs and hurricanes are treated as interchangeable
hereafter unless otherwise stated). While the large-scale environ-
ment in which TCs are embedded evolves smoothly from month
to month, hurricane activity usually covers only a few months,
with the most active 3 mo from August to October (Aug–Oct). In
contrast, hurricane activity is much weaker in the other months,
even in the early or middle summer when the thermal condition
appears to favor hurricane development.

Fig. 1A shows the annual cycles of NA TC monthly fre-
quency averaged over the recent decades (1980 to 2018)
from both observations and climate model (Geophysical Fluid
Dynamics Laboratory [GFDL]/High-Resolution Atmospheric
Model [HiRAM]) historical simulations. The standout of months
Aug–Oct is apparent for both observations and simulations. One
simple way of measuring the sharpness of the annual cycle is the
ratio of Aug–Oct accumulative value to that from all the other
months. This sharpness index is almost 3 in observations (Fig.
1B), which means approximately three-quarters of TCs occur
in Aug–Oct. It is slightly lower from the HiRAM simulations
but is still more than double, equivalent to two-thirds of total
TCs being in Aug–Oct. Another pronounced feature related to
the sharp annual cycle is the abrupt increase of TC frequency
from July to August, by more than 100% in HiRAM and almost
200% in observations (Fig. 1C). Besides observations and sim-

ulations from HiRAM, two other GFDL climate models also
show qualitatively similar behavior (see SI Appendix, Fig. S1 for
Atmospheric Model version 2.5 [AM2.5] and SI Appendix,
Fig. S2 for Atmospheric Model version 2.5 using C360 grid
[AM2.5C360]). In fact, the sharpness of hurricane season has
already been noticed in literature as early as in the 1990s (9),
and it has also been found that the annual cycle of more intense
hurricanes is sharper than that of weaker tropical cyclones (9).

So what determines this peaked shape of annual cycle? One
way to understand the control of TC frequency is to relate it to
the sea surface temperature (SST) over the NA basin or its value
relative to the tropical (30◦S to 30◦N) mean SST (5). However,
the annual cycles of both SST and relative SST over the NA are
smooth and approximately sinusoidal, yielding less sharp peaks
over Aug–Oct (SI Appendix, Fig. S3). More sophisticated TC fre-
quency theories usually link TC genesis to various forms of TC
genesis indexes, which estimate the total impact of multiple cru-
cial variables from the large-scale background environment. One
particularly interesting index is the genesis probability, or prob-
ability of TC genesis from pre-TC tropical disturbances or seeds
(3, 10, 11), which is closely linked to the dynamically derived
ventilation index (VI) (10). Ventilation process is hostile to TC
development, and a larger VI value tends to yield a lower genesis
probability.

Lines in Fig. 1A show the annual cycles of genesis proba-
bility monthly climatology calculated from both “observations”
(European Center for Medium-Range Weather Forecasts
Reanalysis version 5 [ERA5]) and the HiRAM simulations.
While the probability does have higher values in TC season in
general, the peak of its annual cycle is, however, not as sharp as
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Fig. 1. Annual cycles of NA TC frequency and genesis probability and the
sharpness indexes. (A) Monthly climatology of NA TC frequency (bars) and
genesis probability index (lines) over the years of 1980 to 2018 from obser-
vations and HiRAM simulations. Observed TC frequency is from IBTrACS and
genesis probability index is estimated using the ERA5 reanalysis monthly
data. Error bars and shading areas indicate 95% confidence interval of the
mean (multiyear mean for the observed and multiyear-and-ensemble mean
for HiRAM simulation). (B) Ratio of accumulated value from Aug–Oct to that
from Nov–Jul for TC frequency and genesis probability annual cycles in A.
(C) Fraction increases of TC frequency and genesis probability from July to
August in A.

the TC cycle. The sharpness index has a much lower value: close
to one for both observations and simulations (Fig. 1B), which
predicts a much lower fraction (around half) of the total TCs
occur in Aug–Oct than the actual value. Neither does the gen-
esis probability predict the abrupt increase of TCs from July to
August (Fig. 1C). In fact, this is a generic problem also shared by
many other forms of TC genesis indexes (12–16). While improve-
ment can be made by incorporating more predictors from the
large-scale environment into the indexes (17, 18), it is often
achieved through complex statistical model fitting and therefore
the physical process behind the improvement is unclear.

What causes the discrepancy between the NA TC annual
cycle and that predicted by the genesis probability theory? One
assumption from the probability theory is the constant supply
of TC seeds. In other words, the frequency of tropical distur-
bances that have the potential to develop into TCs (depending
on the genesis probability) does not change with time. Mathe-
matically, the number of TCs is proportional to the number of
seeds multiplied by the genesis probability:

NTC ∝Nseed× p(Λ). [1]

The probability theory neglects the variation of Nseed and
attributes TC variability solely to probability change. However,
recent studies suggest that seeds play a crucial role in the
response of TC genesis to climate change (3, 11, 19, 20). These
studies demonstrated that the probability change alone is not
able to explain the diverging responses of TC frequencies to
radiative climate forcings from different climate models and
numerical experiments, but the result is promising when tak-
ing into account the change of seeds. The question is whether
the framework of probability and seeds combined together can
help us better understand the hurricane annual cycle, which,
like climate change, is also primarily driven by radiative forcing.

While the signal of climate change often involves a large degree
of uncertainty, the annual cycle of hurricanes is clearly defined
in observations and well simulated in state-of-the-art high-
resolution climate models, which is ideal to test the framework
of probability and seeds.

Fig. 2 shows the annual cycles of TCs, probability, seeds,
and the product of seeds and probability from observations as
well as the three GFDL high-resolution climate models. To
focus on the annual cycle, all the quantities are normalized by
their annual total value. For observations (Fig. 2A), the NA TC
annual cycle predicted by the product of seeds and probability
is greatly sharpened compared to that predicted by probability
alone. As a result, the predicted annual cycle by the seeds-
probability framework is much more consistent with the target
TC annual cycle. The improvement of the annual cycle predic-
tion can be attributed to the also relatively high value of seed
number during the TC season, although the seed annual cycle is
much more flat. The predicted TC annual cycles by the seeds-
probability framework are also sharper and more correlated to
the actual cycles from the three climate model simulations (Fig.
2 B–D). As a result, the sharpness index of Nseed× p largely
increases from probability alone and is more consistent with that
of TCs (SI Appendix, Fig. S4). Additionally, the abrupt change of
TC frequency from July to August is also well captured in the
seeds-probability framework (SI Appendix, Fig. S5). Note that
while climate model simulations generally capture the observed
TC annual cycle, the October normalized TC number is higher
than that observed, especially for AM2.5 and AM2.5C360. This
appears to be linked to the biased seed number from simulations,
with their genesis location mainly over the eastern NA basin off
the coast of West Africa in HiRAM (SI Appendix, Figs. S6 and
S7) but the western NA basin in AM2.5 and AM2.5C360 (SI
Appendix, Figs. S8 and S9). What causes this October seed bias
needs further examination.

An alternative way to demonstrate the superiority of the prob-
ability and seeds framework is to compare the scatter plot of TCs
versus probability to that of TCs versus the product of probabil-
ity and seeds (Fig. 3) (all quantities are normalized by the annual
total value). Note that data from both observations and all the
three model simulations are now put together in the same scat-
ter plot. While the probability can explain the TC annual cycle
to some extent, the framework of probability and seeds has at
least three advantages: 1) Nseed× p can explain a larger fraction
of variance from TCs (0.97 vs. 0.83), 2) the coefficient of normal-
ized TCs regressed on the predictor is close to one, and 3) the
intercept of the regression is close to zero.

The framework of probability and seeds still holds if we
add monthly climatology values from the six other major TC
basins besides the NA, including the eastern Pacific (EA), west-
ern North Pacific (WP), northern Indian Ocean (NI), southern
Indian Ocean (SI), Australia (AU), and southern Pacific (SP)
basins as shown in Fig. 4. Now we look at the scatter plots from
observations and the three models separately but include data
from different basins. By comparison, the NA TC has the largest
single-month normalized TC frequency (in September), which
makes its annual cycle the sharpest. Overall, the framework of
probability and seeds works much better than the probability
framework in both observations and the three climate models.

Summary and Discussion
In this study, we attempt to address the fundamental issue of TC
annual cycle, which provides an observationally constrained test
on theories of TC climatology. Current genesis probability theory
usually predicts a much smoother annual cycle and is difficult to
capture the sharpness of the TC season. By taking into account
seed variability, we demonstrate that the seeds-probability
framework reproduces the hurricane annual cycle much more
consistently than the probability alone and, in particular, is able
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Fig. 2. Monthly climatologies of NA TC relative frequency (normalized by the total number of the 12 mo, blue bars) and those predicted by TC genesis
probability (orange dashed line), frequency of vortex seeds (green dotted line), and combination of both (red solid line). (A) Observations (Obs.), (B) model
historical simulations from HiRAM, (C) AM2.5, and (D) AM2.5C360. Error bars and shading areas show the 95% confidence interval of the mean.

to capture the sharp hurricane season. It also provides a uni-
fied framework to view TC annual cycles from various basins,
sources (both observations and climate models), and numerical
experiments.

Previous studies have shown that the probability and seeds
framework could help explain diverging responses of TC fre-
quency to radiative climate forcing induced by greenhouse gases
(3, 11, 21, 22). Here we test and validate that the seeds-
probability framework also works in a different scenario: clima-
tological variations driven by the annual cycle radiative forcing.
This study applies the framework to explain the TC annual
cycle. The two-step thinking of TC genesis (i.e., seed genesis and
then TC genesis) might help explain the early finding that more
intense hurricanes have a much sharper annual cycle than do
weaker TCs. Assume that disturbances at the very initial stage
have a relatively flat annual cycle and eventually develop into
intense hurricanes after multiple steps, of which each step is
governed by a probability with an annual cycle shape peaking
more or less around the TC season. Then the initial relatively
flat annual cycle of disturbances would ultimately become much
sharper after being multiplied by a chain of such probabilities
(see SI Appendix, Fig. S10, which provides a preliminary support
to this hypothesis). This is more likely the case for the stage from

a TC seed to an intense hurricane since the probability of each
step over this stage might share a similar relationship with the
large-scale environment. Probabilities in the early stage from the
initial disturbance to a seed appear to be governed by different
mechanisms (11).

As the probability and seeds framework seems to work across
a broad range of different climate-forcing scenarios, the imme-
diate question arises: Does it also work in the case of unforced
or internal variability-dominated climate variation? For exam-
ple, can we use this framework to understand different TC
frequencies in El Niño versus La Niña years, as well as contribu-
tions from seeds and probability in extreme TC years? Another
question, which is more fundamental, is, What controls the vari-
ability of seeds? Can we model the seed frequency variability
in a similar way to the TC frequency? While wind shear domi-
nates the NA TC genesis probability annual cycle (SI Appendix,
Fig. S11), our preliminary analysis suggests that vertical veloc-
ity variability plays a dominant role in the seed genesis index
proposed by Hsieh et al. (11) (SI Appendix, Fig. S12). This may
explain why statistical models of TC genesis can be improved by
incorporating vertical velocity (18) or instability (17). More com-
prehensive analysis and examination are needed to address all
these important questions.

A B C

Fig. 3. Scatter plots of monthly climatology of NA TC frequency versus TC genesis probability index (A), frequency of vortex seeds (B), and the combination
of both (C) from observations and model historical simulations from HiRAM, AM2.5, and AM2.5C360. All the quantities are normalized by their annual total.
Dashed lines show the linear regression, for which the equation and the variance explained are shown on the bottom right of each panel.

Yang et al.
Hurricane annual cycle controlled by both seeds and genesis probability

PNAS | 3 of 5
https://doi.org/10.1073/pnas.2108397118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2108397118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2108397118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2108397118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2108397118/-/DCSupplemental
https://doi.org/10.1073/pnas.2108397118


A B C

FED

G

J K L

IH

Fig. 4. Scatter plots of monthly climatologies of TC frequency versus TC genesis probability index (A, D, G, and J), frequency of vortex seeds (B, E, H, and
K), and the product of both (C, F, I, and L) over the seven major TC basins of NA, EP, WP, NI, SI, AU, and SP from observations (A–C) and model historical
simulations from HiRAM (D–F), AM2.5 (G–I), and AM2.5C360 (J–L). Dashed lines show the linear regression, for which the equation and the variance explained
are shown on the bottom right of each panel.

Materials and Methods
Data. For observed TC tracks, we use version 4 of International Best Track
Archive for Climate Stewardship (IBTrACS v04) (23). The ERA5 reanalysis
dataset (24) is used to track seeds of TCs, where instantaneous hourly data
at Coordinated Universal Time hours of 00, 06, 12, and 18 (four times
daily) are used. We also use ERA5 reanalysis monthly data to calculate
large-scale climate environment variables and the associated TC genesis
probability.

Model and Numerical Experiments. In this study, we use three Atmospheric
General Circulation Models from GFDL that share the same dynamical core
but vary in atmospheric physics or horizontal resolution, including HiRAM
(25), AM2.5, and AM2.5C360. HiRAM has a horizontal resolution of about
50 km and is able to simulate many aspects of the observed TC frequency
variability over the past few decades during which reliable observations are
available. AM2.5 has the same horizontal resolution of 50 km as HiRAM
but uses the relaxed Arakawa–Schubert convective closure instead of the
scheme based on the parameterization of shallow convection from the Uni-
versity of Washington (26) used in HiRAM. AM2.5C360 is the same as AM2.5
except the horizontal resolution is doubled to about 25 km. Using HiRAM,
AM2.5, and AM2.5C360, we performed Atmospheric Model Intercompari-
son Project (AMIP)-type ensemble simulations (five ensemble members from
HiRAM and AM2.5 and three ensemble members from AM2.5C360) in which
the atmospheric model is forced by SST from Hadley Centre Sea Ice and Sea
Surface Temperature dataset version 1 (27) over the period of 1971 to 2018.
All the ensemble members are forced by the same historical SST and dif-
fer only in initial condition. For both observational data and model output

from the AMIP historical runs, only years of 1980 to 2018 are focused on and
analyzed unless otherwise stated.

TC and Seed Tracking. To track TCs, we use the TC tracking algorithm devel-
oped by Harris et al. (28) and briefly describe it here as follows: The input
data for the tracking algorithm include 6-hourly instantaneous sea level
pressure (SLP), 850 hPa vorticity, 10-m wind speed, and middle-troposphere
(300 to 500 hPa) air temperature. The whole process can be decomposed
into two steps. In step 1, storms are first tracked based on SLP, where a
maximum 850-hPa cyclonic vorticity magnitude of at least 1.5× 10−4 s−1 is
applied to filter out weak or disorganized systems. In step 2, three lifetime-
related conditions are applied on each storm track to get only long-lived
TCs. The three minimum lifetimes are 1) 72 h of total lifetime, 2) 48 h of
cumulative warm core condition, and 3) 36 consecutive hours of both warm
core and maximum 10-m wind speed greater than tropical-storm strength
(17.5 m·s−1). The warm core condition here means the maximum middle-
troposphere (300 to 500 hPa) temperature is encircled by a 2 ◦C (critical
temperature difference) contour and is no more than 500 km (offset radius)
from the storm center of SLP.

In our application to the HiRAM TC tracking, we reduce the maximum
10-m wind speed threshold from 17.5 to 15.75 m·s−1 in the 36 consecutive
hours condition but do require the maximum of 10-m maximum wind speed
along each storm track is at least 17 m·s−1. We also modify the warm core
condition by increasing the critical temperature difference from 2 to 2.5 ◦C
and reducing the offset radius from 500 to 110 km. AM2.5 and AM2.5C360
apply the same protocol, except using a critical temperature difference of
1 ◦C and the default 2 ◦C, respectively.

4 of 5 | PNAS
https://doi.org/10.1073/pnas.2108397118

Yang et al.
Hurricane annual cycle controlled by both seeds and genesis probability

https://doi.org/10.1073/pnas.2108397118


EA
RT

H
,A

TM
O

SP
H

ER
IC

,
A

N
D

PL
A

N
ET

A
RY

SC
IE

N
CE

S

To track vortex seeds, we use the rain cluster tracking algorithm devel-
oped by Hsieh et al. (11), which tracks contiguous grid cells whose
precipitation rates are larger than the 99.5th percentile of all the tropical
(30◦S to 30◦N) grids at each time step. Clusters are required to be larger
than four grid points, last longer than 1 d, and initiate within 30◦S to 30◦N.
Seeds are defined as the tracks of the rain cluster whose maximum 850-hPa
vorticity along the track exceeds 4 ×10−4 s−1 and duration over the ocean
surface is at least 12 h. Our results are generally robust to choice of vor-
ticity or ocean hour thresholds (SI Appendix, Figs. S13–S15). We have also
tested an alternative seed definition based on SLP that starts from step 1 of
TC tracking described above and further require that the tracks start within
30◦S to 30◦N and last at least 12 h over the ocean surface. The annual cycles
predicted using this alternative definition are similar to those using rain
cluster (SI Appendix, Fig. S16).

Ventilation Index and TC Genesis Probability. Ventilation index is calculated
using equation 1 of ref. 10:

Λ =
ushearχm

uPI
, [2]

where ushear is the vertical wind shear between 850 and 200 hPa, χm is
the entropy deficit, and uPI is the potential intensity. Based on the logistic
regression model (logistic relationship between probability and the loga-
rithm of ventilation index), TC genesis probability is linked to the ventilation
index through

p(Λ) =
1

1 + (Λ/Λ0)n
, [3]

where the parameters of Λ0 and n are selected to be in agreement with
Tang and Emanuel (10) so that p(0.014) = 0.5 and p(0.1) = 0.1. As a result,
we get Λ0 = 0.014 and n = log(9)/ log(0.1/0.014)≈ 1.1.

We first calculate monthly TC genesis probability at each longi-
tude/latitude grid point and then perform spatial average weighted by grid
area between 10◦N (S) and 30◦N (S) for the Northern (Southern) Hemi-

sphere basins. We have also tested the sensitivity to the alternative choice in
which genesis probability is averaged between 5◦N (S) and 30◦N (S) and the
result is similar (SI Appendix, Fig. S17). These multiyear (and multiensem-
ble for model simulations) basin-mean monthly TC genesis probability time
series are thereafter used for the estimation of annual cycles for each basin.

TC Basins. Seven global TC basins covered in this study are defined the same
as that in figure S4 of Yang et al. (4), including the NA, EP, WP, NI, SI, AU,
and SP basins.

Normalized Annual Cycle. For TC frequency, genesis probability, and seed
frequency, the order of processing data is 1) calculation of monthly time
series for each basin, 2) calculation of monthly climatologies, and 3) normal-
ization of monthly climatologies by the annual total. For the predictor of
Nseed × p, the multiplication takes place between the first and second steps
in the above process.

Data Availability. The IBTrACS v04 dataset is available from National
Oceanic and Atmospheric Administration (NOAA), https://www.
ncdc.noaa.gov/ibtracs. The ERA5 dataset is available from European
Centre for Medium-Range Weather Forecasts (ECMWF), https://www.
ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. Codes and all
other data for the results of this study are available from GitHub,
https://github.com/wy2136/tc annual cycle.
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