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Abstract
Highly pathogenic influenza viruses continue to cause serious threat to public health due to their pandemic potential, calling for an urgent
need to develop effective, safe, convenient, and universal vaccines against influenza virus infection. In this study, we constructed two recom-
binant protein vaccines, 2H5M2e-2H7M2e-H5FP-H7FP (hereinafter M2e-FP-1) and 2H5M2e-H5FP-2H7M2e-H7FP (hereinafter M2e-FP-2), by
respectively linking highly conserved sequences of two molecules of ectodomain of M2 (M2e) and one molecule of fusion peptide (FP) epitope
of hemagglutinin (HA) of H5N1 and H7N9 influenza viruses in different orders. The Escherichia coli-expressed M2e-FP-1 and M2e-FP-2
proteins induced similarly high-titer M2e-FP-specific antibodies in the immunized mice. Importantly, both proteins were able to prevent le-
thal challenge of heterologous H1N1 influenza virus, with significantly reduced viral titers and alleviated pathological changes in the lungs, as
well as increased body weight and complete survivals, in the challenge mice. Taken together, our study demonstrates that highly conserved M2e
and FP epitope of HA of H5N1 and H7N9 influenza viruses can be used as important targets for development of safe and economical universal
influenza vaccines, and that the position of H7N9 M2e and H5N1 HA epitope sequences in the vaccine components has no significant effects on
the immunogenicity and efficacy of M2e-FP-based subunit vaccines.
© 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Influenza is one of the important emerging infectious dis-
eases threatening public health worldwide. Influenza vaccines
are required annually to immunize a large number of people to
prevent influenza. The highly pathogenic avian influenza
Abbreviations: CPE, cytopathic effect; HA-FP, hemagglutinin fusion

peptide; IPTG, isopropyl-b-D-thiogalactopyranoside; M2e, extracellular

domain of M2; TCID50, 50% tissue culture infectious dose.
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viruses H5N1 and H7N9, as well as 2009 pandemic H1N1
influenza virus, have infected humans and caused sporadic
cases or epidemics [1e9], calling for continuous efforts to
develop vaccines to prevent the threat of influenza. Current
influenza vaccines are mainly strain-specific, targeting one or
more closely related strains, and having limited efficacy to
prevent divergent and new viral strains [10e12]. Thus,
development of effective universal vaccines with cross-
protective efficacy against variant influenza viruses has been
the focus of influenza researches.

The extracellular domain of M2 (M2e) protein of influenza
virus is highly conserved among all influenza A viruses, thus
serving as a promising target for developing universal influ-
enza vaccines [13,14]. However, containing only 24 amino
reserved.
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acids, the M2e molecule is a poor inducer of immune
response, elucidating the need to improve its immunogenicity
in designing influenza vaccines. A number of approaches,
including conjugating M2e with other carrier proteins, such as
Neisseria meningitidis outer membrane complex (OMPC) and
bacterial flagellin, or increasing the copy numbers of M2e
molecules, have been introduced to increase the immunoge-
nicity and/or protective efficacy of M2e-based vaccines
[15e19]. In addition to M2e, fusion peptide (FP) epitope in
the hemagglutinin 2 (HA2) stem region of influenza virus is
also highly conserved in influenza A viruses, making it as
another important vaccine target [14,20,21]. Chimeric vac-
cines or synthetic peptides containing conserved HA2 se-
quences may induce cross-reactive and cross-protective
antibodies against divergent influenza viruses [22e24],
constituting a key approach to develop universal influenza
vaccines.

In this study, we designed two recombinant vaccines,
2H5M2e-2H7M2e-H5FP-H7FP (hereinafter M2e-FP-1) and
2H5M2e-H5FP-2H7M2e-H7FP (hereinafter M2e-FP-2),
respectively containing highly conserved sequences of two
M2e molecules and one HA-FP molecule of H5N1 and H7N9
influenza viruses in two different orders, and expressed the
proteins in Escherichia coli expression system. We further
evaluated the immunogenicity and cross-protective efficacy of
these two subunit vaccines against a heterologous strain of
H1N1 influenza virus. This study demonstrates that the posi-
tion of H7N9 M2e and H5N1 HA epitope sequences in the
vaccine components has no significant impact on the immu-
nogenicity and efficacy of M2e-FP-based subunit vaccines,
suggesting the potential to develop these proteins as effective
and economical universal influenza vaccines.

2. Materials and methods
2.1. Ethics statement
Female BALB/c mice at 6e8 weeks old were used in the
study. The animal studies were carried out in strict accordance
with the recommendations in the Guide for the Care and Use
of Laboratory Animals of the National Institutes of Health.
The animal protocols were approved by the Committees on the
Ethics of Animal Experiments of the Beijing Institute of
Microbiology and Epidemiology (Permit Number: PMB15-
0012), and the New York Blood Center (Permit Number:
322.06).
2.2. Construction of recombinant vaccines
The construction of recombinant vaccines containing M2e
and HA-FP of H5N1 and H7N9 influenza viruses was carried
out as previously described [25]. Briefly, genes encoding the
highly conserved sequences of two molecules of H5N1 M2e
and one molecule of HA-FP, as well as two molecules of
H7N9 M2e and one molecule of HA-FP, in two orders were
synthesized, inserted into pQE30 E. coli Expression Vector,
and sequenced for corrected sequences. A linker sequence
encoding GGGGS was added between each molecule, and a
His6 tag was added at the C-terminus for easy purification of
expressed recombinant proteins.
2.3. Recombinant protein expression and purification
The recombinant M2e-FP-1 and M2e-FP-2 proteins were
expressed in the E. coli expression system as previously
described [25,26] with some modifications. Briefly, the
aforementioned recombinant plasmids encoding M2e-FP-1
and M2e-FP-2 proteins were transformed into E. coli (M15),
cultured in LB medium overnight at 37 �C, diluted (1:100),
and then continuously cultured until the OD600 value reaching
0.6e1.0. Isopropyl-b-D-thiogalactopyranoside (IPTG, Sigma)
was added at the final concentration of 1 mM, and the E. coli
was centrifuged to collect pellets. The sonicated E. coli su-
pernatant containing the expressed proteins was collected, and
purified using Ni-chromatography (Promega) and gel filtration
chromatography. The purified recombinant proteins were
concentrated, analyzed for endotoxin, and used for further
studies.
2.4. SDS-PAGE and Western blot
The recombinant M2e-FP-1 and M2e-FP-2 proteins were
analyzed by SDS-PAGE and Western blot as previously
described [27,28]. Briefly, the IPTG-induced proteins and non-
induced controls were boiled for 10 min, separated by 10%
TriseGlycine gels, and stained by Coomassie Brilliant Blue
for SDS-PAGE analysis. The same samples were also trans-
ferred to nitrocellulose membranes for Western blot analysis
by blocking the blots using 5% fat-free milk in PBST over-
night at 4 �C, and sequentially incubating them for 1 h at room
temperature with influenza virus M2e-specific polyclonal an-
tibodies (1:1000) (laboratory stock), and horseradish peroxi-
dase (HRP)-conjugated goat anti-mouse IgG antibody
(1:5,000, Invitrogen). The signals were then detected using
ECL substrate buffer (Peirce) and Amersham Hyperfilm.
2.5. Mouse immunization and virus challenge
A/PR/8/34(H1N1) influenza virus was grown in the allan-
toic cavities of 9-day-old embryonated chicken eggs. Virus-
containing allantoic fluid was harvested after 72 h, and
stored at �80 �C until use. Mice were immunized with re-
combinant proteins and challenged with influenza virus using
previously described protocols [27,29] with some modifica-
tions. Briefly, BALB/c mice were intramuscularly (i.m.)
immunized with M2e-FP-1 or M2e-FP-2 (10 mg/50 ml/mouse)
in the presence of aluminum adjuvant, and boosted twice at a
3-week interval. Mice injected with PBS plus above adjuvant
were included as a negative control. Sera were collected
before each vaccination, and measured for influenza virus
M2e-FP-specific IgG, IgG1, and IgG2a antibodies. One month
post-last immunization, mice were challenged with A/PR/8/
34(H1N1) influenza virus (103 50% tissue culture infectious
dose: TCID50). The infected mice were then detected for
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pathological changes by H&E staining and viral titers in lung
tissues at 5 days post-infection (p.i.), or observation of sur-
vivals and weight changes for 14 days p.i.
2.6. ELISA
ELISAwas used to analyze influenza virus M2e-FP-specific
antibody responses in the immunized mouse sera as previously
described [27,30] with some modifications. Briefly, ELISA
plates were coated with recombinant M2e-FP proteins over-
night at 4 �C, and blocked with 3% BSA-PBS for 2 h at 37 �C.
Mouse sera at 2-serial dilutions were added to the plates, and
incubated for 1 h at 37 �C. After 4 washes, the plates were
incubated with HRP-conjugated anti-mouse IgG, anti-mouse
IgG1, and anti-mouse IgG2a (1:5,000, Santa Cruz), respec-
tively, for 1 h at 37 �C. The reaction was detected by 3,30,5,50-
tetramethylbenzidine (TMB) substrate (Invitrogen), and
stopped by 1 N H2SO4. The absorbance at 450 nm was
measured using ELISA plate reader, and the related antibody
titers were calculated.
2.7. Viral titer detection
Viral titers in lung tissues of the above challenged mice
were detected as previously described [25,31] with some
modifications. Briefly, lung tissues were homogenized in
minimal essential medium (MEM) to achieve 10% (w/v)
suspensions. Serially diluted samples were added to mono-
layers of MadineDarby canine kidney (MDCK) cells seeded
in 96-well tissue culture plates, and incubated for 2 h at 37 �C.
Supernatants were removed and replaced with fresh MEM,
followed by incubation of MDCK cells for 72 h. Viral cyto-
pathic effect (CPE) was observed daily, and viral titers were
calculated by HA test. For the HA test, 50 ml of 0.5% turkey
red blood cells (Lampire Biological Laboratories) was added
to 50 ml of cell culture supernatant, and incubated at room
temperature for 30 min. Wells containing HA were scored as
positive. The viral titer was calculated by the Reed and
Muench method, and expressed as Log10 TCID50/g of lung
tissues.
2.8. Statistical analysis
The values are presented as mean with standard deviation
(SD). Statistical significance was calculated by Student's t-test
using GraphPad Prism statistical software. *** indicates
P < 0.001.

3. Results
3.1. Construction and characterization of recombinant
proteins containing highly conserved M2e and HA-FP
epitope of H5N1 and H7N9 influenza viruses
The amino acid sequences of M2e and HA-FP of H5N1,
H7N9, H1N1, and H3N2 influenza viruses are highly
conserved among all influenza A viruses, maintaining at least
90% homology [14]. Here, we constructed two recombinant
proteins, designated M2e-FP-1 and M2e-FP-2, by respectively
linking two M2e molecules and one FP epitope of HA protein
of H5N1 and H7N9 influenza viruses in different orders
(Fig. 1AeB), and expressed the fusion proteins in E. coli
expression system, a convenient and economical system for
expressing recombinant proteins with manufacture capacity
[32e34]. The proteins with the expected molecular weight
size were expressed in the soluble form of the induced E. coli
(Fig. 1C, left), and purified with 98.6% purity, which were
recognized by M2e-specific monoclonal antibodies developed
in our laboratories, while no such bands were detected in the
non-induced cell controls (Fig. 1C, middle). The purified M2e-
FP-1 and M2e-FP-2 proteins were used as coating antigens to
detect their reactivity with sera of mice immunized with M2e
or FP peptides of influenza virus H5N1 and H7N9. The results
showed that these recombinant proteins reacted specifically
with the respective sera, but not with the control sera (Fig. 1C,
right). These data suggest that the constructed M2e and HA-
FP fusion proteins were successfully expressed and main-
tained strong specificity to influenza virus.
3.2. Immunogenicity of recombinant proteins containing
highly conserved M2e and HA-FP epitope of H5N1 and
H7N9 influenza viruses
To evaluate the immunogenicity of the M2e and HA-FP
fusion proteins, we immunized mice using the two proteins
following the protocol described in Materials and Methods,
and detected the resulting antibody responses in the mouse
sera. As shown in Fig. 2A, both proteins were able to elicit
similarly levels of potent M2e-FP-specific IgG antibodies,
increased to a higher titer after each boost, and maintained for
at least 9 weeks during the detection period, whereas only a
background level of antibodies were detected in the sera of the
control mice. Further evaluation of antibody subtypes revealed
that high titers of M2e-FP-specific IgG2a (Th1), particularly
IgG1 (Th2), antibodies were induced in the sera of protein-
immunized mice collected at 9 weeks post-immunization,
but not in those of the control mice injected with PBS
(Fig. 2BeC). The above results indicate that M2e-FP-1 and
M2e-FP-2 maintained strong immunogenicity in inducing
long-term specific antibodies, and that both fusion proteins
elicited a relatively higher titer of Th2 (IgG1)-biased antibody
response, thus potentially promoting the production of
antibody-mediated humoral immune response.
3.3. Recombinant proteins containing highly conserved
M2e and HA-FP epitope of H5N1 and H7N9 influenza
viruses significantly reduced viral replication and
pathological changes
Having confirmed the immunogenicity of M2e-FP1 and
M2e-FP-2 fusion proteins, next we investigated their protec-
tive immunity by challenging the immunized mice with a
heterologous strain of A/PR/8/34(H1N1) influenza virus, and
detected viral replication and pathological damage in the lungs



Fig. 1. Construction and expression of recombinant proteins. (A) Amino acid sequences of H5N1 and H7N9 M2e and FP of HA2 proteins. Amino acids with

differences in M2e of H5N1 and H7N9 influenza viruses were shown in blue, and those in FP of H5N1 and H7N9 influenza viruses were in red. (B) Schematic

structure of constructed M2e-FP-1 and M2e-FP-2 proteins. Linker sequences, GGGGS. (C) SDS-PAGE (left) and Western blot analysis (middle) of expressed M2e-

FP-1 and M2e-FP-2 proteins. The protein molecular weight marker (kDa) is shown on the left. Anti-M2e antibodies (1:1000) were used for the Western blot

detection. Shown on the right is the ELISA result for detection of the reactivity of M2e-FP-1 and M2e-FP-2 proteins with sera of mice immunized with M2e or FP

peptides of H5N1 and H7N9 influenza viruses (1:2000). Sera of mice immunized with Middle East respiratory syndrome coronavirus (anti-MERS) were included

as control.

Fig. 2. Antibody responses in sera of mice immunized with M2e-FP-1 and M2e-FP-2 proteins. Mice were immunized with M2e-FP-1 and M2e-FP-2 proteins,

or PBS as a control, and sera were collected at the indicated time points post-immunization to detect M2e-FP-specific IgG (A), IgG1 (B), and IgG2a (C) antibodies

by ELISA. The antibody titers were expressed as the endpoint dilutions that remain positively detectable, and presented as mean ± SD of 5 mice in each group.
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at 5 days post-infection. As expected, mice immunized with
the two fusion proteins had significantly lower titers of virus in
their lungs than those of the control mice receiving PBS
(Fig. 3A). Analysis of the pathological changes demonstrated
that both fusion proteins effectively protected mice against
H1N1 infection, with obviously alleviated lung damage and
the presence of BALT (bronchus-associated lymphoid tissue)
surrounding the lung bronchial tube (Fig. 3B, left and middle),
a characteristic helping for restoring lung tissue cells. In
contrast, there was serious mesenchymal inflammation in the
lung tissue of the control mice, which was represented by
thickened alveolar walls, inflammatory cell infiltration,
hemorrhage, and vessel inflammation (Fig. 3B, right). The
above data suggest that the two fusion proteins had strong
ability to inhibit viral replication and reduce virus-caused
tissue damage.
3.4. Recombinant proteins containing highly conserved
M2e and HA-FP epitope of H5N1 and H7N9 influenza
viruses completely protected against heterologous
challenge
The protective efficacy of M2e-FP fusion proteins were
further evaluated by challenging the immunized mice with A/



Fig. 3. Viral titers and histopathological changes in lung tissues of challenged mice. The mice immunized with M2e-FP-1 and M2e-FP-2 proteins, respectively,

or PBS as a control were challenged with A/PR/8/34(H1N1) influenza virus (103 TCID50), and collected for lung tissues at 5 days p.i. to detect viral titers (A) and

histopathological changes (B). The data in (A) are presented as mean ± SD of 5 mice in each group. ***P < 0.001. For (B), Representative images from lung

tissues of immunized mice and control mice are shown. The tissue sections were stained by H&E straining, and observed for pathological damages under light

microscopy (10� magnification).
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PR/8/34(H1N1) influenza virus, and recording mouse sur-
vivals and weight changes for up to 14 days post-challenge.
The results demonstrated that both M2e-FP-1 and M2e-FP-2
significantly prevented weight loss of the mice after viral
challenge, with slightly reducing weights during 3e5 days,
and then steadily increasing weights at 6 days, post-infection.
By comparison, the control mice had a continuous weight loss
(Fig. 4A). In addition, all mice immunized with the two
fusion proteins survived from influenza virus challenge at the
end of the detection period, whereas none of the control mice
injected with PBS survived from such challenge, all of which
died by 11 days post-infection (Fig. 4B). These results
confirm the protective efficacy of the test influenza vaccines
in providing complete protection against infection of heter-
ologous strain of influenza virus, suggesting that the position
of H7N9 M2e and H5N1 HA-FP epitope sequences in the
M2e-FP-based subunit vaccines had no significant impact on
the protection.

4. Discussion

The highly conserved influenza virus M2e and FP of HA2
can be used as effective vaccine targets to develop universal
influenza vaccines with broad protective efficacy to prevent
against divergent viral strains [12,14,35]. Indeed, we have
previously indicated that a tetra-branched multiple antigenic
peptide (MAP)-based vaccine (H5N1-M2e-MAP) carrying
four copies of H5N1 M2e peptide conferred cross-protection
against lethal infection of two clades of H5N1 and one
pandemic 2009 H1N1 influenza viruses [31,36]. We have also
demonstrated the ability of a recombinant fusion protein
(M2e3-ASP-1) containing three conserved H5N1 M2e mole-
cules and a new Onchocerca volvulus activation associated
protein-1 (ASP-1) adjuvant in cross-protection against two
divergent strains of H5N1 influenza viruses [25]. In addition,
H5N1 M2e peptide-based vaccines were developed to test the
cross-protection of H5N1 M2e against infection of the new
H7N9 virus, and the H5N1 M2e vaccination provided potent
cross-protection against lethal challenge of H7N9 virus
[37,38]. In this study, we designed two recombinant universal
influenza vaccines by respectively linking two molecules of
M2e and one molecule of HA-FP sequences of H5N1 and
H7N9 in two different orders, and evaluated their immuno-
genicity and protection against a heterologous H1N1 strain.
The sequences of M2e and HA-FP used in this study are
highly conserved among all influenza A virus strains, main-
taining over 90% homology. As expected, both proteins linked
through two different orders of M2e and FP molecules were
able to induce effective antibody responses and cross-
protection against lethal challenge of A/PR/8/34(H1N1)
influenza virus with 100% survival rate, indicating that H5N1
and H7N9 M2e and HA-FP recombinant protein-based uni-
versal vaccines have capacity to elicit sufficient cross-
protective efficacy against infection of heterologous strain of
H1N1 influenza virus.

We have also found that while the two proteins, in the
presence of aluminum adjuvant, elicited high titers of antibody
response in the immunized mice, they failed to induce



Fig. 4. Survivals and weights of immunized mice challenged with influenza virus. The mice immunized with M2e-FP-1 and M2e-FP-2 proteins, respectively, or

PBS as a control were challenged with A/PR/8/34(H1N1) influenza virus (103 TCID50), observed for 14 days p.i., and calculated for percentages of weights (A) and

survivals (B). The data in (A) are presented as mean ± SD of 6 mice in each group.

646 Y. Guo et al. / Microbes and Infection 19 (2017) 641e647
effective cellular immune response (data not shown), sug-
gesting that M2e and HA-FP recombinant protein-induced
protection might be mainly through humoral, rather than
cellular, immune response-mediated immunity. Studies have
shown that the mechanisms of cross-protection by influenza
virus M2e-based vaccines may be through antibody-dependent
cell-mediated cytotoxicity (ADCC) or complement-dependent
cytolysis (CDC) [39,40]. In addition to M2e molecules, our
recombinant proteins also contain HA-FP conserved epitope
sequences. Future studies are warranted to further elucidate
the protective mechanisms of M2e and HA-FP-based recom-
binant vaccines, as well as to detect their efficacy in protecting
against multiple current and future strains of influenza virus
with pandemic potential.

Overall, this study suggests that simultaneous expression of
M2e molecule and HA-FP peptide from several important
influenza virus strains may help facilitate the development of
universal vaccines with broad-spectrum cross-protective effi-
cacy against divergent heterologous strains of influenza vi-
ruses, and that the order of M2e and HA-FP in the vaccine
components has no significant effects on the immunogenicity
and protective efficacy. Our data demonstrate the potential for
further development of a universal influenza vaccine based on
highly conserved sequences of M2e and HA-FP epitope of
influenza virus.
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