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Abstract
In eukaryotes, cyclin-dependent kinases (CDKs) control the cell cycle and critical steps in

gene expression. The lethal parasite Trypanosoma brucei, member of the phylogenetic

order Kinetoplastida, possesses eleven CDKs which, due to high sequence divergence,

were generically termed CDC2-related kinases (CRKs). While several CRKs have been

implied in the cell cycle, CRK9 was the first trypanosome CDK shown to control the unusual

mode of gene expression found in kinetoplastids. In these organisms, protein-coding genes

are arranged in tandem arrays which are transcribed polycistronically. Individual mRNAs

are processed from precursor RNA by spliced leader (SL) trans splicing and polyadenyla-

tion. CRK9 ablation was lethal in cultured trypanosomes, causing a block of trans splicing
before the first transesterification step. Additionally, CRK9 silencing led to dephosphoryla-

tion of RNA polymerase II and to hypomethylation of the SL cap structure. Here, we tandem

affinity-purified CRK9 and, among potential CRK9 substrates and modifying enzymes, dis-

covered an unusual tripartite complex comprising CRK9, a new L-type cyclin (CYC12) and

a protein, termed CRK9-associated protein (CRK9AP), that is only conserved among kine-

toplastids. Silencing of either CYC12 or CRK9AP reproduced the effects of depleting CRK9,

identifying these proteins as functional partners of CRK9 in vivo. While mammalian cyclin L

binds to CDK11, the CRK9 complex deviates substantially from that of CDK11, requiring

CRK9AP for efficient CRK9 complex formation and autophosphorylation in vitro. Interfer-
ence with this unusual CDK rescued mice from lethal trypanosome infections, validating

CRK9 as a potential chemotherapeutic target.
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Author Summary

Kinetoplastids are vector-borne, unicellular parasites that cause devastating human dis-
eases in the tropics and subtropics of the world. Interestingly, kinetoplastids express pro-
tein-coding genes differently than other eukaryotes by producing polycistronic pre-
mRNAs that require processing into individual mRNAs by spliced leader trans splicing
and polyadenylation. While each parasite mRNA is trans-spliced, this particular splicing
process is absent in mammalian and insect hosts of kinetoplastids. We recently discovered
that the cyclin-dependent kinase (CDK) CRK9 of the kinetoplastid Trypanosoma brucei is
essential for trans splicing and parasite viability. Due to the essential roles of CDKs in cell
proliferation, CDK inhibition is an established strategy against cancer, suggesting that che-
motherapeutic intervention of CRK9 will halt proliferation of kinetoplastid parasites in
their hosts. To enable inhibitor studies of CRK9, we have characterized the CRK9 enzyme
complex and discovered a new cyclin and a kinetoplastid-specific protein, both of which
are essential for the formation of active CRK9. The tripartite nature of the CRK9 complex
and sequence insertions that disrupt both kinase and cyclin domains suggest that CRK9
deviates structurally from human CDKs. Finally, by demonstrating that CRK9 ablation
prevented trypanosomes from establishing lethal infections in mice, we validated CRK9 as
a potential anti-parasitic drug target.

Introduction
Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are unicellular, vector borne,
human parasites belonging to the early-diverged phylogenetic order Kinetoplastida whose hall-
mark, the kinetoplast, is a network of catenated mitochondrial DNA. Kinetoplastid parasites
collectively affect millions of people worldwide primarily in developing countries, causing both
debilitating and fatal human diseases. There is no preventive vaccine for these diseases and the
current medications are unsatisfactory due to poor efficacy, toxicity and developing drug resis-
tance [1]. Trypanosomatid parasites share a unique mode of protein coding gene expression
that is distinct from their hosts. Their genomes are organized in large gene clusters of tandemly
linked protein coding genes which are transcribed polycistronically. Individual mRNAs are
resolved from pre-mRNA by spliced leader (SL) trans splicing and polyadenylation. In SL trans
splicing, the SL, derived from the small nuclear SL RNA, is spliced onto the 5/ end of each
mRNA [2, 3]. Like cis splicing, e.g. the removal of introns, SL trans splicing comprises two
transesterifications, generating a Y-shaped structural intermediate after the first splicing step
that is analogous to the lariat structure in cis splicing [4, 5]. The 39 nt-long SL harbors an
extensively modified cap structure, called cap4, that consists of a 7-methylguanosine cap nucle-
otide followed by four methylated nucleotides [6]. Cap4 is important for SL trans splicing [7, 8]
and for efficient translation [9]. Since each and every mRNA carries a SL, trans splicing is abso-
lutely essential for kinetoplastid viability. In T. brucei, the cdc2-related kinase 9 (CRK9)
appears to be of crucial importance for this unusual mode of gene expression since depletion of
this cyclin-dependent kinase (CDK) led to a lethal block of trans splicing in both the insect-
stage procyclic (PF) and the mammalian-infective bloodstream form (BF) of the parasite [10].

CDKs are serine/threonine kinases that require association with a cyclin for enzymatic
activity; they are characterized by an ATP binding pocket, a cyclin-binding PSTAIRE-like helix
domain and an activating T-loop. They were first identified as key regulators of cell cycle pro-
gression and were subsequently found to have important roles in gene transcription and RNA
processing [11]. Although individual CDKs can function in both realms, they have been
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divided into cell cycle-related and “transcriptional” CDKs [12]. Furthermore, CDKs of both
groups were found to have additional roles in the cell, for example in regulating DNA repair
and proteolysis [13]. While CDKs that are important for the cell cycle are regulated by their
sequential binding to different cyclins, each of which exhibit distinct cell cycle-dependent
expression patterns, transcriptional CDKs and their cyclins are expressed throughout the cell
cycle, typically forming a single CDK-cyclin complex. In mammals, CDK7 has a dual role in
both cell cycle and transcription. Uniquely, CDK7 forms a trimeric complex with cyclin H and
the RING finger protein MAT1 (ménage a trois 1) that phosphorylates and activates cell cycle
CDKs in their T-loops and, therefore, has been termed the CDK-activating kinase (CAK).
CAK is also part of the basal transcription factor TFIIH and, in this association, phosphorylates
the carboxy-terminal domain of RPB1 (CTD), the largest subunit of RNA polymerase (pol) II,
during transcription initiation, facilitating promoter clearance of the enzyme and recruitment
of RNA processing factors to the CTD including the capping enzyme [14]. In murine and
human cells, CDK11, which mainly occurs as two isoforms, CDK11p110 and CDK11p58, is
another CDK with a dual role. While CDK11p58 is expressed from a G2/M-specific internal
ribosome entry site of the CDK11mRNA and is implicated in mitosis [15–18], CDK11p110 is
constitutively expressed and involved in transcription and pre-mRNA splicing [19]. CDK11 is
of ancient origin since orthologues have been found in protozoa; it is present in all metazoans
and the fission yeast Schizosaccharomyces pombe but absent from budding yeast Saccharomyces
cerevisiae [20, 21]. Across systems, CDK11 forms an enzyme complex with L-type cyclins
whose hallmark is a C-terminal RS domain. Consistent with the importance of this domain in
spliceosomal serine/arginine-rich (SR) and SR-like proteins and the functional role of CDK11,
L-type cyclins were found to be important in RNA splicing [22–24].

Due to their crucial importance for gene expression and cell proliferation, CDKs are consid-
ered to be promising drug targets, most notably for anti-cancer therapy to inhibit cell prolifera-
tion. There are currently 11 CDK inhibitors under clinical evaluation and, recently, the first
such drug was approved for the treatment of metastatic breast cancer [25, 26]. Trypanosoma
brucei harbors eleven CDKs, as many as in flies and 3–5 more than in fungi [12], indicating a
high dependence of this unicellular organism on CDK-mediated control. Trypanosome CDKs,
however, are divergent in sequence from their eukaryotic counterparts, preventing their
unequivocal classification. Thus, trypanosome CDKs were generically termed CRK1-4 and
CRK6-12. In addition, ten cyclins (CYC2-11) have been identified in T. brucei so far [27, 28].
RNA interference (RNAi)-mediated gene silencing experiments identified CRK1-3, CRK6,
CRK9 and CRK12 as essential for trypanosome viability [10, 29–34]. Less is known about the
complex composition and specific functions of these enzymes. CRK3 was shown to be the func-
tional homolog of human CDK1/yeast CDC2; it partners with CYC6 (also known as cyclin B2)
and, as does its counterpart, regulates mitosis controlling G2/M progression [33, 35, 36]. More-
over, CRK3 of the related organism Leishmania major was able to complement a S. pombe cdc2
null mutant [37]. Interestingly, this CDK also interacts with P12CKS1, a non-cyclin homolog
of the human CDK regulatory subunit CKS1 [38]. T. brucei CRK1 was shown to be important
for G1/S progression and interacted with the four PH80 cyclins CYC2, CYC4, CYC5 and
CYC7 in vitro and in vivo [33, 39, 40]. CRK2, CRK4 and CRK6 appear to have accessory func-
tions in the cell cycle although their cyclin partners are unknown [41]. Recently, CYC9 was co-
isolated with CRK12 in tandem affinity purification. Both CYC9 and CRK12 were essential in
BFs, but depletion of either protein resulted in distinct phenotypes, suggesting that while
CYC9 is important for cytokinesis, CRK12 has a role in endocytosis [42].

CRK9 is the first trypanosome CDK known to have a dual role in the cell cycle and in gene
expression. In a pioneering study, ablation of CRK9 in PF trypanosomes affected mitosis and
led to defects in kinetoplast and basal body segregation during cytokinesis [29]. CRK9’s
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essential function in gene expression became apparent by RNA analysis of CRK9-silenced PFs
and BFs, both of which revealed a strong decline of mature mRNA levels and a concomitant
increase of unspliced pre-mRNA. Moreover, while the trans splicing substrate SL RNA was
dramatically increased in CRK9-silenced cells, the Y structure splicing intermediate exhibited a
strong decline in abundance. Since introduction of an RNAi-resistant CRK9 wild-type gene
into these cells completely rescued this phenotype, whereas introduction of an equivalent
CRK9 gene carrying a mutation in its T-loop sequence did not, these results unequivocally
demonstrated that CRK9 enzyme activity is crucial for the first step of SL trans splicing in try-
panosomes [10]. Further defects observed upon CRK9 silencing were the loss of RPB1 phos-
phorylation, and a hypomethylation of the SL cap. Surprisingly, the effects on mRNA
abundance, RPB1 phosphorylation and cap4 formation seen upon CRK9 silencing were quanti-
tatively reproduced by depleting a subunit of the spliceosomal PRP19 complex that, in other
systems, was shown to be essential for spliceosome activation, strongly indicating a direct role
of CRK9 in RNA splicing [43].

As a prerequisite for inhibition studies of this crucially important CDK, we have character-
ized the CRK9 enzyme complex and validated CRK9 enzyme activity as a potential drug target
in the mouse model. We found that CRK9 forms a tripartite complex together with a novel,
previously unannotated L-type cyclin that we named CYC12 and a kinetoplastid-specific pro-
tein that we termed CRK9-associated protein or CRK9AP. CYC12 and CRK9AP silencing
reproduced the CRK9 silencing phenotypes, identifying them as essential, functional partners
of CRK9 in vivo. Moreover, formation of a recombinant enzyme complex that was capable of
autophosphorylation required the co-expression of all three proteins in wheat germ extract,
confirming the tripartite nature of the enzyme complex. This is highly unusual as, with the
exception of CDK7, CDKs function as CDK-cyclin heterodimers.

Results

Two un-annotated proteins co-purify and co-precipitate with CRK9
In order to tandem affinity-purify CRK9 from trypanosome extract, we generated the clonal
PF cell line TbC9ee which expresses C-terminally PTP-tagged CRK9 and no untagged CRK9.
The PTP tag is a composite tag consisting of the protein C epitope (ProtC), a tobacco etch
virus (TEV) protease cleavage site and tandem protein A domains (ProtA) [44]. The cell line
was obtained by two consecutive transfections, in which one CRK9 allele was replaced by the
hygromycin phosphotransferase gene (HYG-R) and one allele modified by targeted insertion of
plasmid CRK9-PTP-NEO, which fused the PTP coding sequence to the 3/ end of the CRK9
coding region (Fig 1A). As a tool to study CRK9 expression, we raised a specific immune
serum in rats against a recombinant, GST-tagged CRK9 protein fragment that was expressed
and purified from Escherichia coli. The immune serum detected a single protein band of ~100
kDa in wild-type PF lysates which is slightly larger than the predicted CRK9 mass of 85.6 kDa,
whereas in TB9Cee lysates this band was replaced by a ~120 kDa band consistent with the ~19
kDa mass of the PTP tag (Fig 1B). Since the latter band was specifically detected by a ProtA-
specific probe, these results confirmed exclusive expression of CRK9-PTP in TbC9ee cells.
Since TbC9ee cells did not exhibit reduced culture growth as compared to wild-type cells and
the phosphorylation status of RPB1, which has been linked to CRK9 function, was comparable
in wild-type and TbC9ee cells (Fig 1B, bottom panel), we concluded that the PTP tag did not
interfere with CRK9 function.

Facilitated by the PTP tag, we purified CRK9-PTP consecutively by IgG affinity chromatog-
raphy, TEV protease cleavage and anti-ProtC immunoaffinity chromatography. An anti-ProtC
immunoblot analysis revealed efficient capture of the tagged protein in all purification steps
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(Fig 1C). Separation of the final eluate and, as controls, of the input material and the TEV pro-
tease fraction, by SDS-PAGE and staining of the proteins by SYRPRO Ruby and Coomassie
Blue, revealed a dominant protein band of ~105 kDa, representing CRK9-P (note that
CRK9-PTP was reduced by ~15 kDa to CRK9-P by TEV protease cleavage), and, unexpectedly,
many co-purified protein bands (Fig 1D). Liquid chromatography-tandem mass spectrometry
(LC/MS/MS) of two independent CRK9-PTP purifications revealed a total of 162 proteins that
were identified with an expect value smaller than 0.01 and a minimum of two unique peptides

Fig 1. Tandem affinity purification of CRK9. (A) Schematic depiction (not to scale) of the CRK9 locus in procyclic TbC9ee cells that exclusively express
CRK9-PTP and no untagged CRK9. In these cells one wild-type CRK9 allele (open box) was knocked out by a hygromycin phosphotransferase gene
(HYG-R, striped box). Integration of plasmid CRK9-PTP-NEO introduced the PTP sequence (black box) and the neomycin phosphotransferase (NEO-R) to
the second allele. Smaller gray boxes indicate gene flanks for RNA processing signals and checkered boxes depict CRK9 sequences encoded in the
plasmid. (B) Immunoblot of whole cell lysates of wild-type trypanosomes and of TbC9ee cells, detecting CRK9 and CRK9-PTP, respectively, with the newly
generated anti-CRK9 polyclonal immune serum. On the same blot, phosphorylated (p) and unphosphorylated RPB1 was detected as a loading control with a
polyclonal antibody, and CRK9-PTP specifically with the peroxidase anti-peroxidase reagent (PAP) that binds to the ProtA domains of the PTP tag. (C)
Immunoblot monitoring of the CRK9-PTP purification detecting CRK9-PTP in crude extract (Inp) and the flowthrough of IgG affinity chromatography (FT-IgG),
and CRK9-P in TEV protease eluate, the flowthrough of the anti-ProtC immunoaffinity chromatography (FT-ProtC) and the final eluate (Elu) with the
monoclonal HCPC4 anti-ProtC antibody. The x-values indicate relative amounts analyzed. (D) Protein analysis of the CRK9-PTP purification. Proteins of
crude extract, the TEV eluate and the final eluate were separated on 10–20% SDS polyacrylamide gel and first stained with SYPRORuby and, subsequently,
with Coomassie blue (right panel). Marker sizes in kDa are indicated on the left.

doi:10.1371/journal.ppat.1005498.g001
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(S1 Table). The majority of proteins, including those with very high protein scores, were com-
ponents of both ribosomal subunits. This massive co-purification of ribosomal proteins was
unexpected since CRK9 is a nuclear protein that is not enriched in the nucleolus [29], and
since previous PTP purifications of various nuclear complexes contained only a few, low scor-
ing ribosomal proteins. Since the functional association of CRK9 with ribosomal complexes
remains unclear, we focused on non-ribosomal proteins. Table 1 lists the most significant iden-
tifications. While no annotated cyclin was detected in the purification, the protein with the sec-
ond highest score is a new trypanosome cyclin (see below) which we termed CYC12 (accession
number Tb927.10.9160). Among the top scoring proteins are three dual specificity protein
kinases capable of phosphorylating aliphatic serines and threonines as well as aromatic tyro-
sines, indicating that they are involved in CRK9-dependent regulatory pathways. Two of them
(Tb927.7.3880 and Tb927.10.350) represent dual-specificity tyrosine phosphorylation-regu-
lated kinases (DYRKs) which, in other systems, were shown to regulate the cell cycle by altering
protein turnover rates [45] whereas the third enzyme appears to be a CDC-like kinase (CLK;
domain PKc_CLK, accession cd14134, E = 5.9e-57) which is distinct from the recently charac-
terized kinetochore CLKs KKT10 and KKT19 [46] and which, as with several CLKs in other
systems, may directly function in RNA splicing [47]. Furthermore, co-purification of the

Table 1. Mass spectrometric identification of CRK9 co-purified proteins.

Rank Annotation1 Accession #1 Mr (kDa) Score2 % Coverage emPAI3

1 CRK9 Tb927.2.4510 85.5 13,418 73.9 10.3

2 CYC12 Tb927.10.9160 71.2 9,956 43.3 8.1

6 DYRK protein kinase 4 Tb927.7.3880 87.0 1,797 49.7 2.1

19 hypothetical, conserved 6 Tb927.9.13970 36.8 805 47.3 2.8

22 DYRK protein kinase 4 Tb927.10.350 58.6 795 35.5 1.5

24 PABP2 Tb927.9.10770 62.2 724 37.8 1.7

28 putative CLK kinase 5 Tb927.3.1610 74.2 661 34.1 1.0

37 CRK9AP Tb927.3.4170 13.0 568 37.2 5.5

46 hypothetical, conserved Tb927.3.3740 69.1 525 34.4 0.8

50 hypothetical, conserved 6 Tb927.1.4680 37.3 474 36.3 1.2

59 hypothetical, conserved Tb927.10.11600 66.0 382 21.7 0.7

62 MRB1-assoc. protein Tb927.11.6320 53.2 353 29.3 0.6

69 NRBD1 (RNA-binding) Tb927.11.14000 28.8 299 37.8 1.7

73 hypothetical, conserved 6 Tb927.7.3080 47.3 285 31.9 1.0

74 RACK1 (kinase receptor) Tb927.11.11360 34.7 285 18.7 1.0

77 hypothetical, conserved Tb927.4.3150 38.1 275 27.7 0.7

84 PNO1 (pre-rRNA process.) Tb927.9.11840 24.1 257 32.5 1.3

93 TSR1, splicing factor Tb927.8.900 37.4 226 22.1 0.6

List of CRK9-PTP co-purified proteins, identified by LC/MS/MS, that were not a common contaminant of previous tandem affinity purifications, not

annotated a ribosomal protein, had a Mascot Score of at least 200 and an emPAI value equal or greater than 0.5. The rank number is according to the

complete protein list in Table A in S1 Text. The CRK9 complex subunits are specified by bold lettering.
1 Protein annotation and accession numbers are from the T. b. brucei 927 database at www.TriTrypDB.org, although proteins were identified through the

T. b. brucei 427 Lister genome database whose annotation and assembly is not as complete.
2 The Mascot Score corresponds to -10 x LOG10(P), where P is the absolute probability that the observed match is a random event.
3 The emPAI (exponentially modified Protein Abundance Index) is a measure for the relative amount of an identified protein in the final eluate [86].
4 DYRK: Dual-specificity tyrosine phosphorylation-regulated kinase.
5 CLK: CDC-like kinase; dual specificity kinase.
6 These proteins appear to be conserved only in the genus Trypanosoma.

doi:10.1371/journal.ppat.1005498.t001
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spliceosomal SR protein TSR1 [48], which is phosphorylated at multiple sites [49], may repre-
sent a direct link between CRK9 and the splicing machinery. Finally, the list of CRK9-asso-
ciated proteins contains three that appear to be conserved only within the genus Trypanosoma,
suggesting that, in addition to CRK9’s fundamental role in gene expression, there may be addi-
tional, trypanosome-specific functions associated with this kinase.

To separate the actual kinase complex from co-purifying proteins, we sedimented the eluate
of a CRK9-PTP purification through a linear sucrose gradient by ultracentrifugation. While
part of the enzyme and nearly all other co-purified proteins migrated to the bottom of the gra-
dient, CRK9-P exhibited a strong sedimentation peak in fractions 9–11 (Fig 2A). Protein bands
of ~80, 37 and 15 kDa co-sedimented in these fractions. Since transcriptional CDKs of other
systems are capable of autophosphorylating their T-loop motifs, we carried out a kinase assay
with fractions 9, 11, 13, and 20, detecting disproportionately high CRK9-P phosphorylation in

Fig 2. CRK9 interacts and co-sediments with two unannotated proteins. (A) CRK9-PTP tandem affinity-purified material was sedimented through a 10–
40% linear sucrose gradient by ultracentrifugation and fractionated into 20 aliquots from top to bottom. Note that pelleted proteins were resuspended in
fraction 20 (20+P). Proteins from each fraction were separated by SDS-PAGE and stained with SYPRORuby. Protein bands were excised and identified by
LC/MS/MS. Arrows point to the CYC12 and CRK9AP bands which co-sediment with CRK9 in fractions 9/10. The 35 kDa band with a peak in fractions 10/11
was found to be the putative ribosomal protein L5 (Tb927.9.15110/15150). (B) Kinase assay with materials from indicated fractions suggest
autophosphorylation of CRK9. (C) Reciprocal co-IP assays of extracts prepared from a cell line in which CRK9 was exclusively PTP-tagged and an HA tag
sequence was inserted at the 3’end of one CYC12 allele. The precipitate (P) was loaded at a fourfold excess relative to extract (Inp) and supernatant (S).
Detection of the RNA pol II transcription factor TFIIB served as a negative precipitation control.

doi:10.1371/journal.ppat.1005498.g002
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fractions 9 and 11, suggesting that fractions 9–11 contain an active CRK9 complex (Fig 2B).
Mass spectrometry identified the protein of the 37 kDa band, which exhibited a slightly differ-
ent sedimentation profile than the other two bands, as a putative ribosomal protein
(Tb927.11.2050); it may be a direct interactor of CRK9 within the ribosome. The two other
bands were non-ribosomal proteins: The 80 kDa and 15 kDa bands revealed CYC12 and
CRK9AP (Tb927.3.4170), respectively, the latter being conserved only among kinetoplastid
organisms (S1 Fig). To verify these protein identifications by reciprocal co-immunoprecipita-
tion (co-IP), we C-terminally tagged CYC12 with HA in TbC9ee cells and raised a polyclonal
immune serum in rats against recombinant, GST-tagged CRK9AP (S2 Fig). As shown in Fig
2C, precipitation of either CRK9-PTP, CYC12-HA or CRK9AP specifically co-precipitated the
other two proteins, strongly indicating the presence of a tripartite kinase complex.

CYC12 is a new L-type cyclin
Mammalian cyclin L homologues exclusively partner with CDK11. There are two human
cyclin L paralogs, L1 and L2, which share 60% identity. These proteins have a ~200 amino
acid-long N-terminal composite CCL1 domain that comprises the highly conserved Cyclin_N
domain, the less conserved Cyclin_C domain and additional sequence conservation, character-
istic for transcriptional cyclins, around these domains. In addition, cyclin L is an SR-related
protein that features a conserved, C-terminal, highly positively charged arginine/serine-rich RS
domain with repetitive “SR” dipeptide motifs (Fig 3A). A standard protein-protein BLAST
search of the human proteome with the T. brucei CYC12 sequence returned L1 and L2 cyclins
(E = 2e-09) but no other cyclins. A multiple sequence alignment of the CCL1 domain of cyclin
L orthologs from model organisms and of kinetoplastid CYC12 sequences showed convincing
sequence conservation across the whole domain, although, as expected, the Cyclin_C domain
was less well conserved (S3 Fig). Interestingly, both cyclin domains were disrupted by substan-
tial kinetoplastid-specific sequence insertions (in T. brucei, 74 aa and 45 aa long) which likely
prevented recognition of CYC12 as a cyclin in trypanosomatid genome annotations and of the
cyclin domains by the NCBI BLAST algorithm (Fig 3A, S3 Fig). Analysis of the C-terminus of
CYC12 revealed a moderate accumulation of SR dipeptide motifs when compared to the
human cyclin L domain (21 versus 7). However, conserved among all kinetoplastid CYC12
orthologs, the C-terminal domain has a similarly high isoelectric point of ~12, comparable to
its counterparts in other eukaryotes.

To substantiate the notion that CYC12 is an L-type cyclin, we generated a phylogenetic tree
with the alignment of all human cyclin sequences and four representative kinetoplastid CYC12
sequences. To avoid a potential bias of the charged cyclin L/CYC12 C-terminal domain, we
restricted the analysis to the CCL1 domain. As expected, CYC12 sequences unambiguously
partitioned with transcriptional cyclins and formed a branch with human L cyclins with a boot-
strap value of 87% (Fig 3B). A more extensive phylogenetic analysis of complete sequence
alignments of cyclins from model organisms and known kinetoplastid CYC12 orthologs
revealed a similar tree, though the bootstrap value of the cyclin L/CYC12 cluster was reduced
to 53% (S4 Fig). Taken together, these data strongly indicate that kinetoplastid CYC12 repre-
sents an L-type cyclin.

CYC12 and CRK9AP are functional partners of CRK9
To test whether CYC12 and CRK9AP are as important to trypanosome gene expression as
CRK9, we first generated PF cell lines for conditional silencing of each gene. In these cells, addi-
tion of doxycycline induced the expression of CYC12 or CRK9AP hairpin RNAs which, via the
RNAi pathway, cause the degradation of their target mRNAs. While it was straightforward to
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obtain clonal cell lines for CRK9AP silencing, several rounds of transfections generated only a
single line for the CYC12 knockdown, suggesting that the CYC12 expression level in PFs is crit-
ically important and vulnerable to a minor level of background expression of the dsRNA gene
cassette in the absence of doxycyline. Nevertheless, the culture of this cell line stopped growing

Fig 3. Cyclin CYC12 is an L-type cyclin. (A) Schematic drawing to scale of the human L1 and T. bruceiCYC12 cyclins. The two cyclin folds (blue) are
embedded in the CCL1 domain (green). The charged RS domain (red) was defined by a hydrophilicity Kyte & Doolittle blot score of < -2. Black lines indicate
SR or RS dipeptides. Both cyclin domains of CYC12 are disrupted by insertions. (B) Phylogenetic tree, generated by the maximum likelihood algorithm and
based on a multiple sequence alignment of the cyclin domains of human cyclins and of CYC12s from T. brucei (Tb), T. cruzi (Tc), L.major (Lm) and the
bodonid Bodo saltans (Bs) (for accession numbers see S5 Fig). Cyclins involved in the cell cycle and in transcriptional control are indicated. Bootstrap values
are indicated in percentages and were derived from 1000 replicates. The common branch of human cyclins L and kinetoplastid CYC12s is drawn in red.

doi:10.1371/journal.ppat.1005498.g003
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two days after induction, indicating a deleterious effect upon doxycycline induction (Fig 4A,
left panel). We determined culture growth for two CRK9AP knockdown cell lines and observed
a rapid halt of growth after two days of induction and a steady decline of cell numbers thereaf-
ter (Fig 4A, right panel and S5 Fig). RNA analysis of CYC12- and CRK9AP-silenced cells
showed that both knockdowns were efficient, with CYC12 and CRK9APmRNA levels being
reduced to 4% and 16%, respectively, after 2 days of induction (Fig 4B, top panels). In compari-
son, the onset of the growth defect in both CYC12- and CRK9AP-silenced cells was delayed by
one day when compared to the CRK9 knockdown [10]. In addition, while the number of
CRK9AP-silenced cells rapidly declined, comparable to CRK9-silenced cells, CYC12 depletion
caused cell numbers to remain constant, indicating a different dynamic of the lethal defect.
When we generated corresponding knockdown cell lines in BF trypanosomes, this phenotypic
variation was not observed and silencing of each of the three genes affected cell proliferation
after 1 day of induction and eliminated live cells within 4 days of induction (S5 and S6 Figs)
[10]. Thus, we concluded that CYC12 and CRK9AP are essential genes in PF and BF T. brucei.

The trans splicing block upon CRK9 silencing was revealed by a decrease of mature mRNA
and the Y structure intermediate, the concomitant increase of unspliced pre-mRNA, and the
accumulation of SL RNA with a hypomethylated cap structure [10]. Analyses of total RNA
from PF CYC12- and CRK9AP-silenced cells showed corresponding defects (Fig 4B). As ana-
lyzed for α tubulin and RPB7 (RPB7 encodes a subunit of RNA pol II) by semi-quantitative
RT-PCR, mature mRNA declined upon gene silencing whereas the abundance of the corre-
sponding unspliced pre-mRNA from these genes clearly increased during this period. Further-
more, primer extension assays of the same RNA preparations showed that, in both
knockdowns, SL RNA increased, predominantly in its hypomethylated form, whereas the Y
structure intermediate declined during the time course of the experiments. These results are
consistent with a block of trans splicing before the first transesterification step. Analysis of α
tubulin [pre-]mRNA levels in BFs confirmed the trans splicing defect in this life cycle stage
(S6B Fig).

CRK9 silencing also led to a loss of phosphorylation of the RNA pol II subunit RPB1 [10].
Correspondingly, immunoblotting of lysates from CYC12- and CRK9AP-silenced cells with
anti-RPB1 immune serum revealed a decrease of the upper RPB1 band (Fig 4C), which previ-
ously was shown to contain phosphorylated RPB1 [10]. The loss of RPB1 phosphorylation was
faster and more pronounced in BFs: after only day of induction, phosphorylated RPB1 was
nearly undetectable in CRK9- and CYC12-silenced cells whereas it took two days for CRK9AP-
silenced BFs to exhibit a reduction of this posttranslational modification (S6C Fig).

Finally, as described previously, all PFs that survive 3 days of CRK9 silencing exhibit an
atypical rounding up in culture [10, 29] reminiscent of FAT cells that were observed in the dis-
covery of the RNA interference pathway upon tubulin gene knockdowns [50]. Silencing of
CYC12 and of CRK9AP resulted in the same characteristic phenotype (S7 Fig).

Taken together, CYC12 and CRK9AP silencing resulted in the same block of trans splicing
and RPB1 dephosphorylation in both PFs and BFs as observed previously upon CRK9 silenc-
ing. Moreover, all three gene knockdowns caused widespread rounding up of PFs, an atypical
death phenotype in this life cycle stage. Thus, we conclude that CRK9, CYC12 and CRK9AP
are functional partners in facilitating SL trans splicing in trypanosomes.

CRK9AP silencing caused rapid co-loss of CRK9 and CYC12
A tripartite CRK9 enzyme complex would be highly unusual since, to our knowledge, eukary-
otic CDK7 is the only CDK whose enzyme activity depends on such a complex. Thus, to ana-
lyze the specific function of CRK9AP, we investigated the effect of CRK9AP ablation on the
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Fig 4. CYC12 and CRK9AP are functional partners of CRK9. (A) Cumulative culture growth curves were obtained for CYC12 andCRK9AP silencing in the
absence and presence of doxycycline (dox), the gene knockdown-inducing compound. For each knockdown a representative growth curve is shown. (B)
Analysis of total RNA prepared from non-induced cells and cells in whichCYC12 or CRK9APwere silenced for 1, 2 or 3 days.CYC12 or CRK9APmRNA as
well as α tubulin and RPB7mRNA were analyzed by reverse transcription of oligo-dT and semi-quantitative PCR, whereas unspliced, pre-mRNA of α tubulin
and RPB7were analyzed by reverse transcription of random hexamers and by PCR using an oligonucleotide upstream of the SL addition site. rRNA was
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expression of its functional partners. CRK9 and CYC12 proteins were rapidly lost in PFs upon
CRK9AP silencing, unlike a control protein (Fig 5A), although their mRNA levels were only
moderately affected, most likely due to the SL trans splicing block (Fig 5B). A similar co-loss of
CRK9 and CYC12 was observed in BFs (S8A Fig). Interestingly, depletion of CRK9 caused a
co-loss of CYC12 and CYC12 silencing led to a reduction in CRK9 abundance whereas
CRK9AP levels remained unaffected by both gene knockdowns, indicating that the expression
level of CRK9AP, in contrast to that of CRK9 and CYC12, was not dependent on the formation
of a CRK9 enzyme complex (S8B and S8C Fig). These results suggested that CRK9AP is impor-
tant for CRK9 complex assembly and/or integrity. Alternatively, CRK9AP may mediate
nuclear import of the complex, although the amino acid sequence does not harbor a recogniz-
able nuclear localization signal.

Recombinant CRK9, CYC12 and CRK9AP form a tripartite
autophosphorylating complex
In order to analyze the nature of the CRK9 enzyme complex, we attempted to express recombi-
nant (r) proteins and reconstitute the enzyme complex. In E. coli, only rGST-CRK9AP was
well expressed in soluble form whereas, despite numerous attempts, we failed to express and
purify correctly folded GST- and Sumo/6xHis-tagged versions of CRK9 and CYC12. In addi-
tion, we realized that full length CYC12 had a strong tendency to aggregate in any form of puri-
fication, resulting in protein loss in various assays (f.ex. substoichiometric amounts of CYC12
in the co-sedimenting enzyme complex in Fig 2A). Since aggregation is a common problem of
SR and SR-like proteins [51], and the use of arginine and glutamine salts [52] did not decisively
improve solubility of CYC12, we attempted to reconstitute the CRK9 enzyme complex in
wheat germ extract by co-expressing PTP-tagged CRK9, CRK9AP and a C-terminally HA-
tagged CYC12 from which residues 519 to 639, comprising the charged domain, were deleted

visualized by ethidium bromide staining after separation in an agarose gel. SL RNA, U2 snRNA and the Y structure intermediate were detected by primer
extension assays using a SL RNA and a U2 snRNA-specific primer in the same reactions. (C) Anti-RPB1 immunoblot analysis of whole-cell lysates prepared
from CRK9AP-silenced cells. Detection of the similar-sized RNA pol I subunit RPA1 served as a loading control.

doi:10.1371/journal.ppat.1005498.g004

Fig 5. CRK9AP depletion results in rapid co-loss of CRK9 and CYC12. (A) Immunoblot of whole cell
lysates derived from non-induced (n.i.) andCRK9AP-silenced PF trypanosomes. The arrow indicates the
gene knockdown of CRK9AP. Detection of the class I transcription factor A subunit 6 (CITFA6) served as a
loading control. (B) Corresponding semi-quantitative PCR analysis of cDNA that was obtained from the same
cells by reverse transcription of total RNA using oligo-dT. Relative RNA amounts were determined by
ethidium bromide–stained rRNA.

doi:10.1371/journal.ppat.1005498.g005
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(CYC121-518-HA) (Fig 6A). We expressed pairs of CRK9 complex subunits and all three pro-
teins together to analyze their interactions by co-IP (Fig 6B). In these assays, rCYC121-518-HA
clearly formed a complex with rCRK9AP in the absence of rCRK9-PTP whereas rCRK9-PTP
required the expression of both rCYC121-518-HA and rCRK9AP for efficient interaction with
these subunits. Thus, it appears that CYC12 and CRK9AP need to interact before they can
form a complex with CRK9, strongly indicating that CRK9AP is crucially important for the
formation of an active CRK9 complex. This notion was corroborated by conducting a kinase

Fig 6. CRK9AP is essential for CRK9 enzyme assembly and autophosphorylation. (A) Schematic to scale of recombinant CRK9-PTP, CYC121-518-HA,
and CRK9AP proteins that were expressed in wheat germ extract. PTP and HA tags are depicted as black boxes. (B) rCYC121-518-HA and rCRK9-PTP were
pulled down from extract by anti-HA and IgG beads that bind to ProtA of the PTP tag, respectively. Pulldown and co-precipitation (asterisks) of CRK9
complex subunits were analyzed by immunoblotting with anti-ProtC (PTP tag), anti-HA and anti-CRK9AP antibodies, detecting the three proteins in extract
(Inp), supernatant (S) and precipitate (P) which was loaded in six-fold excess to extract and supernatant. Negative control pulldowns (ctrl IP) were carried out
with extract in which the target protein was not expressed. Note that IgG beads but not anti-HA beads reproducibly co-precipitated minor amounts of either
rCYC121-518-HA and rCRK9AP in the control assays. (C) Kinase assay after IgG affinity chromatography and TEV protease release of rCRK9-P in the
presence of all three complex components or with either CRK9AP or rCYC121-518-HA. In a negative control (neg ctrl), the assay was carried out without
expression of trypanosome proteins and, in a positive control (end CRK9), CRK9 autophosphorylation was achieved by the endogenous CRK9 complex that
was tandem affinity-purified from trypanosome extract. The labeled CRK9-P band is indicated on the right (autophosphorylation).

doi:10.1371/journal.ppat.1005498.g006
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assay with immunoprecipitated rCRK9-PTP (Fig 6C). When the enzyme was expressed with
either rCRK9AP or rCYC121-518-HA, we observed very minor labeling of the kinase band
whereas autophosphorylation was clearly detectable upon co-expression of all three proteins.
Together, these results strongly indicate that CRK9 kinase activity requires formation of a tri-
partite enzyme complex. It remains to be determined, however, whether CRK9AP is strictly an
assembly factor or directly involved in the formation of the active site.

Validation of CRK9 as a potential chemotherapeutic target in the mouse model. The
unique nature of the CRK9 enzyme complex, its central importance to trypanosome gene
expression, and its membership in the druggable CDK family makes CRK9 a potential chemo-
therapeutic target for kinetoplastid parasites. Thus, as an important first step in this direction,
we validated CRK9 as a drug target in the mouse host. We first used so-called single marker BF
(smBF) trypanosomes, the parent line for conditional gene silencing experiments [53], to deter-
mine their lethal dose in intraperitoneal BALB/c mouse infections. Injection of 2 million
smBFs was lethal to mice within 3–5 days. Accordingly, when mice were infected with a modi-
fied smBF cell line, in which doxycycline triggered effective CRK9 silencing through expression
of CRK9 3/ UTR dsRNA (S9 Fig), mice died on days 4 and 5 in the absence of the compound
(n = 15; Fig 7A). Conversely, when mice (n = 16) received doxycycline in their drinking water,
they all survived for two weeks, the time doxycycline was administered (Fig 7A). To ensure
that this effect was due to CRK9 ablation and not an off-target effect, we introduced a CRK9
transgene, which was resistant to RNAi due to a different 3/ UTR sequence, into the CRK9
knockdown cell line. As expected, culture growth of these cells was not affected by doxycycline
(S9 Fig) and these trypanosomes were lethal to all mice in the absence (n = 15) and presence
(n = 15) of doxycycline (Fig 7B and 7C). Finally, since CRK9’s kinase activity depends on
CYC12, we wanted to find out whether CYC12 silencing cures mice infections. Thus, we sacri-
ficed ten more mice by infecting them with the BF CYC12 knockdown cell line characterized in
S6 Fig. While the five doxycyline-treated mice survived for the two week span of the experi-
ment the five untreated mice died on day 5. Thus, we concluded that inhibition of CRK9 kinase
activity is a valid strategy to combat trypanosome infections of mammalian hosts.

Discussion
CRK9 is the first ‘transcriptional’ CDK of trypanosomes that is of crucial importance to the
parasite-specific mode of gene expression. Ablation of CRK9 blocked SL trans splicing, led to
an accumulation of SL RNA with a hypomethylated cap structure and caused a loss of RPB1
phosphorylation [10]. Here we identified two un-annotated proteins that co-purified and co-
sedimented with CRK9. Multiple sequence alignment and phylogenetic analysis suggests that
the larger protein, CYC12, is an L-type cyclin that has not been recognized before due to
unique 74- and 45-aa sequence insertions in its Cyclin_N and Cyclin_C domains, respectively.
More support for CYC12 being a cyclin L comes from its domain structure which includes a
highly positively charged C-terminal domain that contains a moderate accumulation of SR
dipeptides reminiscent of the characteristic C-terminal RS domain of L-type cyclins [24]. Pre-
vious pull-down experiments with recombinant CRK9 suggested that CRK9 binds to cyclin
CYC6 (aka B2) but not to CYC1 (aka E1) [29]. However, our mass spectrometric analyses of
CRK9-copurified proteins did not identify a CYC6-specific peptide or peptides from other
annotated cyclins, indicating that CRK9, as is typical for ‘transcriptional’ CDKs, interacts
exclusively with CYC12. Cyclins L are known binding partners of CDK11, suggesting that
CRK9 is a functional homolog of this kinase. CDK11 is also known as the PITSLRE kinase due
to the presence of this motif in its cyclin-binding helix domain [19]. Interestingly, this motif is
perfectly conserved in trypanosome CRK12 whereas kinetoplastid CRK9s possess a PPYL/
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MLRE motif [27]. On the other hand, CRK9 but not CRK12 clustered with the CDK10/CDK11
branch of a phylogenetic tree constructed by eukaryotic CDK sequences with a bootstrap value
of 45% [42].

The notion that CRK9 is a functional homolog of CDK11 is strongly supported by func-
tional overlap. Consistent with the SL trans splicing block observed upon interference with the
CRK9 complex, the CDK11p110 isoform of human CDK11 proved to be essential for pre-
mRNA splicing both in vivo and in vitro [22, 24, 54, 55]. Furthermore, CDK11 was co-purified
with spliceosomal A and B complexes that form before the first splicing step [56] which agrees
with CRK9 being essential for the first transesterification to occur. The spliceosomal SR protein
SRSF7 (aka 9G8) was identified as a substrate of CDK11p110 [55], and the SR-related splicing
factor RNPS1 as a direct interactor of the kinase [57]. Correspondingly, the trypanosome SR
proteins TSR1 and branch point binding protein SF1, both of which are essential for SL trans

Fig 7. Validation of CRK9 as a drug target in the mouse. (A and B, top) Depiction of CRK9 mRNAs and the targeting dsRNA in two cell lines derived from
the T. brucei brucei 427 smBF cell line which were used for mouse infection studies. The cell line on the left (A) harbored a construct for conditional
expression of dsRNA that targets the 3/ UTR of theCRK9mRNA. This line was further modified (B) by targeted integration of a plasmid into the endogenous
CRK9 locus that fused a functional HA tag sequence and the 3/ UTR of RPA1 to the 3/ end of oneCRK9 allele, making the corresponding mRNA resistant to
the RNAi response. As the survival graphs of infected mice show in the bottom panels, doxycycline treatment rescued every single mouse when CRK9 was
depleted. This effect was completely abolished upon introduction of an RNAi-resistant CRK9 gene into the same trypanosomes.

doi:10.1371/journal.ppat.1005498.g007
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splicing [48, 58], co-purified with CRK9 (Tables 1 and S1). Moreover, consistent with the
observed RPB1 dephosphorylation upon silencing CRK9, CYC12 and CRK9AP genes in try-
panosomes, human CDK11 co-purified with RNA pol II complexes and transcription elonga-
tion factors [24, 59, 60], indicating that both mammalian CDK11 and trypanosome CRK9 play
central roles in the coordination and regulation of transcription and RNA processing.
Although the CDK11 homolog in S. pombemay function in a specific manner in transcription
by regulating the assembly of the co-activating mediator complex [61], this finding underscores
the evolutionary conserved role of CDK11 in transcription which may be shared by CRK9.
Finally, both CRK9 and CDK11 are important for the cell cycle. The human CDK11p58 isoform
was shown to be important for centriole duplication, centrosome maturation, bipolar spindle
assembly, maintenance of sister chromatid cohesion and cytokinesis, leading to the accumula-
tion of binucleate cells [15–18]. Accordingly, CRK9-depleted trypanosomes exhibited a defect
in basal body segregation and cells in G2/M phase [29].

While CRK9’s participation in gene expression and the cell cycle, and the identification of
an L-type cyclin as its partner strongly argue that it is a functional CDK11 homolog, CRK9,
nevertheless, exhibits features that clearly distinguish it from CDK11s of other organisms. As
mentioned above, the cyclin-binding helix domain motif PPYL/MLRE and the multiple
sequence insertions in both the cyclin domains of CYC12 and the kinase domain of CRK9 [27]
are unique. Most strikingly though is the fact that CRK9 forms a tripartite complex with
CYC12 and the non-cyclin CRK9AP. We provided several lines of evidence that CRK9AP is an
integral part of the enzyme complex: ablation of CRK9AP resulted in the same effects on RNA
splicing, RPB1 phosphorylation, and trypanosome morphology as did CRK9 silencing (Fig 4,
S5–S7 Figs), identifying it as a functional CRK9 partner in vivo. CRK9AP silencing also led to a
rapid co-loss of CRK9 and CYC12 protein (Fig 5), suggesting that CRK9AP is important for
the integrity of the enzyme complex. Finally, recombinant CRK9 in wheat germ extract inter-
acted with CYC121-518-HA and was active in autophosphorylation only when CRK9AP was
co-expressed (Fig 7), validating CRK9AP’s essential function in the formation of an active
CRK9 complex. To our knowledge, CDK7 is the only other CDK that forms a bona fide tripar-
tite complex with cyclin H and MAT1. This unique parallel suggests that CRK9 and CDK7
may have a common function. Could the CRK9/CYC12/CRK9AP trimeric complex represent
a divergent CAK complex? This possibility cannot be ruled out because the phenotype of
CRK9 ablation in PFs suggested multiple defects in mitosis and in the segregation of kineto-
plasts and basal bodies [29]. On the other hand, conserved from yeast to mammals, CAK activ-
ity is necessary for CDK1 activation that is critically important for mitosis [62]. Accordingly,
silencing of CRK3 or CYC6, encoding the trypanosome CDK1 ortholog and its mitotic partner
cyclin, respectively, caused a mitotic block in BF and PFs. In PFs, these knockdowns did not
affect cytokinesis and resulted in the generation of anucleate cells with a single kinetoplast
termed zoids [33, 35, 36]. Zoids, however, were not observed in PFs depleted of CRK9, CYC12
or CRK9AP [29] (this study). Additionally, co-purification of other CDKs with CRK9, which
could suggest a direct interaction, was not observed.

Interestingly, in S. cerevisiae, CDK activation is carried out by the single-subunit kinase
CAK1 whereas the CDK7 ortholog Kin28, which forms the trimeric complex, is part of the
TFIIH complex and phosphorylates the CTD of RPB1 [62], suggesting that the transcriptional
function of CDK7/Kin28 is of ancient evolutionary origin and the hallmark of the tripartite
kinase complex. Hence, does the tripartite CRK9 phosphorylate the RPB1 CTD despite being
an apparent CDK11 homolog? Again, this is a possibility since RPB1 dephosphorylation was
observed upon depletion of CRK9 complex components. However, RPB1 and other RNA pol
II subunits did not co-purify with CRK9. Moreover, there is convincing evidence that trypano-
some TFIIH lacks a kinase component and does not directly interact with CRK9: CRK9 was
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not discovered in eluates of several independent TFIIH tandem affinity purifications [63–65],
the low resolution EM structure of isolated TFIIH complexes lacked the knob-like CAK
domain of human TFIIH [64], and CRK9 was not found to occupy the SL RNA gene promoter
in vivo, the only known T. brucei promoter that assembles a conventional RNA pol II pre-initi-
ation complex [10]. These data suggest that CRK9’s role in CTD phosphorylation, like that of
CDK11, is indirect. Human CDK11p110 was shown to interact with casein kinase II, which
phosphorylates both the CTD and CDK11, indicating that CDK11 is part of a signaling path-
way that coordinates transcription and RNA splicing [60]. The fact that three distinct kinases
co-purified with CRK9 with high protein scores (Table 1) suggests that the trypanosome
enzyme may similarly be involved in gene expression coordination. On the other hand, the
presence of two DYRK kinases among the top scoring CRK9 co-purificants may reflect the fact
that human cyclin L is a substrate of the nuclear kinase DYRK1A [66].

Is CRK9AP’s role in the CRK9 complex comparable to that of MAT1 in the CAK complex?
MAT1 is important for CAK complex assembly in vitro [67, 68] and for the integrity of the
complex in vivo since in MAT1-deficient cells, the abundances of CDK7 and cyclin H are sig-
nificantly reduced [69–71]. These functions are congruent with our results on CRK9AP. Fur-
thermore, MAT1 stimulates the kinase activity of CDK7 [70, 72]. Although CRK9AP
expression was important for CRK9’s autophosphorylation in wheat germ extract (Fig 7C), it
remains to be determined whether CRK9AP functions beyond assembly and integrity of the
CRK9 complex. Structurally, MAT1 has an N-terminal RING finger involved in CTD phos-
phorylation, a central coiled-coil domain mediating the interaction of CAK and TFIIH, and a
hydrophobic C-terminal domain for binding to the CAK complex [72]. Conversely, CRK9AP
does not possess a RING finger, and coiled-coil domain prediction [73] did not return a con-
vincing score for the presence of this structure in CRK9AP. On the other hand, the C-terminal
region of CRK9AP has a similar hydrophobic characteristic as MAT1. However, it will require
functional dissection of CRK9AP and/or a structural analysis to determine whether this protein
shares functional domains with MAT1. Finally, the Cip/Kip family of CDK inhibitors is
another group of small proteins which, in addition to their well-known inhibitory roles, were
shown to aid assembly and activation of CDK4/6-cyclin D complexes [74, 75]. However, unlike
Cip/Kip proteins, CRK9AP’s sequence conservation among kinetoplastids is not restricted to
the N-terminus (S1 Fig) and our results with recombinant proteins suggest that CRK9AP has a
fundamentally important function in the CRK9 complex.

In summary, CRK9 assembles into a unique complex together with the L-type cyclin
CYC12 and CRK9AP, its enzymatic activity is absolutely required for trypanosome viability
and SL trans splicing, a kinetoplastid-specific step of gene expression, and CRK9 silencing
impaired trypanosomes from developing lethal infections in the mouse model (Fig 7). These
findings and the facts that CDKs are excellent drug targets in general, that interference with
human CDK11 was preclinically found to be therapeutically beneficial [76], and that CRK9,
CYC12 and CRK9AP are conserved among all kinetoplastids, identify CRK9 kinase activity as
a prime target for combating diseases caused by kinetoplastid parasites. Thus, in the next step,
it will be important to identify substrates and signaling pathways as well as establish a high
throughput screening assay for this unique kinase.

Methods

DNAs
For gene silencing of CYC12 and CRK9AP, their coding regions from position 21 to position
520 and from position 1 to position 414, were integrated in stem-loop arrangements into the
pT7-stl vector [77] to obtain plasmids T7-CYC12-stl and T7-CRK9AP-stl, respectively. To
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target the 3/ untranslated region (30 UTR) of CRK9 for gene silencing, 501 bp of the 3/ UTR
sequence, from positions 2326 to 2826 relative to the translation initiation codon, was inserted
into pT7-stl to generate pT7-CRK9UTR-stl. For HA-tagging of CYC12, 1140 bp of the 3/-ter-
minal CYC12 coding sequence was inserted into the pC-HA-BLA vector [78], utilizing the vec-
tor's ApaI and NotI restriction sites. The resulting vector, named pCYC12-HA-BLA, was
linearized with BamHI for transfection. For expression of N-terminal glutathione S-transferase
(GST) fusion proteins in E. coli, the coding regions of CRK9AP and of amino acids 100–300 of
CRK9 were cloned into the pGEX-4T-2 vector (GE Healthcare) using the vector’s EcoRI and
NotI restriction sites. For expressing CRK9-PTP, CYC121-518-HA and CRK9AP in wheat germ
extract, the complete coding sequences of these proteins were cloned into the pSP64 Poly(A)
expression vector (Promega) using the vector’s XbaI/SmaI, XbaI/SacI, and HindIII/XbaI
restriction sites to yield pSP64-CRK9-PTP, pSP64-CYC121-518-HA and pSP64-CRK9AP,
respectively.

DNA oligonucleotides that were used in semi-quantitative and quantitative reverse tran-
scription (RT)-PCR and in primer extension assays are specified in S2 Table.

Cells
PF and BF Trypanosoma brucei cell culture was maintained, transfected, and cloned by limiting
dilution as described previously [78, 79]. For conditional CYC12 and CRK9AP silencing experi-
ments linearized pT7-CYC12-stl and pT7-CRK9AP-stl constructs were transfected into PF 29–
13 and smBF cells, respectively [53], for targeted integration into the RRNA locus. For condi-
tional CRK9 silencing in BFs, pT7-CRK9UTR-stl, linearized with EcoRV, was transfected into
smBF cells. The cell line was further modified by targeted insertion of pCRK9-HA-BLA to gen-
erate the rescue cell line. For induction of gene silencing, trypanosomes were incubated in
medium containing 2 μg/ml of doxycycline that triggered dsRNA synthesis. Cells were counted
and diluted daily to 2×106 cells/ml for PF culture and to 2×105 cells/ml for BF culture. For
detection of CYC12 in CRK9 and CRK9AP RNAi cell lines, linearized pCYC12-HA-BLA was
transfected and targeted to an endogenous CYC12 allele, fusing the HA tag sequence to the 3/

end of the CYC12 coding region. It should be noted that we were unable to knock out the
remaining wild-type allele which indicates that deleting a CYC12 allele leads to haplo-insuffi-
ciency or that the HA tag partially interfered with CYC12 function.

RNA analysis
Semi-quantitative and quantitative RT-PCR was performed to determine relative amounts of
various RNAs during gene silencing experiments. Total RNA was prepared from 8 x 107 PF or
1 x 108 BF cells using the TRIzol reagent (Invitrogen) or the hot-phenol method [80], respec-
tively. Reverse transcription reactions were carried out with SuperScript II reverse transcriptase
(Invitrogen) according to the manufacturer’s specifications, using oligo-dT and random hexa-
nucleotides (Roche) for the analysis of mature, spliced mRNAs and unspliced pre-mRNA,
respectively. For each semi-quantitative PCR, the number of cycles for the linear amplification
range was determined empirically. For RNA quantifications, cDNA preparations were ana-
lyzed by qPCR assays using the SsoFast EvaGreen Supermix (BioRad) on a CFX96 cycler
(BioRad) according to the manufacturer’s recommendations. For each amplification, triplicate
qPCR samples were analyzed. Oligonucleotide pairs that were used in qPCR reactions were
evaluated for specificity by both agarose gel electrophoresis and melting curve analysis. Stan-
dard curves for oligonucleotide pairs were obtained from serial dilutions of non-induced
cDNA samples and ranged in their coefficient of determination (R2) value from 0.98 to 1.0.
Samples were standardized with 18S RRNA amplification of random hexamer-derived cDNA.
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The methylation status of SL RNA cap4 was analyzed by a modified primer extension assay as
described previously [10].

Protein analysis
The polyclonal anti-CRK9 and anti-CRK9AP immune sera were generated by immunization
of rats [81] with GST-CRK9AP or GST-CRK9100-300. The recombinant proteins were expressed
in E. coli strain BL21Star (DE3) and purified by glutathione affinity chromatography (GE
Healthcare). The CRK9 polypeptide was chosen due to its hydrophilic nature as determined by
a hydrophilicity blot using the Kyte & Doolittle algorithm with default parameters on the
ProtScale server at http://web.expasy.org/protscale/.

CRK9 and CRK9AP were detected on immunoblots by 1:1000 dilution of the respective
immune sera followed by a 1:5000 dilution of a monoclonal, peroxidase-labeled anti-rat IgG
secondary antibody (Vector Laboratories). HA-tagged protein was detected with a commercial
monoclonal rat anti-HA antibody (Roche), RPA1 with a polyclonal rabbit immune serum [82]
and RPB1 [10], TFIIB [81] and CITFA6 [83] with a polyclonal rat immune serum. Blots were
developed with BM chemiluminescence blotting substrate (Roche) according to the manufac-
turer's protocol. PTP-tagged proteins were detected either with the peroxidase anti-peroxidase
reagent (Sigma) or the monoclonal anti-ProtC antibody HPC4 (Roche).

Extract preparation and tandem affinity purification of PTP-tagged CRK9 was carried out
according to the standard PTP purification protocol [44]. Purified proteins were separated on
SDS–10 to 20% polyacrylamide gradient gels (BioRad) and stained either with SYPRO Ruby
(BioRad) or with Coomassie blue (Gelcode Coomassie stain; Thermo Fisher Scientific). For the
sedimentation analysis of the CRK9 complex, the final eluate of a standard CRK9-PTP purifi-
cation was concentrated, dialyzed against E-80 buffer and sedimented in a 4 ml, linear 10–40%
sucrose gradient as described before [43]. Briefly, the gradient was fractionated from top to bot-
tom in twenty aliquots of 200 μl each. Proteins from 150 μl of each fraction were collected by a
hydrophobic resin (StrataClean, Stratagene), and resuspended in SDS loading buffer for elec-
trophoresis. The remaining 50 μl aliquots were dialyzed against E-20 buffer (20 mMHEPES--
KOH pH 7.7, 20 mM potassium glutamate, 20 mM potassium chloride, 3 mMmagnesium
chloride, 0.2 mM EDTA, 0.5 mM EGTA and 4 mMDTT) and used for in vitro kinase assays.
Proteins that co-purified with CRK9-P were analyzed in two independent experiments by LC/
MS/MS from the gel lane of the final eluate by the Keck Biotechnology Resource Laboratory of
Yale University as recently described [43]. Individual protein bands obtained after sucrose gra-
dient sedimentation were analyzed equivalently.

For recombinant protein analysis, proteins were expressed in the TNT SP6 High Yield
Wheat Germ Protein Expression System (Promega) according to the manufacturer’s specifica-
tions. Briefly, 50 μl reactions containing 3 μg of pSP64-CRK9-PTP, 3 μg of pSP64-CYC121-518-
HA and/or 2 μg of pSP64-CRK9AP were incubated for 2 h at 25°C. After pre-clearing the
extract for 10 min at 25,000 g and 4°C, 42 μl of the reaction was combined with 25 μl settled
volume of IgG Sepharose 6 Fast Flow matrix (GE Healthcare), equilibrated in IP400 buffer (400
mMNaCl, 20 mM Tris-HCl, pH 8.0, 3 mMMgCl2, 0.1% NP40, 0.5x EDTA-free cOmplete pro-
tease inhibitor cocktail [Roche]), and incubated on ice for 1 h. Beads were washed seven times
with 0.9 ml of IP400 buffer and immobilized CRK9-PTP was released by TEV protease cleav-
age at 28°C for 30 min in a 50 μl-reaction containing 150 mMNaCl, 20 mM Tris-HCl, pH 7.7,
0.5 mM EDTA, 1 mMDTT, 0.1% Tween20, and 20 units of TEV protease (Invitrogen). For the
kinase assay, 8 μl of the eluate were used in a 40 μl kinase reaction that was incubated at 37°C
for 30 min and contained 60 mM KCl, 40 mM Tris-HCl, pH 7.7, 14 mMMgCl2, 1 mM DTT,
0.2 mg/ml; BSA, 1 μMATP, and 57.5 nM [γ-32P]ATP (7000 Ci/mmol).
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Phylogenetic analysis
Amino acid sequences spanning the CCL1 domain (COG5333) of human cyclins and of
CYC12 from T. brucei, Trypanosoma cruzi, Leishmania major and Bodo saltans were aligned
using the multiple sequence alignment tool ClustalO at the EMBL European Bioinformatics
Institute (http://www.ebi.ac.uk/Tools/msa/muscle/). The alignment was uploaded onto the
graphical user interface Seaview [84] at http://pbil.univ-lyon1.fr/software/seaview.html and a
maximum likelihood tree was generated employing the LG empirical matrix [85] with opti-
mized invariable sites, substitution rate categories of 4, estimated gamma distribution and
model equilibrium frequencies. Bootstrapping was performed with 1000 replicates.

Mouse infections
6–10 weeks old female BALB/c mice (The Jackson Laboratory, Bar Harbor, ME), were injected
intraperitoneally with 2 × 106 BF trypanosomes that were suspended in 0.1 ml of cold bicine-
buffered saline glucose (50mM bicine-NaOH, pH8.0, 50 mM NaCl, 5 mM KCl, 77 mM glu-
cose). To ensure cell viability, the parasites and syringes were kept on ice prior to injections. To
induce gene silencing in transfected trypanosomes, mice were given 1 mg / ml doxycycline in
their drinking water 2 days prior to injection and for up to 2 weeks post-injection. Drinking
water was replaced daily with fresh doxycycline solution. Mice were monitored daily and sacri-
ficed upon signs of distress. Blood samples, randomly taken from sick mice, were investigated
microscopically, revealing, in each case, parasitaemias ranging from 0.8 to 1 x 109 trypano-
somes per ml of blood.

Ethics statement
The generation of immune sera in rats and the mouse infection studies were carried out
according to protocols which were approved by the UConn Health Institutional Animal Care
and Use Committee (Public Health Service [PHS] assurance number A3471-01) and were in
accordance with the PHS Policy for the Humane Care and Use of Vertebrate Animals and the
Guide for the Care and Use of Laboratory Animals.

Supporting Information
S1 Fig. CRK9AP is conserved among kinetoplastid organisms. Kinetoplastid CRK9AP
sequences were aligned using the Clustal Omega server of the European Bioinformatics Insti-
tute (http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?tool=clustalo) at default parame-
ters [1]. Positions with more than 50% identity or similarity are highlighted in black or gray,
respectively. Dashes indicate that a corresponding residue is missing. Sequences were obtained
from the TriTrypDB (www.TriTrypDB.org [2] or www.GeneDB.org [3]) and comprise those
of T. brucei brucei strains 427 (Tb427, accession number Tb427.03.4170) and 927 (Tb927,
Tb927.3.4170), Trypanosoma vivax (Tv, TvY486_0303410), Trypanosoma cruzi CL Brener
Esmeraldo-like (Tc-el; TcCLB.509669.80) and Non-Esmeraldo-like (Tc-nel;
TcCLB.506175.30), Trypanosoma grayi (Tgr, Tgr.163.1040), Crithidia fasciculata (Cfa,
CfaC1_25_1880), Leishmania braziliensis (Lbr, LbrM.29.1690), Leishmania tarentolae (Lta,
LtaP29.1740), Leishmania mexicana (Lmx, LmxM.08_29.1585), Leishmania major (Lm,
LmjF.29.1585), Leishmania infantum (Li, LinJ.29.1710), Leishmania donovani (Ld,
LdBPK_291710.1), and the bodonid Bodo saltans (Bs, BS14910.1.pep). Please note that the
open reading frame of the T. brucei gene starts at an ATG upstream of the annotated start
codon [4].
(DOCX)
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S2 Fig. Generation of a highly specific rat anti-CRK9AP immune serum. CRK9AP was
expressed in Escherichia coli as a C-terminal fusion to glutathione S-transferase and purified
from bacterial extract by glutathione affinity chromatography. By injecting the purified protein
into the rat bloodstream, [pre-]immune serum was obtained according to a published protocol
[5]. Pre-immune (pre-IS) and α-CRK9AP immune sera (IS) were used to probe whole cell
lysates (wcl) and crude extract (extr) of procyclic Trypanosoma brucei brucei strain 427. As a
loading control, transcription factor TFIIB was detected on the same blots. Marker sizes in kDa
are indicated on the left.
(TIF)

S3 Fig. Multiple sequence alignment of the CCL1 domain of eukaryotic cyclin L and kineto-
plastid CYC12 proteins. Cyclin L and CYC12 sequences were aligned using the Clustal
Omega server at default parameters. Shown are the sequences of the CCL1 domain (COG5333)
as defined in human cyclin L1 according to the Conserved Domain Database [6]. Dashes indi-
cate that a corresponding residue is missing. Numbers in parentheses specify number of resi-
dues without significant sequence similarity. Positions with more than 50% identity or
similarity are highlighted in black or gray, respectively. Identical positions in model organisms
without similarity in kinetoplastids were highlighted in blue and insertions or unique identical
positions in kinetoplastids were highlighted in red. Stars and colons denote positions that are
identical or similar in all sequences analyzed. Yellow highlighting indicates cyclin folds 1 and 2
within the CCL1 domain and question marks indicate positions of the human cyclin L1
sequence that were not recognized as part of the CCL1 domain. Cyclin L sequences are from
Homo sapiens (Hs; L1, accession number NP_064703; L2A, NP_112199),Mus musculus (Mm,
NP_064321), Danio rerio (Dr, NP_956034), Caenorhabditis elegans (Ce, NP_506007), Arabi-
dopsis thaliana (At, NP_565622) and Schizosaccharomyces pombe (Sp, NP_593045). Kineto-
plastid CYC12 sequences were from T. brucei (Tb, accession number Tb927.10.9160),
Trypanosoma cruzi (Tc, TcCLB.503525.20), Leishmania major (Lm, LmjF.36.5640), and the
bodonid Bodo saltans (Bs, BS70770.1).
(DOCX)

S4 Fig. CYC12 clusters phylogenetically with cyclin L of model organisms. Amino acid
sequences of cyclins fromH. sapiens (Hs),M.musculus (Mm), Drosophila melanogaster (Dm),
C. elegans (Ce), A. thaliana (At), S. cerevisiae (Sc), and S. pombe (Sp) as well as kinetoplastid
CYC12 sequences from Trypanosoma brucei brucei strains 427 (Tb427) and 927 (Tb927), Try-
panosoma congolense (Tco), Trypanosoma vivax (Tv) T. cruzi (Tc), L.major (Lm), Leishmania
infantum (Li), Leishmania donovani (Ldon), Leishmania mexicana (Lmex), Leishmania taren-
tolae (Ltar), Leishmania braziliensis (Lbr), and the bodonid B. saltans (Bs) were aligned using
the Clustal Omega server at http://www.ebi.ac.uk [7]. The multiple sequence alignment was
imported into the ClustalX software package [8] and phylogenetically analyzed using the
neighborhood joining method. Bootstrap values were obtained by sampling a thousand repli-
cates and are indicated as percentages. The node for the cyclin L/CYC12 cluster is drawn in
red. Cyclin clusters of cell cycle-regulating and transcriptional CDKs, according to Ma et al.
[9], are indicated. The cyclin sequences were obtained from the following accession numbers:
Hs_A (CAA35986.1), Hs_B1 (CAO99273.1), Hs_B2 (AAI05087.1), Hs_B3 (CAC94915.1),
Hs_C (AAH41123.1), Hs_D1 (AAH23620.1), Hs_D2 (CAA48493.1), Hs_D3 (AAA52137.1),
Hs_E1 (AAH35498.1), Hs_E2 (AAC78145.1), Hs_F (AAB60342.1), Hs_G1 (AAC78145.1),
Hs_G2 (AAC41978.1), Hs_H (AAA57006.1), Hs_I (AAF43786.1), Hs_J (AAH43175.1), Hs_K
(AAH43175.1), Hs_L1 (AAH43175.1), Hs_L2A (Q96S94.1), Hs_O (NP_066970.3), Hs_T1
(AAC39664.1), Hs_T2 (AAW56073.1), Hs_Y (AAH94815.1), Mm_A (CAA81331.1), Mm_B1
(AAH85238.1), Mm_B2 (AAH08247.1), Mm_B3 (AAI38356.1), Mm_C (AAH03344.2),
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Mm_D1 (AAO13813.1), Mm_D2 (AAH49086.1), Mm_D3 (AAC53363.1), Mm_E1
(AAI38663.1), Mm_E1 (AAC80527.1) Mm_F (AAA63152.1), Mm_G1 (AAC42082.1),
Mm_G2 (AAC32372.1), Mm_H (AAH38861.1), Mm_I (AAF43391.1), Mm_J (AAI20923.1),
Mm_K (AAH27297.1), Mm_L1 (AAH94383.1), Mm_L2 (AAI32296.1), Mm_O (AAI47760.1),
Mm_T1 (AAD13656.1), Mm_T2 (AAH54122.1), Mm_Y (NP_080760.2), Dm_A
(NP_524030.2), Dm_B (AAF46904.1), Dm_C (CAA44720.1) Dm_D (NP_523355.2), Dm_E
(AAF53477.1), Dm_H (NP_524207.1), Dm_K (AAN11146.1), Dm_L (putative, Dm_T
(AAS64974.1), Dm_Y (AAF53122.1), Ce_A (AAA84393.1), Ce_B1 (Q10653.1), Ce_B3
(AAA84395.1), Ce_C (Q9TYP2.2), Ce_D (AAC35273.1), Ce_E (AAM78547.1), Ce_H
(NP_494564.2), Ce_L (AAS64750.1), Ce_T1.1 (P34425.1), Ce_T1.2 (P34424.2), Ce_Y1
(NP_498857.2), Ce_Y2 (NP_498858.2), At_A1 (Q9C6Y3.1), At_A2 (AED93433.1), At_A3
(NP_199122.1), At_B1 (P30183.2), At_B2 (Q39068.2), At_B3 (NP_173083.3), At_D1
(P42751.3), At_D2 (P42752.3), At_D3 (P42753.3), At_H (BAB72144.1), At_L (Q8RWV3.2),
At_T1 (NP_174775.1), Sc_CLB1 (CAA97112.1), Sc_CLB2 (CAA44195.1), Sc_CLB3
(CAA49201.1), Sc_CLB4 (CAA49202.1), Sc_CLB5 (AAA34503.1), Sc_6 (NP_011623.3),
Sc_CLN1 (NP_013926.1), Sc_CLN2 (CAA97982.1) Sc_CLN3 (NP_009360.1), Sp_C
(NP_595953.1), Sp_H (NP_595776.1), Sp_L (NP_593045.1), Sp_T (NP_596149.1) Sp_Puc1
(NP_596539.1), Sp_Btype1 (NP_588110.2), Sp_Btype2 (NP_595171.1), Sp_Btype3
(NP_593889.1), Tb927_CYC12 (Tb927.10.9160), Tb427_CYC12 (Tb427.10.9160), Tc_CYC12
(TcCLB.503525.20), Tv_CYC12 (TvY486_1009010), Tco_CYC12 (TcIL3000_10_7930),
Lm_CYC12 (LmjF.36.5640), Ltar_CYC12 (LtaP36.5790), Lmex_CYC12 (LmxM.36.5640),
Ldon_CYC12 (LdBPK_365890.1), Li_CYC12 (LinJ.36.5890), Lbr_CYC12 (LbrM.35.5920) and
Bs_CYC12 (BS70770.1).
(TIF)

S5 Fig. CYC12 and CRK9AP silencing. Growth curves of additional PF and BF cell lines in
which either CYC12 or CRK9AP was conditionally silenced by doxycycline (dox)-induced
dsRNA synthesis. The cross indicates that no viable cells were detectable after day 3 of induc-
tion. Corresponding cell lines were analyzed in detail as shown in Fig 4 and S6 Fig.
(TIF)

S6 Fig. CYC12 and CRK9AP silencing in BFs. (A) Growth curves of uninduced (- dox) BF cul-
tures or cultures in which CYC12 or CRK9APwas conditionally silenced by the addition of doxy-
cyline to the medium (+ dox). The cross indicates that subsequent to day 3 of induction no
intact cells were detectable by microscopic inspection. (B) RNA analyses. Total RNA was pre-
pared from [un-]induced cells and the relative amounts of mature CYC12/CRK9AP and α tubu-
lin mRNA was determined by reverse transcription using an oligo-dT primer and semi-
quantitative PCR, performed in the linear range of the amplification reaction. Unspliced, α tubu-
lin pre-mRNA was analyzed by reverse transcription of the same total RNA preparations using
random hexamers and PCR with an oligonucleotide that hybridized upstream of the α tubulin
SL addition site. rRNA served as a loading control and was detected after RNA separation on
agarose gel by ethidium bromide staining. (C) CRK9 silencing in BFs causing a SL trans splicing
defect was published previously [10]. Here, immunoblotting of whole cell lysates from these cells
shows that RPB1 phosphorylation was lost after one day of induction (unphos.). Corresponding
results were obtained when CYC12 or CRK9AP was silenced, although RPB1 dephosphorylation
in CRK9AP-silenced cells was consistently observable only after two days of induction.
(TIF)

S7 Fig. Depletion of CRK9, CYC12 or CRK9AP leads to round-up of cells.Microscopic
images of un-induced procyclic cells that look normal (top row) and of rounded cells from the
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same cell lines (bottom row) when CRK9, CYC12 or CRK9AP was depleted for three days.
White scale bars correspond to 10 μm.
(TIF)

S8 Fig. CRK9 and CYC12 but not CRK9AP are lost upon interference with the CRK9
enzyme complex in BFs. Immunoblotting of whole cell lysates prepared from BFs in which
CRK9AP (A), CRK9 (B) or CYC12 (C) were silenced, detecting CRK9, CRK9AP and, as a load-
ing control, the transcription factor subunit CITFA6 with specific polyclonal immune sera and
CYC12-HA with a monoclonal anti-HA antibody. Note that silencing specificity and efficiency
for the CYC12 RNAi cell line, which harbored immunologically undetectable, endogenous
CYC12, was demonstrated on the RNA level in S6 Fig. The protein profile of silenced genes is
indicated by an arrow. n.i., non-induced. The experiment shows that CYC12 and CRK9 are
lost when other CRK9 complex subunits are depleted whereas CRK9AP abundance remained
unaffected and only diminished when the CRK9AP gene was silenced.
(TIF)

S9 Fig. Analysis of CRK9 silencing in cultured BF cell lines used in mouse infections. (A
and B, top) Schematics reproduced from Fig 7, depicting targeting and rescue of CRK9mRNA
in the two smBF cell lines that were used in mouse infections studies. Culture growth curves on
the bottom are from non-induced cells (- dox) and doxycycline-induced (+ dox) trypanosomes
of the corresponding cell lines. (C and D) Semi-quantitative RT-PCR analysis of CRK9mRNA
in total RNA preparations from non-induced (n.i.) and one day-induced cells, demonstrating
efficient CRK9 silencing. rRNA, visualized by ethidium bromide staining, served as a control
for RNA input. (E) Anti-HA immunoblot showed that CRK9-HA protein, expressed from the
RNAi-resistant transgene, was unaffected by addition of doxycycline. TFIIB was probed on the
same blot as a loading control.
(TIF)

S1 Table. CRK9-PTP co-purified proteins. List of proteins that were identified in two
CRK9-PTP tandem affinity purifications by LC/MS/MS. The list shows the protein IDs of the
second, more comprehensive mass spectrometric analysis. All protein identifications with an
Expect value smaller than 0.001 are listed and ranked according to their Mascot Scores. Proteins
that were also identified in the first analysis are marked with an asterisk after their accession
numbers. Peptides were identified in both the T. brucei brucei 927 and 427 genome databases at
www.TriTrypDB.org. Annotations are according to the 927 database. Top-scoring and “hypo-
thetical, conserved” proteins were analyzed by standard BLASTP searches of the Human
Genome database. CRK9 complex subunits are highlighted in yellow, ribosomal proteins in
green, non-ribosomal proteins in orange, and standard PTP purification contaminants in gray.
(XLSX)

S2 Table. List of oligonucleotides used in RNA analysis.</ SI_Caption>
(DOCX)

S1 References. Supporting References.
(DOCX)
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