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A B S T R A C T

Background: A percent brain volume change (PBVC) cut-off of −0.4% per year has been proposed to distinguish
between pathological and physiological changes in multiple sclerosis (MS). Unfortunately, standardized PBVC
measurement is not always feasible on scans acquired outside research studies or academic centers. Percent
lateral ventricular volume change (PLVVC) is a strong surrogate measure of PBVC, and may be more feasible for
atrophy assessment on real-world scans. However, the PLVVC rate corresponding to the established PBVC cut-off
of −0.4% is unknown.
Objective: To establish a pathological PLVVC expansion rate cut-off analogous to −0.4% PBVC.
Methods: We used three complementary approaches. First, the original follow-up-length-weighted receiver op-
erating characteristic (ROC) analysis method establishing whole brain atrophy rates was adapted to a long-
itudinal ventricular atrophy dataset of 177 relapsing-remitting MS (RRMS) patients and 48 healthy controls.
Second, in the same dataset, SIENA PBVCs were used with non-linear regression to directly predict the PLVVC
value corresponding to−0.4% PBVC. Third, in an unstandardized, real world dataset of 590 RRMS patients from
33 centers, the cut-off maximizing correspondence to PBVC was found. Finally, correspondences to clinical
outcomes were evaluated in both datasets.
Results: ROC analysis suggested a cut-off of 3.09% (AUC=0.83, p < 0.001). Non-linear regression R2 was 0.71
(p < 0.001) and a− 0.4% PBVC corresponded to a PLVVC of 3.51%. A peak in accuracy in the real-world
dataset was found at a 3.51% PLVVC cut-off. Accuracy of a 3.5% cut-off in predicting clinical progression was
0.62 (compared to 0.68 for PBVC).
Conclusions: Ventricular expansion of between 3.09% and 3.51% on T2-FLAIR corresponds to the pathological
whole brain atrophy rate of 0.4% for RRMS. A conservative cut-off of 3.5% performs comparably to PBVC for
clinical outcomes.

1. Introduction

Multiple sclerosis (MS) is the most common debilitating neurolo-
gical disease in young adults worldwide (Alonso and Hernán, 2008).
Although there is currently no cure, there are a number of approved
first- and second-line therapies that can potentially slow disability
progression, lower relapse rates, and reduce accumulation of new or

enlarging T2- and T1-enhancing lesions (Torkildsen et al., 2016). In this
context, monitoring each of these disease activity markers is important
both in clinical trials (van Munster and Uitdehaag, 2017) and on an
individual basis (Giovannoni et al., 2015). In fact, these outcomes have
recently been combined into a single, dichotomous measure called ‘no
evidence of disease activity’ (NEDA) (Giovannoni et al., 2015;
Havrdova et al., 2010).
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At the same time, brain atrophy in MS has recently emerged as one
of the most important predictors of future disability progression
(Popescu et al., 2013; Lukas et al., 2010; Miller et al., 2002; R Zivadinov
et al., 2016a, b), and one of the strongest correlates of cognitive dys-
function (Summers et al., 2008; Sanfilipo et al., 2006; Tekok-Kilic et al.,
2007; Benedict and Zivadinov, 2011). However, brain atrophy also
occurs in healthy individuals as a normal function of aging – albeit at a
slower rate. It is therefore necessary to differentiate pathological
atrophy rates from normal physiological rates. De Stefano et al., 2016
established appropriate cutoffs by using a receiver operating char-
acteristic (ROC) analysis on longitudinal, whole-brain data from 206
MS patients and 35 healthy controls (HC). In that work, −0.4% per
year percent brain volume change (PBVC) was found to have 80%
specificity and 65% specificity in discriminating between MS and HC,
and atrophy rates higher than this were predictive of disability pro-
gression. Based on this, a −0.4% PBVC threshold was proposed as a
mechanism for incorporation of brain volume loss into a NEDA-4 ex-
tension of the original NEDA metric (Kappos et al., 2016).

Unfortunately, standardized PBVC measurement is not always pos-
sible on clinical routine scans. T1-weighted anatomical images suitable
for analysis with SIENA (Smith et al., 2002) or similar techniques may
not be acquired in many cases. Scans may also be subject to more ar-
tifacts, or be more likely to lack coverage of the entire brain (which,
although still calculable with SIENA, would limit the ability to stan-
dardize cut-offs). To address this, measurement of lateral ventricular
volume (LVV) and percent LVV change (PLVVC) over time has been
proposed as a broadly applicable proxy for whole brain atrophy mea-
surement (R Zivadinov et al., 2016a, b; Dwyer et al., 2017). PLVVC has
been shown to correlate strongly with PBVC and to relate similarly to
disability progression (R Zivadinov et al., 2016a, b; Popescu et al.,
2013; Dwyer et al., 2017). In the recent, real-world MS-MRIUS study,
estimation of brain atrophy using PLVVC on T2-FLAIR was feasible in
94% of patients, compared to<50% for PBVC (and PLVVC) on 2D T1-
WI and<20% on 3D T1-WI (Zivadinov et al., 2018).

Despite this potential proxy value of LVV and PLVVC, it remains
unknown what PLVVC cut-off best approximates the established PBVC
pathological threshold. Therefore, we set out in this study to determine
the LVV expansion rate best corresponding to the established PBVC cut-
off of −0.4% per year. We did this first by replicating the approach of
De Stefano et al., secondly by establishing a direct relationship between
PBVC and PLVVC in a regression model, and finally by validating the
findings in a multi-center, real world dataset.

2. Methods

2.1. Subjects and datasets

For this investigation, we used data from both the
Avonex–Steroid–Azathioprine (ASA) (Havrdova et al., 2009) and Mul-
tiple Sclerosis and MRI in the US study (MS-MRIUS) (Zivadinov et al.,
2017) studies. The ASA study included 181 early relapsing–remitting
multiple sclerosis (RRMS) patients at a single site treated with in-
tramuscular (IM) interferon beta-1a who were followed with serial
yearly MRI using the same protocol on the same 1.5 T scanner that did
not undergo major hardware upgrades over 10 years. During the same
time period, a group of 48 normal controls was recruited prospectively
from among healthy hospital volunteers and scanned with the same
MRI protocol (Horakova et al., 2008). Therefore, this combined dataset
was used to establish PLVVC cut-offs in a well-controlled setting. In
contrast, the MS-MRIUS included 590 RRMS patients from 33 sites in-
itiating fingolimod who were scanned according to local MRI protocols
without any pre-standardization or prohibition on scanner changes
(Zivadinov et al., 2017).This dataset was used to evaluate the newly
determined PLVVC cut-off in a real-world setting.

2.2. MRI analysis

For both datasets, whole-brain SIENA PBVCs (Smith et al., 2002)
were previously calculated from all available longitudinal scan pairs. In
the case of ASA, high-resolution 1mm cubic 3D T1-weighted images
were used as inputs. In the case of MS-MRIUS, high-resolution 3D T1-
weighted images were used when available, and 2D T1-weighted
images were used otherwise. Images were oriented axially, and lesions
were inpainted prior to segmentation to reduce the impact of T1 hy-
pointensities (Gelineau-Morel et al., 2012). All SIENA analyses under-
went quality control by a trained operator (N.B.) to ensure proper ex-
ecution, including raw image review, review of inpainting, manual
correction of deskulling if necessary, and evaluation of final segmen-
tation and edge flow maps.

PLVVC measures between timepoints were calculated on T2-FLAIR
weighted images using the recently described NeuroSTREAM tech-
nique, which operates on clinical-quality 2D- or 3D–FLAIR images and
performs segmentation of the lateral ventricles (Dwyer et al., 2017).
Briefly, each subject's T2-FLAIR image was pre-processed and then non-
linearly aligned to three previously derived multi-subject, multi-
scanner atlases. The inverse transforms were then used to bring stan-
dard space ventricular masks into the subject space, and to combine
them via a locally optimized joint-label fusion scheme. Finally, the
fused mask was used to initialize and guide a tuned level set algorithm
incorporating supersampling-based partial volume estimation. Final
quality control images were reviewed by a trained operator (N.B.).

2.3. Receiver operating curve (ROC) cut-off estimation

Given the resulting PBVC and PLVVC measures for the ASA dataset,
we first sought to replicate the work of De Stefano et al., 2016 directly
with PBVC, and then to perform a similar analysis using PLVVC rather
than PBVC. As in that study, annualized PBVC was determined for each
subject as the slope of the regression line fit to all PBVC measurements
for that subject, based on the assumption of a linear change over time.
Also similarly, case weights were used for subsequent analyses, where
the weights were proportional to exact follow-up duration. Because HC
had only 2 years of follow-up, analyses were performed on 2 year data
to ensure similar timing and conditions. A t-test was employed to
confirm differences between groups, and the annualized PBVC rate
maximizing sensitivity and in discriminating MS from HC at 80% spe-
cificity was determined using a weighted ROC, including determination
of area under the curve (AUC). Then, we independently repeated the
entire process using PLVVC measures instead of PBVC measures –
analogously determining annualized PLVVC based on individual subject
regressions, testing group differences, and performing follow-up dura-
tion-weighted ROC analysis. Thus, we obtained a lateral ventricular
expansion rate cut-off similarly maximizing sensitivity at 80% specifi-
city in discriminating MS from HC, and derived independently from
PBVC.

2.4. Regression-based cut-off estimation

As a complementary approach, and because a PBVC cut-off of−0.4%
per year has already been proposed and adopted by others (De Stefano
et al., 2016; Kappos et al., 2016), we sought to confirm the validity of the
PLVVC ROC-based results by direct calculation from PBVC. Here, rather
than investigating PLVVC independently of PBVC, we used non-linear
regression with PLVVC as the dependent variable and PBVC as the only
predictor. A quadratic model was used, and the intercept was a priori
fixed at 0 to constrain lack of measured change to be equivalent in both
cases. Overall model fit was evaluated and tested for significance via F
test. The resulting model coefficients were then used to compute the
PLVVC value corresponding to an input PBVC value of−0.4%. Cross-fold
validation with 10 folds was used to determine robustness and 95%
confidence interval of the calculated PLVVC cut-off.
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2.5. Application to an unstandardized, multi-center dataset

Next, to explore the generalizability of analyses from the well-
controlled ASA dataset, we also analyzed the MS-MRIUS multi-center,
real world imaging study (Zivadinov et al., 2017). In order to again use
a complementary approach, we computed the accuracy of all possible
PLVVC thresholds against pathological/non-pathological status as de-
termined by PBVC on T1-weighted images. This was done on a subset of
the database consisting of those subjects who had both index and post-
index MRI exams, and of those exams for which 2D or 3D T1-weighted
images and T2-FLAIR images were available and analyzable. From this
analysis, we then identified the threshold or thresholds maximizing
agreement between PLVVC-derived pathological status and PBVC-de-
rived pathological status.

2.6. Clinical relevance in both datasets

Finally, we also looked at the relationship between the obtained
PLVVC cut-off and clinical outcomes in both datasets, and compared it
to the −0.4% PBVC cut-off. In the ASA dataset, we evaluated the ac-
curacy, sensitivity, and specificity of the obtained PLVVC cut-off in
determining confirmed disability progression (CDP) at 120months (R
Zivadinov et al., 2016a, b). CDP was defined as a sustained (confirmed
after 48 weeks) increase of 1.5 point or more in EDSS if the starting
EDSS was 0, or a sustained (confirmed after 48 weeks) increase of 1
point of more if the starting EDSS was not 0. Significant association
between PBVC and PLVVC categorical thresholds and CDP data were
assessed via Chi-square tests. In the MS-MRIUS dataset, we evaluated
accuracy, sensitivity, and specificity for PBVC and PLVVC with regard
to both and disability progression (DP) and to timed 25-ft walking score
progression (Hobart et al., 2013). Again, associations were tested for
significance via Chi-square tests. DP was defined as an increase of 1.5 or
higher in EDSS if the starting EDSS was 0, 1 or higher if the starting
score was between 1 and 5, and 0.5 or higher if the starting score was
greater than 5. Walking score progression was defined as a 20% in-
crease in mobility score.

2.7. Alternate cut-offs

Although −0.4% PBVC has been incorporated into the NEDA-4
criteria, other thresholds have also been proposed to meet different
trade-offs in sensitivity vs. specificity. In particular, (De Stefano et al.,
2016) also proposed −0.52% as the cut-off with 95% specificity and
−0.46% as the cut-off with 90% specificity. Since the choice of trade-
off may be different in different settings (e.g. clinical routine vs. clinical
trials), we also estimated the appropriate PLVVC cut-offs and associated
sensitivities for 90% and 95% specificity levels.

3. Results

3.1. Receiver operating curve (ROC) cut-off estimation

Results from the ROC fitting technique are presented in Table 1.
Visualizations of the histogram overlaps between groups for each
method are shown in Fig. 1, and the resulting ROC curves are shown in
Fig. 2. For annualized PBVC, MS and HC groups differed significantly

(p < 0.001), and 80% specificity was achieved at a brain volume loss
cut-off of −0.33% per year. For annualized PLVVC, MS and HC again
differed significantly (p < 0.001), and 80% specificity was achieved at
a ventricular expansion rate cut-off of 3.09% per year. AUC for PLVVC
was 0.835 (p < 0.001), compared with 0.769 (p < 0.001) for PBVC.

3.2. Regression-based cut-off estimation

Pearson correlation between PLVVC and PBVC was r=−0.65
(p < 0.001). For the regression-based approach, the final quadratic
model was:

PLVVC=− 8.51× PBVC+0.53×PBVC2+ ε
Adjusted R2 was 0.58 (p < 0.001). A scatterplot with the final

model fit is shown in Fig. 3. Based on these estimated coefficients, an
annualized PBVC of −0.4% was found to correspond to a PLVVC of
3.49% per year. Mean cross-validation value was 3.48%, with a 95%
confidence interval between 3.30 and 3.64.

3.3. Application to an unstandardized, multi-center dataset

In the real-world MS-MRIUS dataset PBVC was available on 259 2D
T1 exam pairs (44% of subjects) and only 110 3D T1 exam pairs (19%
of subjects), whereas PLVVC was available on 554 T2-FLAIR pairs (94%
of subjects) (Zivadinov et al., 2018). In total, 247 subjects (42%) had
both valid PBVC and T2-FLAIR PLVVC and were included in this ana-
lysis. The resulting relationship between choice of PLVVC threshold and
concordance with PBVC-derived pathological status is shown in Fig. 4,
and resulted in accuracy of 0.64 with cut-off of 3.51% per year.

3.4. Clinical relevance in both datasets

Based on the outcomes of the preceding analyses, we used a
threshold of 3.5% per year to distinguish pathological from non-pa-
thological ventricular enlargement. For the ASA dataset, this PLVVC
threshold was significantly related to clinical CDP status (p < 0.001).
Overall accuracy was 0.62, with a sensitivity of 0.76 and specificity of
0.52. A cut-off of −0.4% PBVC was also significantly related to CDP
(p < 0.001). Accuracy for the PBVC threshold was 0.68, with a sen-
sitivity of 0.50 and a specificity of 0.82. The distributions and overlaps
are shown in Fig. 5. For the MS-MRIUS dataset, results are presented in
Table 2. Accuracy in determining DP was 55.5% for PBVC (sensitivity/
specificity= 88.5%/10.2%) and 63.0% for PLVVC (sensitivity/specifi-
city= 88.9%/10.6%). However, neither association was statistically
significant. Accuracy in determining walking score progression was
65.1% for PBVC (sensitivity/specificity= 90.3%/4.6%) and 73.8% for
PLVVC (sensitivity/specificity= 95.8%/22.6%). Only the association
with PLVVC was significant (p=0.004).

3.5. Alternate cut-offs

At a cut-off of −0.35%, SIENA PBVC had a specificity of 90% and a
sensitivity of 69%. The analogous 90% specificity cut-off for
NeuroSTREAM PLVVC was 4.19%, with a similar sensitivity of 65%. At
a cut-off of −0.39%, SIENA PBVC had a specificity of 95% and a sen-
sitivity of 67%. The analogous 95% specificity cut-off for
NeuroSTREAM PLVVC was 6.87%, with a sensitivity of 48%.

Table 1
Replication (first row) and extension to ventricular volume (second row) of the approach described in De Stefano et al. (2016) for establishing pathological cutoffs for brain volume loss.
PBVC – percent brain volume change, PLVVC – percent lateral ventricular volume change, MS – multiple sclerosis, HC – healthy control, ROC – receiver operating characteristic, AUC –
area under the curve.

MS mean (SD) HC mean (SD) Group diff. p ROC AUC ROC p 80% specificity cut-off Sensitivity

SIENA PBVC −0.72 (0.43) −0.16 (0.27) < 0.001 0.769 < 0.001 −0.35 0.69
NeuroSTREAM PLVVC 8.83 (11.81) 1.19 (3.66) < 0.001 0.835 < 0.001 3.09 0.76
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4. Discussion

This study aimed to address the lack of pathological PLVVC cut-offs
for ventricular enlargement, which is a proxy for whole brain volume
loss. Using the same methodology that De Stefano et al., 2016 pre-
viously applied to PBVC, we found that a PLVVC cut-off of 3.09% se-
parates MS from HC with 80% specificity. Next, by “plugging in” the
−0.4% PBVC threshold into a model predicting PLVVC from PBVC, we

arrived at a similar cut-off of 3.49%. Finally, in evaluating the threshold
(s) providing maximum agreement in an unstandardized, multi-center,
real-world dataset, we found a peak at 3.51% PLVVC. The fact that
these rates agree so well despite different derivations and different
datasets provides a strong measure of confidence that the observed
range contains the correct point estimate of the true pathological cut-
off.

Based on these findings, it seems reasonable that a threshold of

Fig. 1. Density plots showing the distributions of whole brain change via PBVC (left panel) and lateral ventricular change via PLVVC (right panel) for healthy controls (HC) and multiple
sclerosis (MS) patients in the ASA dataset. Dotted lines mark the previously proposed −0.4% PBVC threshold (left) and the newly derived 3.5% PLVVC threshold (right). PBVC – percent
brain volume change, PLVVC – percent lateral ventricular volume change, MS – multiple sclerosis, HC – healthy control.

Fig. 2. Comparison of ROC curves between annualized SIENA PBVC and annualized NeuroSTREAM PLVVC. PBVC – percent brain volume change, PLVVC – percent lateral ventricular
volume change, ROC – receiver operating characteristic.
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3.5% (conservatively selecting the higher end of the range) may serve
as an appropriate pathological cut-off for use in place of the established
−0.4% PBVC in situations where PBVC is unavailable. This 3.5%
threshold might also be incorporated into an alternative to NEDA-4
when PBVC is not available. In these cases, a ventricular expansion
based NEDA criterion – NEDA-4 V – could be used to capture atrophy
status information that would otherwise be lost entirely.

We also showed that use of a 3.5% cut-off for PLVVC behaves si-
milarly to PBVC with regard to clinical outcomes. In the ASA dataset,
accuracy of determination of CDP status from pathological atrophy
status was comparable via either PBVC or PLVVC, statistically sig-
nificant in both cases, and in line with previous studies of the predictive
value of brain atrophy. Specificity was somewhat higher for the PBVC

cut-off, but this was at least partially offset by a somewhat higher
sensitivity for the PLVVC cut-off. In the MS-MRIUS dataset, neither
PBVC nor PLVVC cut-offs were significantly associated with DP status –
a discrepancy likely due to the much shorter follow-up (9–24months,
with an average of only 16months) of the MS-MRIUS study compared
to the ASA study (10 years). Even in this short timeframe, though,
PLVVC status was significantly associated with walking score progres-
sion. Ultimately, though, MS is a complex disease and it is unlikely that
any single metric can fully determine prognosis. Therefore, while it is
clear that brain atrophy (via PBVC or PLVVC) can play an important
role, it will likely be most valuable when used in concert with other
predictors.

The use of ventricular enlargement as a potential proxy for brain

Fig. 3. Scatterplot showing the relationship between whole
brain change via PBVC and lateral ventricular change via PLVVC
in the ASA dataset. The quadratic fit line, with R2= 0.58
(p < 0.001) is overlaid. Applying the fitted coefficients to the
−0.4% established PBVC cutoff yields and equivalent PLVVC
cut-off of 3.49%. PBVC – percent brain volume change, PLVVC –
percent lateral ventricular volume change.

Fig. 4. Graph of accuracy vs. pathological PBVC (<−0.4%) status as a function of PLVVC threshold in the MS-MRIUS study. The independently determined threshold of 3.5% PLVVC
(dashed line) corresponds closely to a peak in accuracy at 3.51% in this dataset. PBVC – percent brain volume change, PLVVC – percent lateral ventricular volume change.
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volume loss is not a new idea – in fact, ventricular dilation was one of
the earliest qualitative neuroimaging indicators of atrophy reported in
the literature (Rao et al., 1985; Young et al., 1981; Gyldensted, 1976).
More recently, it has been largely superseded by quantitative and
highly precise measures such as PBVC derived from modern computa-
tional neuroimaging algorithms like SIENA (Smith et al., 2002) or
whole-brain Jacobian integration (Nakamura et al., 2014). In this
context, it is important to note that PLVVC is not a more accurate,
sensitive, or specific disease marker than PBVC per se. In general, when
protocols are kept constant and scanner changes are minimized, PBVC
better separates groups, better correlates with disease outcomes, and
has lower absolute error (R Zivadinov et al., 2016a, b). Measures of
lateral ventricular atrophy are also not directly sensitive to cortical
changes, since the ventricles are physically far removed from cortical
gray matter (although in some cases, they observationally correlate
better with cortical gray matter atrophy than PBVC (R Zivadinov et al.,
2016a, b). Another potential issue with relying on ventricular rather
than PBVC measures arises due to the fact that there may be more
natural variability in ventricular size among healthy individuals than

there is in whole brain volume, although these cross-sectional differ-
ences should be somewhat ameliorated by longitudinal analysis (Blatter
et al., 1995). Despite these caveats, this corresponding ventricular ex-
pansion cut-off assessed via PLVVC may still be very useful in cases
where more commonly employed PBVC measures are not reliably ob-
tainable.

It is important to note that in absolute terms, this corresponding
PLVVC cut-off of 3.5% is nearly an order of magnitude (8.75 times)
larger than the −0.4% PBVC cut-off. This is due to the fact that ven-
tricular expansion (by percentage) occurs more rapidly than overall
brain volume shrinkage (again by percentage) (R Zivadinov et al.,
2016a, b), which must be considered when comparing variances and/or
absolute error in methods, and should also be taken into account when
considering distance from the threshold.

Our results also independently confirmed the validity of the pre-
viously proposed −0.4% threshold: follow-up weighted PBVC ROC
analysis in this study led to an 80% specificity cut-off of −0.33% per
year. This is very close to −0.4%, and given the overall variability of
MS progression, scanner differences between studies, and inevitable

Fig. 5. Density plots showing the distributions of whole brain change via PBVC (left panel) and lateral ventricular change via PLVVC (right panel) for patients with and without confirmed
disability progression (CDP) in the ASA dataset. Dotted lines mark the previously proposed −0.4% PBVC threshold (left) and the newly derived 3.5% PLVVC threshold (right). PBVC –
percent brain volume change, PLVVC – percent lateral ventricular volume change, CPD – confirmed disability progression.

Table 2
Cross-tabulations of EDSS and walking score progression vs. brain volume and ventricular volume cut-off status in the MS-MRIUS dataset. PBVC – percent brain volume change, PLVVC –
percent lateral ventricular volume change, EDSS – expanded disability status scale. Results with p < 0.05 shown in bold.

PBVC Accuracy (p⁎) PLVVC Accuracy (p⁎)

< 0.4% Annual loss ≥0.4% Annual loss < 3.5% Annual gain ≥3.5% Annual gain

EDSS Stable 131 97 55.5%/0.742 152 76 63.0%/0.900
Worsened 17 11 19 9

Walking score Stable 93 41 65.1%/0.310 69 24 73.8%/0.004
Worsened 10 2 3 7

⁎ Calculation of p-values performed via χ 2 test.
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measurement error, this level of concordance is both striking and re-
assuring. As with the previous analyses, though, we also saw inter-in-
dividual variability in PBVC, and overlap between MS and HC groups.
Previously reported AUC was 0.77, and sensitivity was 67% at 80%
specificity, and was similar or better in this dataset at an AUC of 0.88
with 80% specificity having 75% sensitivity. For PLVVC, the AUC was
comparable at 0.83 with 80% specificity having 76% sensitivity. Results
between PBVC and PLVVC were also comparable for clinical outcomes
(CDP concordance AUC of 0.68 for PBVC vs 0.62 for PLVVC). These
results are also in line with another recent study that looked at other
brain regional cut-offs, including corpus callosum and thalamus (Uher
et al., 2017).

In addition to the general limitations of PLVVC discussed above,
there are a number of points that should be considered in interpreting
the present study. Tools like VIENA (Vrenken et al., 2014) may also
measure ventricular expansion more accurately than the NeuroSTREAM
technique since NeuroSTREAM is intended to operate on low resolu-
tion, clinical-quality scans. However, one of the main aims of this study
was to establish pathological ventricular expansion cut-offs for use as
an alternative measure for clinical routine scans where SIENA (and by
extension VIENA) may not be available. Therefore, we chose to focus on
NeuroSTREAM. Although we expect that other measures of the lateral
ventricles like ALVIN (Kempton et al., 2011) will yield similar cutoffs, it
must be noted that VIENA incorporates all central CSF, not specifically
restricting the analysis to the lateral ventricles per se. Therefore, the
resulting cut-offs for VIENA may differ slightly.

Finally, in the current study, we only determined a single, popula-
tion-wide PLVVC cut-off. However, a recent study demonstrated the
value of calculating individual brain volume cut-offs adjusted for age,
disease duration, sex, baseline disability, and T2-lesion volume
(Sormani et al., 2016). By considering those additional factors, the in-
vestigators were better able to determine whether volumes were truly
pathological. It is likely that a similar approach would also benefit
longitudinal atrophy analysis. However, that analysis was based on a
very large database containing images from 2342 patients, and a da-
tabase of that size was not available here to support this type of ex-
ploratory analysis. Future work should use a larger database with broad
coverage of demographic and clinical characteristics and treatments to
expand on these findings by differentiating pathological cut-offs for
specific combinations of covariates, and should potentially also include
additional MRI metrics to help quantify the balance between gray
matter and white matter atrophy. Similarly, repeated acquisition across
different scanners and/or acquisition protocols would also allow for
determination of and possible correction for the potential impact of
factors like field strength and scan parameters such as echo time or
inversion time.

5. Conclusion

The ventricular expansion rate best corresponding to the established
whole brain atrophy rate of −0.4% per year is 3.5% per year in RRMS.
Thus, a 3.5% cut-off measured with NeuroSTREAM on clinical quality
T2-FLAIR scans can potentially be used in place of traditional SIENA
measures when suitable T1 scans are not available.
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