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Abstract

Idiopathic pulmonary fibrosis is a progressive and debilitating lung disease with large unmet

medical need and few treatment options. We describe an analysis connecting single cell

gene expression with bulk gene expression-based subsetting of patient cohorts to identify

IPF patient subsets with different underlying pathogenesis and cellular changes. We repro-

duced earlier findings indicating the existence of two major subsets in IPF and showed that

these subsets display different alterations in cellular composition of the lung. We developed

classifiers based on the cellular changes in disease to distinguish subsets. Specifically, we

showed that one subset of IPF patients had significant increases in gene signature scores

for myeloid cells versus a second subset that had significantly increased gene signature

scores for ciliated epithelial cells, suggesting a differential pathogenesis among IPF sub-

sets. Ligand-receptor analyses suggested there was a monocyte-macrophage chemoat-

tractant axis (including potentially CCL2-CCR2 and CCL17-CCR4) among the myeloid-

enriched IPF subset and a ciliated epithelium-derived chemokine axis (e.g. CCL15) among

the ciliated epithelium-enriched IPF subset. We also found that these IPF subsets had differ-

ential expression of pirfenidone-responsive genes suggesting that our findings may provide

an approach to identify patients with differential responses to pirfenidone and other drugs.

We believe this work is an important step towards targeted therapies and biomarkers of

response.

Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrosing disease of the lung

with a median survival time of<5 years after diagnosis [1, 2]. IPF is characterized histologi-

cally by a pattern of usual interstitial pneumonia and the appearance of honeycombing cysts

and fibroblastic foci [1, 2]. Although the disease is associated with infiltration and accumula-

tion of inflammatory cells, IPF patients typically do not improve with anti-inflammatory ther-

apy and the only approved IPF therapies, nintedanib and pirfenidone, are anti-fibrotic and not
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curative [3, 4]. Despite recent advances in genome-wide association studies (GWAS) [5–7],

the mechanisms connecting genetic susceptibility, environmental factors and molecular and

pathological changes in IPF are incompletely understood.

IPF is a heterogeneous disease with differences in clinical outcome and rates of disease wors-

ening, suggesting that there are subsets of IPF patients with different molecular mechanisms of

pathogenesis [8, 9]. As such, a better understanding of IPF pathogenesis and subset heterogene-

ity is essential to advance new therapies for this devastating disease. A previous attempt by Yang

et al. [10] to understand the molecular basis of IPF heterogeneity identified two subsets of IPF

patients that were primarily differentiated on the basis of high and low expression of genes from

ciliated epithelium; the former was associated with greater pulmonary honeycombing. How-

ever, this finding has not been replicated in another study and the pathophysiologic correlates

of both subsets have not been explored, including the interactions of ciliated epithelium with

other cell types. Cell phenotype-based studies of IPF patient blood and lung samples have

shown that increases in plasma cells and mast cells and decreases in T cells were respectively

associated with mild versus severe disease [11–13]. Importantly, the overlap between subsets

identified using different data sources such as gene expression, and cell phenotypes have not

been investigated. The development of molecular classifiers to reliably detect and separate sub-

sets of IPF patients using machine learning has not been attempted.

In the current study, we found that the subsets described by Yang et al. (GSE32537, referred to

henceforth as ‘Schwartz-Univ of Colorado bulk expression cohort’) [10] were replicated in our

analysis of a new overlapping cohort of IPF patients from a study by Kaminski and colleagues

(GSE47460, referred to henceforth as ‘Kaminski-LGRC bulk expression cohort’) [14–17] and in

our analysis of a non-overlapping independent cohort of IPF patients (GSE134692 (BMS bulk

RNA-seq cohort) [18]). We characterized the cellular changes associated with each subset of IPF

patients using cell type signatures derived from recently published single cell RNA sequencing

(scRNAseq) data obtained from IPF patients and healthy lungs including GSE132771 (i.e. ‘Shep-

pard-UCSF single cell cohort’), GSE135893 (‘Kropski-Vanderbilt Univ single cell cohort’) and

GSE136831 (‘Kaminski-Yale Univ single cell cohort’) [19, 20, 21]. Importantly, we identified coor-

dinated changes in genes associated with different cell types in each subset of IPF patients that

have important implications for the molecular mechanisms driving disease. Finally, we developed

molecular classifiers using machine learning approaches to reliably distinguish subsets of patients.

Methods

Processing of GSE32537 (Schwartz-Univ of Colorado bulk expression

cohort) and GSE47460 (Kaminski-LGRC bulk expression cohort) IPF gene

expression dataset

We downloaded and reprocessed microarray data from Schwartz and colleagues (GSE32537,

Schwartz-Univ of Colorado bulk expression cohort [10] and Kaminski and colleagues

(GSE47460, Kaminski-LGRC bulk expression cohort) [14–17, 22] using ArrayStudio (Qiagen).

We applied quantile normalization to the raw data and applied the ‘Remove batch effects’ func-

tion in ArrayStudio (Qiagen). We posted normalized gene expression matrices along with the

code used to process the data on GitHub (https://github.com/JKarmanAbbVie/IPFproject2020).

Processing of additional public bulk IPF gene expression studies used in

this study

Author-supplied normalized matrix and design files for GSE134692 (BMS bulk RNA-seq

cohort) [18] were downloaded from Gene Expression Omnibus. For GSE134692 (BMS bulk
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RNA-seq cohort) [18], we only used samples from ‘Batch 1’ to avoid batch effects [18].

GSE124685 (‘Kaminski-Yale Univ bulk progression RNA cohort’) [12] RNA sequencing data-

set was re-processed from SRA files posted in Gene Expression Omnibus using ArrayStudio.

Count data was normalized using the ‘edgeR’ R package [23] (‘TMM’ method) implemented

in ArrayStudio. Datasets used in this study are summarized in Table 1.

Identification of gene-expression subsets, principal component analysis

and differential gene expression

We used the R package ‘consensusClusterPlus’ [25] to perform unsupervised clustering and

identification of subsets based on gene expression using the 5,000 most variable genes (see

‘Code availability’). Performance of consensus clustering was assessed using Proportion of

Ambiguous Clustering (PAC) score calculated using R package ‘diceR’ ([26] and https://

CRAN.R-project.org/package=diceR). This score has been reported as the best performing

metric to assess performance of consensus clustering [23].

Principal component analysis (PCA) on the same 5,000 most variable genes used for con-

sensus clustering was performed using ‘FactoMineR’ and ‘factoextra’ R packages [27, 28]. R

package ‘limma’ [29] was used to compare gene expression between subsets of patients. Smok-

ing and gender were included as covariates for linear models in limma. P values were adjusted

using the Benjamini-Hochberg FDR procedure and FDR values < 0.05 were considered signif-

icant. Upstream regulator analyses were conducted using Ingenuity Pathway Analysis software

(Qiagen) with p values and z scores reported (http://pages.ingenuity.com/rs/ingenuity/images/

0812%20upstream_regulator_analysis_whitepaper.pdf). KEGG, Gene Ontology and Reactome

pathway analyses were performed using ‘clusterProfiler’ and ‘ReactomePA’ R packages [30,

31].

Processing of single cell RNA datasets, development of cell signature scores

and application of cell signature scores to GSE47460 (Kaminski-LGRC bulk

expression cohort) and GSE134692 (BMS bulk RNA-seq cohort)

Single cell data from Tsukui et al. (GSE132771, Sheppard-UCSF single cell cohort) [19],

Habermann et al. (GSE135893, Kropski-Vanderbilt Univ single cell cohort) [24] and Adams

et al. GSE136831 (Kaminski-Yale Univ single cell cohort) [20] were either processed with fil-

tered sparse matrix output from ‘cellranger’ (10x Genomics) (GSE132771 (Sheppard-UCSF

single cell cohort) [19], GSE136831 (Kaminski-Yale Univ single cell cohort) [20] or we used

the analyzed data provided by the authors (GSE135893, Kropski-Vanderbilt Univ single cell

cohort) [24]. Sparse matrices were processed using the R package ‘Seurat’ [32]. Cell cluster sig-

natures were determined using differential gene expression with the R package ‘MAST’

(https://github.com/RGLab/MAST/) and by maximizing the power of the gene signature to

Table 1. Data sets used in this manuscript.

Accession number Name for dataset used in manuscript Platform IPF patients (n) Healthy controls (n) References

GSE32537 Schwartz-Univ of Colorado bulk expression cohort Bulk RNA microarray 119 50 [10]

GSE47460 Kaminski-LGRC bulk expression cohort Bulk RNA microarray 160 108 [14–17, 22]

GSE124685 Kaminski-Yale Univ bulk progression RNA cohort Bulk RNA-seq 49 35 [12]

GSE134692 BMS bulk RNA-seq cohort Bulk RNA-seq 46 26 [18]

GSE132771 Sheppard-UCSF single cell cohort Single cell RNA-seq 3 3 [19]

GSE135893 Kropski-Vanderbilt Univ single cell cohort Single cell RNA-seq 19 10 [24]

GSE136831 Kaminski-Yale Univ single cell cohort Single cell RNA-seq 32 28 [20]

https://doi.org/10.1371/journal.pone.0248889.t001
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discriminate a particular cell type from the other cell types using an AUROC-based metric (see

‘Code availability’ and reference [33]). To summarize, we first annotated cell clusters in the

scRNAseq data based on canonical markers. We calculated differentially expressed genes

(DEGs) for each cluster by comparing the cluster to all other cells in the dataset using the

‘FindMarkers’ function in the R package ‘Seurat’ [32]. We then ranked DEGs in decreasing

order according to their effect sizes and performed a step-wise search to identify the smallest

gene signature that accurately classified a given cell type from every other cell type in the

scRNAseq dataset [33]. This included the following steps: (1) estimation of the classification

accuracy of the first gene on the list using the area under receiver operating characteristic

(AUROC) curve; (2) incremental addition of one gene at a time based on the gene’s rank and

re-computation of the AUROC corresponding to the new gene set, and 3.) repetition of this

process until we identified the minimal gene set that produced an AUROC proximal to the

maximum (with ε = 0.005), requiring a minimum of 5 genes per signature. We performed this

strategy on each cell type across the scRNAseq dataset [33]. This method focused on finding

the best performing gene set that distinguished a given cell type from the rest of the cell types

in the dataset and therefore resulted in cell type signatures with partial overlaps with gene sig-

natures from other cell types in the dataset.

We created two sets of gene expression signatures for GSE132771 (Sheppard-UCSF single

cell cohort) [19]: one for total lung cell suspension samples (sample identifiers GSM3891621,

GSM3891623, GSM38916215, GSM3891627, GSM3891629, GSM3891631) and one for ‘Line-

age-sorted samples’ (GSM3891620, GSM3891622, GSM3891624, GSM3891626, GSM3891628,

GSM3891630). These two separate sets of gene signatures were created to achieve better reso-

lution of mesenchymal cell types as previously described [19]. We created one set of gene

expression signatures each for GSE135893 (Kropski-Vanderbilt Univ single cell cohort) [24] as

this dataset included only total lung suspension samples. We calculated correlation matrices

for each signature score derived from GSE47460 so its performance could be assessed (S3 and

S5 Figs) using R package ‘ggcorrplot’ (https://github.com/kassambara/ggcorrplot).

Gene signature scores from bulk IPF RNA microarray (GSE47460, Kaminski-LGRC bulk

expression cohort, [14–17, 22]) and RNA-seq (GSE134692, BMS bulk RNA-seq cohort, [18])

were calculated using normalized, batch-corrected gene expression data using the ‘GSVA’ R

package with ‘method = ‘gsva” setting to calculate gene signature enrichment scores using

gene sets derived from the single cell RNA sequencing data. We used the Gene Set Variation

Analysis (GSVA) method as described [34]. The GSVA method has several advantages over

previously published gene set enrichment methods such as combined z-score, PLAGE and

ssGSEA [35–37] since GSVA calculated sample-wise gene enrichment scores as a function of

genes inside and outside the gene set specified and estimated variation of gene set enrichment

over samples independent of any class label in a non-parametric, unsupervised manner [34].

GSVA also alleviated the issue of partially overlapping signatures in the cell type signatures as

it relies on the ranking of the entire gene set used as input and used efficient normalization

and outlier removal methods so a given cell type-specific signature was not driven by outlying

genes but was driven instead by the entire signature [34]. We used changes in gene signature

scores to estimate changes in cell type composition in bulk RNA microarray and RNA-seq

data.

GSVA-derived gene signature scores from GSE47460 (Kaminski-LGRC bulk expression

cohort) [14–17, 22] and RNA-seq (GSE134692, BMS bulk RNA-seq cohort, [18]) were com-

pared between subsets of IPF patients and controls using one-way analysis of variance

(ANOVA) followed by non-parametric Dunn’s post-hoc test with the null hypothesis of the

groups being not different. Benjamini-Hochberg-adjusted p values< 0.05 were considered

significant.

PLOS ONE Stratification of IPF based on lung gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0248889 March 23, 2021 4 / 28

https://github.com/kassambara/ggcorrplot
https://doi.org/10.1371/journal.pone.0248889


Determination of ligand-receptor interactions using single cell RNA

datasets

We calculated cell type percentages in GSE135893 (Kropski-Vanderbilt Univ single cell

cohort) [24] by dividing the number of cells in each cluster by the total number of cells in the

data for the purposes of creating patient subsets in GSE135893 [24]. Subsequently, ligand-

receptor interactions from single cell RNA sequencing data were inferred using the PyMINEr

[38] and NicheNet [39] R packages. PyMINEr was implemented as an R package and used

ligand-receptor network inference from single cell data (Clarivate Analytics; Philadelphia,

PA). Ligand-receptor interactions were obtained from Ramilowski et al. [40]. Chord diagrams

were created using the R package ‘circlize’ [41].

Development of classifiers for subsets in GSE47460 (Kaminski-LGRC bulk

expression cohort)

The R package ‘caret’ (https://github.com/topepo/caret/) was used to build classifiers and fea-

ture selection from the GSE47460 (Kaminski-LGRC bulk expression cohort) dataset [14–17].

We used subsets 1 and 2 of the IPF patients as the outcome and built models using ‘svmLinear’,

‘gbm’ and ‘glmnet’ in caret (see ‘Code availability’). Performance of the models was evaluated

using the ‘MLeval’ R package.

Development of pirfenidone response signature

We used the combination of genes significantly downregulated by pirfenidone as reported in

Supplementary Table 1 of reference [42]. We combined genes downregulated in response to

pirfenidone in lung homogenates only (labeled ‘LH only’ in [42]) and downregulated in both

lung homogenates and isolated fibroblasts (labeled ‘both down’ in [42]) using a log fold change

cutoff of 1.41 and p value cutoff of 0.05. Pirfenidone signature score was calculated using the

GSVA method as outlined above for scRNAseq signature scores.

Results

Consensus clustering results using data from GSE47460 (Kaminski-LGRC

bulk expression cohort)

A previous attempt to identify subsets of IPF patients based on total lung gene expression iden-

tified subsets with large differences in cilia-related gene expression and MUC5B gene expres-

sion levels (GSE32537, Schwartz-Univ of Colorado bulk expression cohort) [10]. Therefore,

we initially repeated and confirmed the identification of the same two IPF patient subsets in

GSE32537 (Schwartz-Univ of Colorado bulk expression cohort) [10] and used GSE47460

(Kaminski-LGRC bulk expression cohort) [14–17, 22] as a replication cohort. We applied the

same consensus clustering approach on both datasets for the sake of consistency in processing

the data instead of the subsetting method used in the original publication of GSE32537

(Schwartz-Univ of Colorado bulk expression cohort) [10]. Importantly, this approach had the

advantage that it analyzed a partially independent patient cohort (see below; GSE47460,

Kaminski-LGRC bulk expression cohort) [14–17] that measured gene expression on a plat-

form (Agilent) different from that used in the original GSE32537 (Schwartz-Univ of Colorado

bulk expression cohort) study (Affymetrix 1.0ST) [10]. We used a data-driven, hypothesis-free

approach of consensus clustering of the data obtained from IPF patients in GSE47460

(Kaminski-LGRC bulk expression cohort) [14–17], and elected to use k = 2 as the number of

consensus clusters (‘consensusclasses’) in both the GSE32537 (Schwartz-Univ of Colorado

bulk expression cohort) [10] and the GSE47460 (Kaminski-LGRC bulk expression cohort)

PLOS ONE Stratification of IPF based on lung gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0248889 March 23, 2021 5 / 28

https://github.com/topepo/caret/
https://doi.org/10.1371/journal.pone.0248889


[14–17] based on the consensus clustering results (Fig 1A and S1 Fig). We calculated the Pro-

portion of Ambiguous Clustering (PAC) score [26] to assess performance of the consensus

clustering process for a range of possible cluster numbers. PAC scores are regarded as the best

Fig 1. Consensus clustering results of cohort GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17],

GSE134692 (BMS bulk RNA-seq cohort) [18] and replication of GSE32537 (Schwartz-Univ of Colorado bulk

expression cohort) [10] results. A. Consensus clustering of IPF patients in GSE47460 (Kaminski-LGRC bulk

expression cohort) [14–17] based on the 5,000 most variable genes in IPF patients showing distribution of samples

based on k = 2 consensus clusters. B. Hierarchical clustering of IPF samples from GSE47460 (Kaminski-LGRC bulk

expression cohort) [14–17] using top 5,000 most variable genes. x axis represents individual patients, y axis represents

genes. Subsets are indicated in x axis color bar and legend of heatmap and correspond to classes shown in Fig 1A. C.

PCA of IPF and Control samples from GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] with IPF subsets

and Control indicated. Subsets are indicated in legend of PCA plot and correspond to classes shown in Fig 1A. D.

Expression of cilium-related genes previously identified by Yang et al. in [10] from the 75 samples in GSE47460

(Kaminski-LGRC bulk expression cohort) [14–17] not overlapping with GSE32537. Subsets are indicated on x axis of

box plots and correspond to classes shown in Fig 1A. Adjusted p values determined by ANOVA and post-hoc Dunn’s

test are reported on plots. E. Correlation plot of log fold changes calculated in GSE47460 (Kaminski-LGRC bulk

expression cohort) [14–17] (when comparing Subset 1 and Subset 2 (x axis) using the 75 samples not appearing in

GSE32537 and compared to GSE32537 (Schwartz-Univ of Colorado bulk expression cohort) [10] (y axis). Genes with

reported absolute log fold change of larger than 0.58 and adjusted p value< 0.05 were used in this analysis from both

datasets. F. Consensus clustering of IPF patients in GSE134692 (BMS bulk RNA-seq cohort) [18] based on the 5,000

most variable genes in IPF patients showing distribution of samples based on k = 2 consensus clusters. G. Hierarchical

clustering of IPF samples from GSE134692 (BMS bulk RNA-seq cohort) [18] using top 5,000 most variable genes. x

axis represents individual patients, y axis represents genes. Subsets are indicated in x axis color bar and legend of

heatmap and correspond to classes shown in Fig 1F. H. PCA of IPF and Normal samples from GSE134692 (BMS bulk

RNA-seq cohort) [18] with IPF subsets and Normal indicated. Subsets are indicated in legend of PCA plot and

correspond to classes shown in Fig 1F. I. Expression of cilium-related genes from GSE134692 (BMS bulk RNA-seq

cohort) [18] previously identified by Yang et al. [10]. Subsets are indicated on x axis of box plots and correspond to

classes shown in Fig 1F. Adjusted p values determined by ANOVA and post-hoc Dunn’s test are reported on plots. J.

Correlation plot of log fold changes calculated in GSE32537 (Schwartz-Univ of Colorado bulk expression cohort) [10]

(when comparing Subset 1 and Subset 2 (x axis, logFC_GSE32537) compared to GSE134692 (BMS bulk RNA-seq

cohort) [18] subsets (y axis, logFC_GSE134692). Genes with reported absolute log fold change of larger than 0.58 and

adjusted p value< 0.05 were used in this analysis from both datasets.

https://doi.org/10.1371/journal.pone.0248889.g001
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current metric for assessing clustering performance (the lower, the better performance of clus-

tering) [26]. In our consensus clustering results of GSE32537 (Schwartz-Univ of Colorado

bulk expression cohort) [10], k = 2 produced the highest PAC scores. In our consensus cluster-

ing analysis of GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17], the PAC score

was lower for k = 2 than for k = 3 or k = 4 and minimally higher than k = 5 (S1A Fig). We

elected to use k = 2 clusters for subsequent analyses to balance good performance of clustering

and reasonable sample numbers for achieving adequate statistical power. With k = 2 clusters,

53% of patients were in consensus class 1 and 47% of patients were in consensus class 2 in

GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] (Fig 1A), thereby presenting a

well-balanced dataset. Hierarchical clustering based on the 5,000 most variable genes in

GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] showed the distribution and rel-

ative gene expression of the two IPF subsets (Fig 1B). We will subsequently refer to consensus

class 1 as ‘Subset 1’ and consensus class 2 as ‘Subset 2’.

We performed a PCA of the GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17]

dataset to identify the main features contributing to the separation of the subsets. We included

normal control samples in the PCA to understand how the two subsets of IPF patients sepa-

rated from each other and from healthy control samples. As shown in Fig 1C, the first principal

component had the strongest association with the subject cohort (IPF patient or healthy sub-

ject). The PCA analysis of IPF samples indicated that there was no correlation with any of the

clinical characteristics reported by the authors. We used differentially expressed genes in Sub-

set 1 and Subset 2 as compared to healthy controls to conduct pathway enrichment using the

Ingenuity Pathway Analysis tool. With the same data, we conducted a gene set enrichment

analysis using the Reactome pathway database (Table 2). Both Subset 1 and 2 showed an

enrichment in extracellular matrix-related processes (Table 2). Importantly, in IPA analyses,

only Subset 1 showed an enrichment in ‘Role of Macrophages Fibroblasts and Endothelial

Cells in Rheumatoid Arthritis’ and only Subset 2 showed an enrichment in cilium biology-

related Reactome pathways (Table 2).

As the set of samples between GSE32537 (Schwartz-Univ of Colorado bulk expression

cohort) [10] and GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] are partially

overlapping, we further validated our findings from the GSE47460 (Kaminski-LGRC bulk

expression cohort) [14–17] dataset. We approached this in two different ways: (1) by separately

analyzing samples different between GSE32537 (Schwartz-Univ of Colorado bulk expression

cohort) [10] and GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] datasets; and

by (2) analyzing a completely independent cohort of IPF patients (GSE134692 (BMS bulk

RNA-seq cohort) [18]).

For the first approach, we used Gene Expression Omnibus records to analyze both non-

overlapping IPF data from GSE32537 (Schwartz-Univ of Colorado bulk expression cohort)

[10] and GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17]. 85 out of 160 IPF sub-

jects in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] overlapped with

GSE32537 (Schwartz-Univ of Colorado bulk expression cohort) [10] and 75 samples were

unique to the GSE47460 Kaminski-LGRC bulk expression cohort (please see ‘Code availabil-

ity’). Therefore, we performed the same Consensus Clustering analysis on the set of 75 non-

overlapping samples between GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17]

and GSE32537 (Schwartz-Univ of Colorado bulk expression cohort) [10] that we used on the

entire GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] dataset of 160 samples.

The unique set of 75 samples in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17]

not overlapping with GSE32537 (Schwartz-Univ of Colorado bulk expression cohort) [10]

showed a similar pattern of consensus clustering of two subsets (S1C and S1D Fig). There was

no significant skewing relative to the entire dataset of 160 samples in either the overlapping set
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of 85 samples or the non-overlapping set of 75 samples between GSE47460 (Kaminski-LGRC

bulk expression cohort) [14–17] and GSE32537 (Schwartz-Univ of Colorado bulk expression

cohort) [10] (S1C Fig; p = 0.64).

We next determined whether the subsets identified by consensus clustering in GSE47460

(Kaminski-LGRC bulk expression cohort) [14–17] overlapped with the subsets reported by

Yang et al. (GSE32537, Schwartz-Univ of Colorado bulk expression cohort) [10] using expres-

sion of the same set of 5 genes (RPGRIP1, DNAH6, DNAH7, DNAI1, MUC5B) reported by

Yang et al. as significantly different between subsets in GSE32537 (Schwartz-Univ of Colorado

bulk expression cohort) [10]. As shown in Fig 1D, the two subsets identified in our study of

the 75 samples in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] not overlap-

ping with GSE32537 (Schwartz-Univ of Colorado bulk expression cohort) [10] showed a very

similar pattern of expression of these 5 genes with evidence of elevated expression of ciliated

epithelium-related genes in Subset 2. An analysis of the correlation between changes in gene

expression between IPF patient subsets in GSE32537 (Schwartz-Univ of Colorado bulk expres-

sion cohort) [10] and the gene expression changes between IPF patient subsets in the 75

unique (not overlapping with GSE32537 (Schwartz-Univ of Colorado bulk expression cohort)

[10]) samples in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] showed a high

level of correlation, indicating the reproducibility of subsets in the GSE32537 (Schwartz-Univ

of Colorado bulk expression cohort) [10] cohort and the unique (not overlapping with

GSE32537 (Schwartz-Univ of Colorado bulk expression cohort) [10]) samples in GSE47460

(Kaminski-LGRC bulk expression cohort) [14–17] (Fig 1E). We also reproduced an upstream

regulator analysis from the Yang et al. study (GSE32537, Schwartz-Univ of Colorado bulk

expression cohort) [10] using data from the GSE47460 (Kaminski-LGRC bulk expression

cohort) [14–17] study and found that Subsets 1 and 2 had similar upstream regulators in both

the GSE32537 (Schwartz-Univ of Colorado bulk expression cohort) [10] and GSE47460

(Kaminski-LGRC bulk expression cohort) [14–17] datasets. Altogether, this analysis indicated

that the two subsets identified in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17]

IPF patients significantly overlapped with the same two subsets of IPF patients identified in

GSE32537 (Schwartz-Univ of Colorado bulk expression cohort) [10].

To further substantiate our results, we analyzed an additional independent cohort of IPF

patients (GSE134692 (BMS bulk RNA-seq cohort) [18] to validate our findings. To the best of

our knowledge, GSE134692 (BMS bulk RNA-seq cohort) [18] used a completely non-overlap-

ping set of samples with LGRC. Consensus clustering results using GSE134692 (BMS bulk

RNA-seq cohort) [18] also revealed two main subsets of IPF patients (Fig 1F–1J and S1B Fig).

We performed a correlation analysis between GSE134692 (BMS bulk RNA-seq cohort) [18]

and GSE32537 (Schwartz-Univ of Colorado bulk expression cohort) [10]. This analysis

showed a high level of correlation similar to that detected between GSE32537 (Schwartz-Univ

of Colorado bulk expression cohort) [10] and GSE47460 (Kaminski-LGRC bulk expression

cohort) [14–17] (Fig 1J). Therefore, the two main subsets of IPF patients detected originally in

GSE32537 (Schwartz-Univ of Colorado bulk expression cohort) [10] were reproduced across

both partially overlapping (GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17]) and

completely independent (GSE134692 (BMS bulk RNA-seq cohort) [18]) patient cohorts and

across technology platforms.

Markers of fibrosis and differences in clinical data in IPF subsets

We next determined whether markers of fibrosis and clinical data associated with the severity

of IPF were different between the two subsets identified in GSE47460 (Kaminski-LGRC bulk

expression cohort) [14–17]. We did not detect changes in the expression of fibrotic genes
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(including collagen expression, tenascin C (TNC) and IL-11 mRNA levels) between Subset 1

and 2 in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] (Fig 2A); these results

were consistent with results from the study by Yang et al. (GSE32537, Schwartz-Univ of Colo-

rado bulk expression cohort) [10]. We found no significant differences in percent diffusing

capacity of carbon monoxide (%DLCO), forced expiratory volume in 1 second (FEV1) or

forced vital capacity (FVC) between the two subsets of patients in GSE47460 (Kaminski-LGRC

bulk expression cohort) [14–17] (Fig 2B); these findings were mostly consistent with the

reported differences in honeycombing only in IPF patients in the study by Yang et al.

(GSE32537, Schwartz-Univ of Colorado bulk expression cohort) [10], in which patients with

prominent ciliated epithelial gene expression had worse honeycombing. Overall, this indicated

that analysis of clinical parameters, by including additional samples from GSE47460

(Kaminski-LGRC bulk expression cohort) [14–17], did not change the original findings and

conclusions from GSE32537 (Schwartz-Univ of Colorado bulk expression cohort) [10] related

to the IPF patient subsets. Interestingly, 3 out of the 4 markers (GREM1, MMP7, CTHRC1 and

FHL2) identified by Kaminski and colleagues [43] as having a significant negative correlation

with %DLCO and as markers that separate IPF patients by disease severity were expressed at a

higher level in Subset 2 of GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] (S2

Fig), which suggested a differential prognosis for the two subsets of IPF patients. MMP7 and

FHL2 were also reported to be different between subsets in the study by Yang et al.

(GSE32537, Schwartz-Univ of Colorado bulk expression cohort) [10]. We did not detect differ-

ences in age, sex and smoking history between Subset 1 and 2, which is in agreement with the

earlier findings by Yang et al. (GSE32537, Schwartz-Univ of Colorado bulk expression cohort)

[10].

Cellular changes in IPF subsets

The pathological process in IPF leads to marked changes in cellular composition of lung tissue

and is associated with alterations in both hematopoietic and non-hematopoietic cell popula-

tions [44]. Advances in single cell RNA sequencing (scRNAseq) have enabled the quantifica-

tion of these cellular changes at an unprecedented resolution. To this end, we developed a

pipeline based on differential expression of genes in clusters of cells identified in IPF lung

Fig 2. Evaluation of fibrotic markers and clinical parameters in IPF subsets. A. Expression of fibrosis markers in

IPF subsets based on the analysis in Fig 1 in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] as compared

to healthy controls (‘Control’). Adjusted p values determined by ANOVA and post-hoc Dunn’s test are reported on

plots. B. Distribution of clinical parameters in IPF subsets based on the analysis in Fig 1 as reported in GSE47460

(Kaminski-LGRC bulk expression cohort) [14–17] as compared to healthy controls (‘Control’). %DLCO, FVC and

FEV1 values represent pre-lung transplant values reported in GSE47460 (Kaminski-LGRC bulk expression cohort)

[14–17]. Adjusted p values determined by ANOVA and post-hoc Dunn’s test are reported on plots.

https://doi.org/10.1371/journal.pone.0248889.g002
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samples and created gene signatures from recently published scRNAseq data [9–12]. This

approach bridged the problems inherent to low sample sizes in scRNAseq datasets that pre-

cluded reliable consensus clustering. For this analysis, we first used scRNAseq results from

Tsukui et al. (GSE132771, Sheppard-UCSF single cell cohort) [19] to develop cellular signa-

tures by re-analyzing the raw data from GSE132771 (Sheppard-UCSF single cell cohort) [19].

Clusters identified through the reanalysis of published scRNAseq data matched well with the

clusters published by Tsukui et al. (S3 Fig). We determined cell type-specific gene sets using

the methods described in [33]. Cell signatures for each cell type are listed in S1 Table.

We applied the cellular signatures derived from Tsukui et al. GSE132771 (Sheppard-UCSF

single cell cohort) [19] to the data from Kaminski and colleagues (GSE47460, Kaminski-LGRC

bulk expression cohort) [14–17]. First, we assessed the overlap of genes and the correlation of

gene signature scores derived from GSE47460 (Kaminski-LGRC bulk expression cohort) [14–

17]) (S3 and S5 Figs). This assessment showed the expected low level of correlation of scores

between cells of mesenchymal and hematopoietic origin (S3C and S5B Figs). The highest cor-

relation coefficient observed across the mesenchymal cell populations in the total lung cell sus-

pension dataset (S5A Fig) was less than 0.5 (S3C Fig). In the ‘Lineage sorted’ dataset (S3B Fig),

higher correlation coefficients were observed as these cell types are expected to be develop-

mentally and functionally more similar (S3D Fig).

Next, we calculated gene signature scores using Gene Set Variation Analysis (GSVA) as

described in ‘Methods’ and observed strong, coordinated changes in gene signature scores for

epithelial and endothelial cell populations that differed significantly between Subsets 1 and 2

(Fig 3). Our workflow is detailed in Fig 3A. We detected the most significant differences in

gene signature scores for ACKR1 negative endothelial cells and ciliated epithelial cells (Fig 3B

and 3D). The latter result matched well with the finding that ciliated epithelium-related gene

expression was significantly higher in Subset 2 of IPF patients as previously shown in Fig 1D.

Among hematopoietic cell populations, gene expression scores also differed significantly

between Subsets 1 and 2 (Fig 4). Specifically, Subset 2 had higher levels of B cells/ plasma cells

and lower levels of T cells compared to Subset 1 (Fig 4A and 4B). Gene signature scores for

monocytes and macrophages were increased in Subset 1 versus Subset 2 (Fig 4C). This conclu-

sion was also supported by the expression of individual marker genes across patient subsets

(examples are shown in S4 Fig).

To confirm the findings using cellular signatures developed from the data of Tsukui et al.

(GSE132771, Sheppard-UCSF single cell cohort) [19], we used more recent scRNAseq datasets

Fig 3. Gene signature scores for non-hematopoietic cell populations in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] subclasses. Signatures were

determined using total lung mononuclear cell data from GSE132771 (Sheppard-UCSF single cell cohort) [19]. Cell cluster names follow labeling in S3A Fig. Labels used

in S3 Fig are indicated in parentheses. A. Details of our workflow with datasets used at each step indicated. B. Gene signature scores for endothelial cell subpopulations.

C. Gene signature scores for mesothelial cell populations. D. Gene signature scores for epithelial cell subpopulations. Adjusted p values are reported on plots.

https://doi.org/10.1371/journal.pone.0248889.g003
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from Habermann et al. (GSE135893, Kropski-Vanderbilt Univ single cell cohort) [24] to repeat

the development of cellular signatures (S5 Fig). Cellular signatures developed using

GSE135893 (Kropski-Vanderbilt Univ single cell cohort) [24] showed similar overlap and cor-

relation structure to GSE132771 (Sheppard-UCSF single cell cohort, S5B and S3C Figs). Using

gene signatures from GSE135893 (Kropski-Vanderbilt Univ single cell cohort), we replicated

the results from the signatures developed from Tsukui et al. (GSE132771, Sheppard-UCSF sin-

gle cell cohort) [19] and also identified an increase in mast cells in Subset 1 (S6 Fig).

Additionally, to further validate this approach in additional IPF cohorts with bulk tran-

scriptomic data, we repeated consensus clustering and cell type signature analysis of an addi-

tional IPF cohort in which bulk RNAseq data was available (from lungs removed from IPF and

control patients, GSE134692 (BMS bulk RNA-seq cohort)) [18]. This analysis showed similar

trends to those seen in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17]; there

were two main subsets of patients in GSE134692 (BMS bulk RNA-seq cohort) with one subset

expressing high levels of ciliated epithelium-related genes and another subset enriched in mac-

rophage gene signatures (S7 Fig).

Changes in fibroblast, pericyte and smooth muscle populations in IPF

subsets

The scRNAseq data allowed identification of novel subtypes of fibroblasts in IPF as reported

by Tsukui et al. [19]. Importantly, these authors identified a subset of disease-specific fibro-

blasts in IPF characterized by high level expression of the CTHRC1 gene and pro-fibrotic

mediators including type I and III collagen. Using the gene expression signatures and the same

methods, we evaluated changes in fibroblast subpopulations in the two subsets identified in

GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] (Fig 5). Gene signature scores

for many of the fibroblast, pericyte and smooth muscle subpopulations were similarly enriched

in IPF patient Subsets 1 and 2. However, gene signature scores for alveolar fibroblast popula-

tions were more enriched in Subset 1, whereas gene signature scores for peri-bronchial and

adventitial fibroblasts were more enriched in Subset 2, indicating important differences in

fibroblast biology between subsets of IPF patients (Fig 5A). Gene signature scores for

CTHRC1+ fibroblasts were not different between the two subsets. Taken together, this data

indicated that the two subsets identified in GSE47460 (Kaminski-LGRC bulk expression

Fig 4. Gene signature scores for hematopoietic cell populations in GSE47460 (Kaminski-LGRC bulk expression

cohort) [14–17] subclasses. Signatures were determined using total lung mononuclear cell data from GSE132771

(Sheppard-UCSF single cell cohort) [19]. Cell cluster names follow labeling in S3A Fig. Labels used in S3A Fig are

indicated in parentheses. A. Gene signature scores for B cell subpopulations. B. Gene signature scores for T cell

populations. C. Gene signature scores for myeloid cell subpopulations. Adjusted p values are reported on plots.

https://doi.org/10.1371/journal.pone.0248889.g004

PLOS ONE Stratification of IPF based on lung gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0248889 March 23, 2021 12 / 28

https://doi.org/10.1371/journal.pone.0248889.g004
https://doi.org/10.1371/journal.pone.0248889


cohort) [14–17], based on gene expression, also had concomitant differences in mesenchymal

cell biology. Table 3 provides a short summary of cell type and representative gene expression

changes associated with Subsets 1 and 2 in GSE47460 (Kaminski-LGRC bulk expression

cohort) [14–17]. Based on the cell population changes described in Table 3, we will refer to

Subset 1 as ‘Myeloid-enriched IPF’ and Subset 2 as ‘Ciliated epithelium-enriched IPF’.

Differential ligand-receptor networks as potential drivers of cell

recruitment in IPF subsets

We hypothesized that the differential cellular make-up in the Myeloid-enriched IPF subset as

compared to the Ciliated epithelium-enriched IPF subset was likely due to the differential acti-

vation of chemokine and chemokine receptor networks. To test this hypothesis, first, we com-

pared the expression patterns of chemokine ligands across the two subsets identified in

GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17]. As shown in Fig 6A, this analy-

sis of GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] showed clustering of sam-

ples and chemokine ligands differentially expressed between the two IPF patient subsets. The

Myeloid-enriched IPF subset (Subset 1) had increased expression of XCL1, CCL17, CCL5,

CXCL9, CXCL10 and CXCL11, whereas the Ciliated epithelium-enriched IPF subset (Subset

2) had increased expression of CCL15, CXCL1, CXCL6, CCL7, CXCL17, CXCL13, CCL14 and

CXCL14. We next examined the cellular origin of these chemokines using single cell data from

Fig 5. Gene signature scores for smooth muscle/pericyte/fibroblast obtained by using CD45-/EPCAM-/CD235a-

(‘Lineage-sorted cells’) data from GSE132771 (Sheppard-UCSF single cell cohort) [19] in GSE47460 (Kaminski-

LGRC bulk expression cohort) [14–17] subclasses. Cell cluster names follow labeling in S3B Fig. Labels used in S3B

Fig are indicated in parentheses. A. Gene signature scores for adventitial and peribronchial fibroblast subpopulations.

B. Gene signature scores for alveolar fibroblast subpopulations. C. Gene signature scores for CTHRC1+ fibroblast

subpopulation. D. Gene expression scores for pericytes and smooth muscle cell populations. Adjusted p values are

reported on plots.

https://doi.org/10.1371/journal.pone.0248889.g005

Table 3. Summary of cellular and gene expression changes in patient subsets in GSE47460.

Subset in

GSE47460

Associated cluster-specific cell type changes Example gene expression

changes

Subset 1. Myeloid cell populations", mast cells", CTHRC1+ fibroblasts",

pericytes", Alveolar fibroblasts subtypes"

CCR2", CD11b", PPBP""

Subset 2. B cells/Plasma cells"", Ciliated epithelium"", Peribronchial

fibroblasts", CTHRC1+ fibroblasts"

MZB1", POU2AF1",

FOXJ1""

Column 2: ", moderately increased, "", strongly increased; Column 3: ", moderately upregulated over healthy (1.5-

2x); "", strongly upregulated over healthy (>2x).

https://doi.org/10.1371/journal.pone.0248889.t003
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Habermann et al. (GSE135893, Kropski-Vanderbilt Univ single cell cohort) [24]. Not all che-

mokines were detectable in scRNAseq data. Fig 6B shows detectable chemokine genes with dif-

ferential expression between subsets of IPF patients. We found that CCL17 was primarily

produced by MHC class II high macrophages and was higher in the Myeloid-enriched IPF

subset. CCR4 is the receptor for CCL17 and is expressed by helper T cells, which may account

for the increased numbers of T helper cells in the Myeloid-enriched IPF subset of patients (Fig

4B). CCL15 was primarily produced by ciliated epithelial cells, and was accordingly higher in

the Ciliated epithelium-enriched IPF subset (Fig 6B).

Additionally, we also conducted a transcriptome-wide analysis of single cell RNA seq data

from Habermann et al. (GSE135893, Kropski-Vanderbilt Univ single cell cohort) [24] using

the recently published ‘PyMiner’ approach for differential ligand-receptor expression [39].

This analysis confirmed expression of chemokine and chemokine receptor pairs using single

cell data subsets and confirmed IPF subsetting into Myeloid-enriched and Ciliated epithelium-

enriched IPF subsets and extended our analysis to additional ligand-receptor pairs active in

subsets of IPF patients. The GSE135893 (Kropski-Vanderbilt Univ single cell cohort) [24] data

set contained 19 IPF subjects and we separated these subjects into Myeloid-enriched and Cili-

ated epithelium-enriched IPF subsets using the percentage of all ciliated epithelial cells (i.e.

sum of Ciliated_1, Ciliated_3, Diff_ciliated_15, Ciliated_28 populations in S8 Fig) from each

subject (Fig 7A) to separate IPF subjects into ‘Ciliated_low’ (< 20% of cells are ciliated epithe-

lial cells, analogous to the Myeloid-enriched IPF subset in GSE47460, Kaminski-LGRC bulk

expression cohort) [14–17] and ‘Ciliated_high’ (> 20% of cells are ciliated epithelial cells, anal-

ogous to the Ciliated epithelium-enriched IPF subset in GSE47460, Kaminski-LGRC bulk

expression cohort) [14–17] (S8 Fig) subsets. Our subsetting of the 19 donors in GSE135893

(Kropski-Vanderbilt Univ single cell cohort) [24] based on ‘Ciliated_low’ and ‘high’ criteria

was validated based on significant differences between subsets in the percentages of myeloid

populations, with the most significant differences between subsets in macrophages (S3 Table),

thereby matching subset data in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17]

(Fig 1). Pathway enrichment analysis based on differential gene expression between

Fig 6. Evaluation of differential chemokine networks in IPF subsets. A. Hierarchical clustering of GSE47460

(Kaminski-LGRC bulk expression cohort) [14–17] IPF patients based on chemokines differentially expressed between

IPF subsets. Absolute log FC>0.58 and adjusted p value<0.05 was used to define differentially expressed chemokines.

x axis represents individual patients, y axis represents genes. Subsets are indicated in x axis color bar and legend of

heatmap and correspond to classes shown in Fig 1A. B. Expression of chemokines detectable in GSE135893 (Kropski-

Vanderbilt Univ single cell cohort) [24] scRNAseq data and in GSE47460 (Kaminski-LGRC bulk expression cohort)

[14–17] IPF subsets. scRNAseq UMAP plots (top row) were generated using the ‘FeaturePlot’ function in R package

Seurat. Each UMAP plot depicts the expression of the chemokine indicated. Color bars indicate scaled expression in

each cell on the plot. Cell clusters correspond to clusters reported in S5 Fig. Bar plots (bottom row) depict the

expression of the same chemokines in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] IPF subsets.

Adjusted p values are reported on plots.

https://doi.org/10.1371/journal.pone.0248889.g006
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‘Ciliated_high’ IPF patients and control samples or ‘Ciliated_low’ IPF patients and control

samples in GSE135893 (Kropski-Vanderbilt Univ single cell cohort) [24] applied on this sub-

setting confirmed the activation of relevant pathways in the dataset (S2 Table). Additionally,

we confirmed that percentages of relevant cell types followed the expected changes between

subsets of IPF patients in GSE135893 (Kropski-Vanderbilt Univ single cell cohort, S8B Fig)

[24]. Indeed, we detected significant differences in myeloid cells and a trend in endothelial cell

percentages between subsets (with myeloid cells being enriched in the ‘Ciliated_low’ subset)

similarly to the bulk RNA results shown above (S8 Fig). Full breakdown of individual donor-

level percentages of all cell populations in GSE135893 (Kropski-Vanderbilt Univ single cell

cohort) [24] between ‘Ciliated_high’ and ‘Ciliated_low’ IPF subsets is provided in S3 Table.

We highlighted cell populations significantly different between ‘Ciliated_high’ and ‘Ciliate-

d_low’ subsets in GSE135893 (Kropski-Vanderbilt Univ single cell cohort) [24] in S3 Table.

In our ligand-receptor analysis using PyMiner, we focused on differential ligands produced

by cell populations that were significantly different in percentage between ‘Ciliated_low’ and

‘Ciliated_high’ subsets (specifically macrophage populations and ciliated epithelial cell popula-

tions, respectively). Fig 7B depicts circular diagrams with ligands produced by macrophages in

‘Ciliated_low’ subjects and Fig 7C depicts circular diagrams with ligands produced by macro-

phages in ‘Ciliated_high’ donors (Fig 7C). In Fig 7D, we depicted ligands produced by ciliated

epithelium in ‘Ciliated_low’ donors, and in Fig 7E we depicted ligands produced by ciliated

epithelium in ‘Ciliated_high’ donors (Fig 7E). We examined the top 10th percentile of ligand-

receptor pairs from macrophages and epithelial cells (based on z score output provided by

PyMiner) in each subset and determined the expression of matching receptors from each con-

dition for visualization purposes. As expected, significant differences in the profiles of inferred

active ligand-receptor networks were detected. We confirmed these results using another

Fig 7. Ligand-receptor networks in ‘Ciliated_low’ and ‘Ciliated_high’ donors in GSE135893 (Kropski-Vanderbilt

Univ single cell cohort) [24]. A. Histogram of distribution of percentage of ciliated epithelial cells in GSE135893

(Kropski-Vanderbilt Univ single cell cohort) [24] with the cutoff we selected indicated. B-E. Circular plots indicating

ligand receptor interactions in subsets of patients in GSE135893 (Kropski-Vanderbilt Univ single cell cohort) [24]. On

each circular plot, the top half of the circle represents cell types expressing the receptor for the ligand of the indicated

cell type on the bottom half of the plot. Connections represent inferred active ligand-receptor pairs between types of

cells. The thickness of the lines represents the relative level of expression of a given ligand/receptor. Transparency of

the lines represents relative strength of the given ligand-receptor interaction as reported by the z score value calculated

by PyMiner. B. Top ligands produced by macrophages (bottom half of circle) in ‘Ciliated_low’ patients and the top

receptors they interact with (top half of circle with cell types expressing the receptor indicated). C. Top ligands

produced by macrophages (bottom half of circle) in ‘Ciliated_high’ patients and the top receptors they interact with

(top half of circle with cell types expressing the receptor indicated). D. Top ligands produced by ciliated epithelial cells

(bottom half of circle) in ‘Ciliated_low’ patients and the top receptors they interact with (top half of circle with cell

types expressing the receptor indicated). E. Top ligands produced by ciliated epithelial cells (bottom half of circle) in

‘Ciliated_high’ patients and the top receptors they interact with (top half of circle with cell types expressing the

receptor indicated).

https://doi.org/10.1371/journal.pone.0248889.g007
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ligand-receptor network approach, NicheNet [39] (S9 Fig). Overall, differential gene expres-

sion results derived from single cell and bulk RNA expression data suggested that a monocyte-

macrophage chemoattractant axis (including potentially CCL2-CCR2 and CCL17-CCR4) was

highly activated in ‘Ciliated_low’ (Myeloid-enriched IPF subset) patients and was possibly

responsible for recruiting inflammatory macrophages in this subset, whereas ciliated epithe-

lium-derived chemokine production (e.g. CCL15) may play an important role in cell recruit-

ment in the Ciliated epithelium-enriched IPF subset of patients.

Development of machine learning-based classifiers for distinguishing the

Myeloid-enriched IPF subset versus the Ciliated epithelium-enriched

subset

Because the two IPF patient subsets we identified in GSE47460 (Kaminski-LGRC bulk expres-

sion cohort) [14–17] may have a differential pathogenesis, our findings may have implications

for treatment and disease progression. Therefore, we developed models to identify key features

to distinguish the subsets. We used machine learning models with recursive feature elimina-

tion to 1.) identify the cell types that best distinguished the subsets using the gene expression

signature scores described in Figs 3–5 and 2) identify gene expression that can be used to clas-

sify IPF patients into subsets. The two approaches offer distinct advantages for predicting sub-

set membership: the first approach identifies biopsy histological features that may distinguish

subsets, whereas the second approach permits development of RNA-based assays to distin-

guish subsets by measuring transcript levels from biopsy samples.

We used support vector machines with a linear kernel, elastic net and a gradient boosting

machine to create models for cell type-based classifiers and gene expression values. We trained

our models on a randomly selected 70% of IPF patients in GSE47460 (Kaminski-LGRC bulk

expression cohort) [14–17] and used the remaining 30% as a validation set with 5-fold cross-

validation. All three methods (linear kernel, elastic net and gradient boosting) produced high

accuracy models with AUROC values > 0.95 (Fig 8A for cell signature scores and 8C for gene

expression values). The cell signature approach identified ciliated epithelium, plasma cells,

cytotoxic T cells and ACKR1 negative endothelium as the most important features separating

Fig 8. Building a machine learning-based classifier for distinguishing subclasses in GSE47460 (Kaminski-LGRC

bulk expression cohort) [14–17]. A. ROC curve of classifier from three different methods used based on cell signature

data. Legend indicates names of machine learning (svm, gbm, glmnet) used. B. Relative importance of cell types

identified by the elastic net model sorted by importance. C. ROC curve of classifier from three different methods used

based on gene expression data. Legend indicates names of machine learning (svm, gbm, glmnet) used. D. Expression

values of top 5 genes identified by recursive feature elimination across subsets of patients in GSE47460 (Kaminski-

LGRC bulk expression cohort) [14–17]. Adjusted p values are reported on plots.

https://doi.org/10.1371/journal.pone.0248889.g008
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the two subsets of IPF (Fig 8B). Recursive feature elimination using gene expression values

identified FOXJ1, NELL2, SCGB3A1, LRRC34 and MYL3 as the top five most predictive genes

(Fig 8D).

Differences in pirfenidone response signature between subsets of IPF

patients

Finally, we asked whether the two subsets of IPF patients would respond differentially to

approved IPF therapies. Currently, there are two FDA-approved therapies available for IPF

patients, pirfenidone and nintedanib [3, 4]. We developed a lung pirfenidone signature using

genes downregulated in response to pirfenidone in lung homogenates [42] (Fig 9A). Applying

this gene signature to the two subsets we identified in GSE47460 (Kaminski-LGRC bulk

expression cohort) [14–17], we found that pirfenidone-responsive genes were upregulated in

both subsets of IPF patients; however, pirfenidone-responsive genes were more significantly

upregulated in the Ciliated epithelium-enriched IPF subset (Fig 9B). These results suggested

that the Ciliated epithelium-enriched IPF subset may be more responsive to pirfenidone as

compared to the Myeloid-enriched IPF subset.

Discussion

We used a data-driven, unsupervised clustering of RNA expression data from IPF patient lung

samples, that was reproducible across patient cohorts and was associated with changes in the

cellular composition of the lungs in IPF. We believe this study provides novel ideas on differ-

ential mechanisms of pathogenesis in this heterogeneous disease. We used single cell RNA

sequencing data to uncover subpopulations of both mesenchymal and hematopoietic cell pop-

ulations associated with disease pathogenesis [19, 6, 45–47]. The throughput of scRNAseq

studies limits sample sizes; therefore, we devised an analysis pipeline to bridge this gap by

applying single cell RNA-based signature analysis to gene expression data derived from whole

tissue gene expression. Through this analysis, we identified key alterations in cellular

Fig 9. Expression of a pirfenidone response gene signature differs between IPF subsets. A. Pirfenidone response

signature from reference [42]. B. Gene signature scores in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–

17]. Adjusted p values are reported on plots.

https://doi.org/10.1371/journal.pone.0248889.g009
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compositions and molecular mechanisms specific for 2 subsets of IPF patients. Furthermore,

we identified potential biomarkers through the use of well-established machine learning tech-

niques to develop classifiers based on both cell type signatures and gene expression values.

Overall, we believe this body of work will help with the development of IPF diagnostics and

deepen our understanding of cell types involved in the pathogenesis of IPF in different subsets

of patients.

Prior studies suggested that both plasma cells and T cells are associated with disease pro-

gression [11–13], and B cells and plasma cells are enriched in IPF lung tissue and plasma cell

gene expression is associated with faster disease progression and poorer survival [13]. These

findings were confirmed using additional patient cohorts and different methodologies [48].

However, the nature of plasma cell and IPF-specific autoantibody involvement in IPF is

unclear and current studies do not provide a mechanism to connect plasma cell and autoanti-

body increases to IPF pathogenesis [49, 50]. The subset associated with the strongest B cell/

plasma cell signature was the same subset (Ciliated epithelium-enriched IPF subset; Subset 2)

associated with a decrease in cytotoxic T cells and helper T cells. Similar to increases in B cells/

plasma cells, decreases in T cell responses have been shown to be associated with a poor prog-

nosis in IPF [11, 51]. Evaluation of the expression of genes suggested to be prognostic in IPF

[43] suggested that the Ciliated epithelium-enriched IPF subset represented the subset of

patients with more severe disease. Gene expression across the two subsets did not suggest an

association with acute exacerbations of IPF; for example, some published markers of acute IPF

exacerbations (MMP1, MMP7) were higher in Subset 2, while others (AGER, DEFA3) were

lower in Subset 2 or not significantly different (COL1A2, CCNA2) [52]. Additionally, we

found that 3 out of the 4 markers (GREM1, MMP7, CTHRC1 and FHL2) identified by

Kaminski and colleagues [43] as having a significant negative correlation with %DLCO and as

markers that separate IPF patients by disease severity and predicted progression were

expressed at higher levels in ‘Ciliated epithelium-enriched’ patients of GSE47460 (Kaminski-

LGRC bulk expression cohort) [14–17] (S2 Fig), potentially indicating a differential prognosis

for the two subsets of IPF patients. Clinical follow up data will be valuable to determine

whether the Ciliated epithelium-enriched IPF subset is associated with a worse prognosis and

more likely to have acute IPF exacerbations.

A potential concern related to our study is that the subsets detected in our analysis were

associated with differential sampling of lung tissue in each study. There are several lines of evi-

dence disputing this conclusion including the fact that the pattern of IPF patient subsets we

detected were observed across multiple independent patient cohorts and using different tech-

nologies (bulk RNA sequencing and scRNAseq, references [10, 12]). Additionally, we re-ana-

lyzed samples from GSE124685 (Kaminski-Yale Univ bulk progression RNA cohort) [12], a

study that analyzed various stages of IPF lungs by bulk RNA-sequencing. This study analyzed

a small (n = 10) number of IPF donors and sampled their lungs in various anatomical locations

to obtain transcriptional profiles of IPF lungs in various stages of fibrosis. Key markers identi-

fied in this study such as CCR2, ITGAM, FOXJ1 and SNTN did show significant changes by

location of the lung samples [12]. It is also possible that the differences between subsets were

due to differences in the stage of disease when tissue was sampled. Although we currently have

no way of unequivocally determining whether the subsets were at different stages of disease

(i.e. Subset 1 progresses into Subset 2), we think this is unlikely because the Myeloid-enriched

IPF subset had a higher overall fibroblast gene expression signature compared to the Ciliated

epithelium-enriched IPF subset (Fig 3). CTHRC1+ fibroblasts were recently shown to be pres-

ent in fibrotic lungs [19] and were suggested to be pathogenic based on the high expression of

several well-known pro-fibrotic mediators and extracellular matrix components. However,

CTHRC1+ fibroblasts were not differentially expressed in the two subsets (Figs 3–5). Besides
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CTHRC1+ fibroblasts, several well-known profibrotic genes were similarly expressed between

the two subsets (Fig 2). Additionally, Subset 1 patients expressed lower levels of genes shown

to be prognostic of disease progression [43], and the Myeloid-enriched IPF subset was associ-

ated with increased mast cells compared to the Ciliated epithelium-enriched IPF subset (S6

Fig, ‘MC_27’). Mast cells have been shown to be associated with a subset of IPF patients with a

milder prognosis [53], further suggesting that the subsets we identified may have a different

pathogenesis and prognosis. Taken together, these results suggested that Subsets 1 and 2 are

not different stages of IPF but rather are subsets of IPF with different underlying pathologies

and disease severity. This question can only be definitively answered using longitudinal gene

expression data.

The Myeloid-enriched IPF subset was characterized by the presence of increased myeloid

cell gene expression. Myeloid cells have been shown to be significant contributors to the devel-

opment of fibrosis [54–56], and increases in SPP1-producing monocytes and macrophages

were shown to be a hallmark of IPF pathogenesis [47]. Our analysis indicated that SPP1-pro-

ducing monocytes along with other subsets of CD14+ cells were increased as compared to con-

trol samples in the Myeloid-enriched IPF subset but not in the Ciliated epithelium-enriched

IPF subset (Fig 4C). This difference in macrophage numbers was associated with a significant,

albeit small, increase in CCL2-expressing alveolar fibroblasts in the Myeloid-enriched IPF sub-

set (Fig 5B) and increased expression of CCR2, the receptor for CCL2. We analyzed receptor-

ligand interactions in IPF single cell data between myeloid cells and fibroblasts and found that

myeloid cells potentially provide important ligands for the activation of fibroblasts and vice

versa (Figs 6 and 7, see below). With the accumulation of more scRNAseq data, an essential

question to ask will be if different ligand-receptor interactions contribute to the pathogenesis

of IPF in the Myeloid-enriched IPF subset.

We extended the receptor-ligand analysis to better understand all potential ligand-receptor

changes between subsets of patients; this confirmed the differential activation of the

CCL2-CCR2 ligand-receptor pair in the Myeloid-enriched IPF subset and revealed additional

major changes in active receptor-ligand interactions between Subsets 1 and 2. Notable exam-

ples included the predicted activation of the EREG-EGFR ligand-receptor in the Myeloid-

enriched IPF subset and the predicted activation of CTGF signaling and the high level expres-

sion of CXCL13 in the Ciliated epithelium-enriched IPF subset (Fig 7B–7E). EGFR overex-

pression has been shown to be a hallmark of IPF [57] and EGFR activation has been shown to

contribute to fibrosis in the bleomycin model of IPF [58]. As such, EGFR inhibition may rep-

resent an attractive therapeutic strategy for the Myeloid-enriched IPF subpopulation of IPF

patients. Other studies have shown that CTGF is a key contributor to fibroblast activation and

IPF [59]. The CTGF-blocking antibody pamrevlumab was beneficial in a recently completed

phase II clinical trial in IPF [60]. A key question that our results may address is whether the

Ciliated epithelium-enriched IPF subset responds better to pamrevlumab treatment. CXCL13

is a major chemokine responsible for the recruitment of antibody-producing cells and forma-

tion of germinal centers [61]. B cells and plasma cells are enriched in IPF lung tissue, plasma

cell gene expression is associated with faster disease progression and poorer survival [13], and

some IPF patients are responsive to B cell depletion with rituximab [62]. Therefore, it would

be of interest to see whether rituximab responsiveness is associated with the subset of patients

with high levels of B cells/plasma cells in the Ciliated epithelium-enriched IPF subset.

One of the major differences between Myeloid-enriched and Ciliated epithelium-enriched

subsets of IPF patients was the expression of genes associated with ciliated epithelium as well

as the increased expression of MUC5B in Subset 2. One study has suggested that ciliated epi-

thelium is an important driver of IPF pathogenesis [63]. Additionally, MUC5B is a reproduc-

ible susceptibility locus identified in IPF genome-wide association studies (GWAS) [5–7].

PLOS ONE Stratification of IPF based on lung gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0248889 March 23, 2021 19 / 28

https://doi.org/10.1371/journal.pone.0248889


Polymorphisms in the MUC5B promoter were shown to be associated with different levels of

MUC5B expression [64–66]. Our analysis indicated that MUC5B upregulation was not a uni-

form feature of all IPF patients and was associated with ciliated epithelium abnormalities. An

interesting question that arises from this analysis is whether patients in the Ciliated epithe-

lium-enriched IPF subset are enriched in MUC5B polymorphisms associated with the pro-

nounced upregulation of MUC5B mRNA. The potential connection between MUC5B

upregulation and increased CTGF production found in our study is largely unexplored in the

literature. Differential MUC5B production may also be valuable as a biomarker since MUC5B

is routinely measured from sputum [67, 68]. Exploring the feasibility and value of MUC5B as a

biomarker for differentiating the two subsets of IPF patients is worth considering.

We also developed biomarkers to distinguish IPF patient subsets based on either cellular

alterations or changes in gene expression. Through this work, we generated a list of potential

biomarkers to separate IPF subsets with high accuracy (Fig 8). Using the methods described

herein, we found that several of the cell populations different across subsets may also be used

as accurate predictors of IPF patient subset (Fig 8). Additionally, we were also able to find a

gene set that may function as a predictor of IPF patient subset (Fig 8D). After further valida-

tion of our results, it will be essential to develop markers that reliably identify what subset indi-

vidual patients belong to, i.e. to stratify them into the Myeloid-enriched (Subset 1) or Ciliated

epithelium-enriched (Subset 2) subsets. Some of the top 5 genes in our classifier (Fig 8D;

FOXJ1, LRRC34, MYL3, NELL2, SCGB3A1) have known relevance to the biology of ciliated

epithelium (e.g. FOXJ1 is a key transcription factor in the development of cilia [69] and

LRRC34 is a candidate causative gene in Mendelian disorders of cilium development [70]).

Additionally, we presented a patient stratification hypothesis for one of the currently FDA-

approved treatments for IPF, pirfenidone. We showed that our Ciliated epithelium-enriched

subset presented with significantly higher pirfenidone-responsive gene expression (Fig 9).

These findings may lead to new hypotheses about differential patient treatment of IPF with

pirfenidone and suggest a similar approach to the development of biomarkers for other

approved therapies for IPF, such as nintedanib.

Our study has several strengths, including connecting alterations in cellular composition to

gene expression and offering hypotheses on the differential pathogenesis underlying subsets of

patients in IPF; however, it also has several limitations. First, although we used the best avail-

able method to assess consensus clustering performance (Proportion of Ambiguous Clustering

(PAC) score, [26]), determining the optimal number of clusters from consensus clustering

methods has known limitations [26]. It is possible that there is hidden sub-structure in the

clusters detected and with a larger number of samples additional subsets could be discovered.

Second, the number of donors in single cell RNA sequencing studies used to generate gene

expression reference matrices for deconvolution of bulk data are small. Third, there are cell

populations not reflected in the single cell RNA sequencing data (such as neutrophil granulo-

cytes) that cannot be estimated in the bulk gene expression data.

Also, we used scores determined by gene set enrichment to estimate levels of cell type

enrichment; as such, the scores calculated represent cell type-specific signatures and are not a

direct measurement of each cell type. Despite this potential limitation, we believe that we used

the most relevant GSVA method to determine cell type-specific gene signature scores; GSVA

offers distinct advantages over calculating gene signature scores due to its efficient ranking

and outlier smoothing algorithms [33, 34].

In addition, we believe that the conclusions we made using gene signatures developed from

the scRNAseq datasets are also supported by the observation that the correlation between

GSVA-signature scores calculated from total lung suspension datasets GSE132771 (Sheppard-

UCSF single cell cohort) and GSE136893 (Kropski-Vanderbilt Univ single cell cohort) are low
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across the dataset (S3C and S5B Figs). Although we observed higher correlation values using

the ‘Lineage sorted’ dataset from GSE132771 (Sheppard-UCSF single cell cohort), we believe

this does not change the main conclusions derived from the results. For example, in Fig 5B

there was a high correlation and overlap between THY1high_alv_fib_0 (Alveolar_0) and

THY1neg_alv_fib_5 (Alveolar_5) fibroblasts and gene signature scores for these populations

(along with the other two alveolar fibroblast populations) across subsets. Therefore, using this

example, we found that Subset 1 (Myeloid cell-enriched subset) showed an enrichment in gene

signature scores for all alveolar fibroblast populations (Fig 5B) as compared to Control/Subset

2 (Ciliated epithelium-enriched subset) but a decrease in adventitial and peribronchial fibro-

blasts (Fig 5A).

Another limitation of our study is that it represents ‘hypothesis generation’ and lacks exper-

imental validation. Unfortunately, we were unable to link and validate our findings to histo-

pathological and longitudinal clinical and gene expression data. Future datasets may answer

the question of whether the changes we observed based on gene expression are reflected in cel-

lular changes observable by other methods and if gene expression differences are relevant to

prediction of clinical disease course in IPF. However, we believe that our hypotheses have gen-

erated valuable insights despite this shortcoming as our results provide testable ideas with sug-

gested associated biomarkers.

Conclusions

In conclusion, we developed an analysis pipeline to subset IPF patients in a data-driven, unsu-

pervised manner and demonstrated an association of cellular changes with gene expression in

the two identified subsets. We believe this work provides novel insights into the pathogenesis

of IPF and provides testable hypothesesabout differential alterations of cellular composition of

the lung in subsets of IPF patients in this difficult-to-treat disease.

Supporting information

S1 Fig. A. PAC scores as a function of number of clusters (k) calculated based on consensus

clustering results in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17]. B. PAC

scores as a function of number of clusters (k) calculated based on consensus clustering results

in GSE134692 (BMS bulk RNA-seq cohort) [18]. C. Distribution of patient subsets from Fig

1A across IPF samples overlapping or non-overlapping between GSE47460 (Kaminski-LGRC

bulk expression cohort) [14–17] and GSE32537 (Schwartz-Univ of Colorado bulk expression

cohort) [10]. D. PAC scores as a function of number of clusters (k) calculated based on consen-

sus clustering results using the 75 unique samples (not overlapping with GSE32537) from

GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17].

(TIF)

S2 Fig. Expression of genes identified in [43] to be associated with disease progression in

subsets of GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17]. Adjusted p values

are reported on plots.

(TIF)

S3 Fig. Cell types in GSE132771 (Sheppard-UCSF single cell cohort) [19]. Clustering was

performed using R package Seurat and cell types were identified using known markers. A.

Total lung cell suspension. SPP1_monocytes_0: SPP1+ monocytes; Infl_monocytes_1: Inflam-

matory monocytes; ACKR1pos_endo_2: ACKR1+ endothelial cells; ACKR1neg_endo_3:

ACKR1- endothelial cells; Fibroblasts_4: Fibroblasts; AT2_5 and AT2_23: Alveolar epithelial

cell type II subpopulations; Th_6: helper T cells; Pericytes_7 and Pericytes_22: Pericyte
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subpopulations; HLAhigh_mac_8 and HLAhigh_mac_10: HLA class II high macrophage sub-

populations; Sm_9: smooth muscle cells; Bcells_11 and Bcells_21: B cell subpopulations;

Tc_12: cytotoxic T cells; AT1_13: Alveolar epithelial cell type I; PC_14: Plasma cells; Endo_15

and Endo_24: endothelial cell subpopulations; Ciliated_16: ciliated epithelial cells; Mono-

cytes_17 and Monocytes_18: Monocyte subpopulations. B. Lineage sorted cells. THY1high_-

alv_fib_0: THY1 high alveolar fibroblasts; THY1pos_sm_1: THY1+ smooth muscle;

THY1neg_sm_2: THY1- smooth muscle; CTHRC1pos_3: CTHRC1+ fibroblasts; Adventi-

tial_4: Adventitial fibroblasts; THY1neg_alv_fib_5: THY1- alveolar fibroblasts; Pericytes_6:

Pericytes; Peribronchial_7: Peribronchial fibroblasts; Sm_8 and Sm_13: smooth muscle cell

subpopulations; Alveolar_9 and Alveolar_10: Alveolar fibroblast subpopulations; Epi_11: Epi-

thelial cells; Hematopoietic_12 and Hematopoietic_14: Hematopoietic cells. C. Heatmap (left

panel) and correlation matrix (right panel) in GSE47460 of genes included in the signature

derived from the ‘Total lung cell suspension’ (shown in panel A) dataset across each cluster

shown in panel A. D. Heatmap (left panel) and correlation matrix (right panel) in GSE47460

of genes included in the signature derived from the ‘Lineage sorted’ (shown in panel B) dataset

across each cluster shown in panel B.

(ZIP)

S4 Fig. A. Expression of various B cell, plasma cell and myeloid markers in GSE47460

(Kaminski-LGRC bulk expression cohort) [14–17] subsets. B. Expression of ciliated epithelium

cell markers in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–17] subsets. Adjusted

p values are reported on plots.

(TIF)

S5 Fig. A. Cell type labels used based on re-analysis of IPF and healthy control data from

GSE135893 (Kropski-Vanderbilt Univ single cell cohort) [24]. Clustering was performed using

R package Seurat and cell types were identified using known markers. Ciliated_0 and Cili-

ated_1: Ciliated epithelial cell subpopulations; AT2_2, AT2_13, AT2_29, AT2_30: Alveolar

epithelial cell type II subpopulations; SPP1_mac_3: SPP1+ monocytes/macrophages;

C1QA_mac_4, C1QA_mac_5, C1QA_mac_9, C1QA_mac_12: C1QA+ macrophage subpopu-

lations; Mono_7, Mono_21: Monocyte subpopulations; Tc_8: cytotoxic T cells; Th_10: helper

T cells; AT1_11, MUC5Bpos_AT1_15, Basal_AT1_17: Alveolar epithelial cell type I subpopu-

lations; ACKR1_pos_endo_14: ACKR1+ endothelial cells; ACKR1_neg_endo_16 and

ACKR1_neg_endo_20: ACKR1- endothelial cell subpopulations; Diff_cil_18: Differentiating

ciliated epithelial cells; Fibroblasts_19 and Fibroblasts_23: Fibroblast subpopulations; Sm_26:

smooth muscle; Prolif_mac_22: Proliferating macrophages; Ly_endo_24: Lymphatic endothe-

lium; Bcells_25: B cells; PC_28: Plasma cells; MC_27: mast cells; Mesothelial_31: mesothelial

cells. B. Heatmap (left panel) and correlation matrix (right panel) in GSE47460 (Kaminski-

LGRC bulk expression cohort) of genes included in the signature derived from the dataset

shown in panel A.

(ZIP)

S6 Fig. Cell signature scores in GSE47460 (Kaminski-LGRC bulk expression cohort) [14–

17] using cell type signatures based on GSE135893 (Kropski-Vanderbilt Univ single cell

cohort) [24]. Only cell types with relevance to subsetting are shown. Nomenclature of cell

types follows S5 Fig.

(TIF)

S7 Fig. Cell signature scores in GSE134692 (BMS bulk RNA-seq cohort) [18] using cell

type signatures based on GSE132771 (Sheppard-UCSF single cell cohort) [19]. Only cell

types with relevance to subsetting shown. Nomenclature of cell types follows S3 Fig. A. Non-
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hematopoietic populations from S3A Fig. B. Hematopoietic populations from S3A Fig. C. Cell

populations from S3B Fig.

(ZIP)

S8 Fig. A. IPF samples in GSE135893 (Kropski-Vanderbilt Univ single cell cohort) [24]

divided by the % of total ciliated cells in the data as shown in Fig 7A. SPP1pos_macs_0: SPP1+

monocytes/macrophages; Ciliated_1, Ciliated_3 and Ciliated_28: Ciliated epithelial cell sub-

populations; C1QA_mac_2 and C1QA_mac_6: C1QA positive macrophage subpopulations;

AT1_4, AT1_9, AT1_11, AT1_26: Alveolar epithelial cell type I subpopulations; AT2_5 and

AT2_24: Alveolar epithelial cell type II subpopulations; ACKR1pos_endo_7: ACKR1+ endo-

thelial cells; Monocytes_8: monocytes; Th10: helper T cells; Macs_12, Macs_22 and Macs_27:

Macrophage subpopulations; Tc_13: cytotoxic T cells; HAS1_fibro_14: HAS1 positive fibro-

blasts; Diff_ciliated_15: differentiating ciliated epithelial cells; ACKR1neg_endo_16: ACKR1-

endothelial cells; Fibroblasts_17 and Fibroblasts_29: Fibroblast subpopulations; Prolif_-

macs_18: Proliferating macrophages; Ly_endo_19: Lymphatic endothelium; Sm_20: smooth

muscle; Bcells_21: B cells; PC_23: Plasma cells; MC_25: Mast cells. B. Differences in the per-

centage of Ciliated cells, Total myeloid cells and Endothelial cells between ‘Ciliated_low’ and

‘Ciliated_high’ subsets in GSE135893 (Kropski-Vanderbilt Univ single cell cohort) [24]. Per-

centages were calculated using cell numbers of the cell type indicated divided by the total num-

ber of cells in the data (subset based on Ciliated epithelial cells). Adjusted p values are reported

on plots.

(TIF)

S9 Fig. Top differentially active ligand-receptor network as predicted by NicheNet between

‘Ciliated_low’ and ‘Ciliated_high’ donors in GSE135893 (Kropski-Vanderbilt Univ single

cell cohort) [24]. Size of circle indicated percent of cells gene on x axis is expressed in; color

represents relative expression level. Nomenclature of cell clusters follows S8 Fig.

(TIF)

S1 Table.

(XLSX)

S2 Table.

(XLSX)

S3 Table.

(XLSX)
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